Referências Bibliográficas

- [1] GAMBOA, J. A.. Simulacion computacional de una BCP sin interferencia. Universidad Simón Bolívar, 2000.
- [2] OLIVET, A. J.; GAMBOA, J. A.; KENVERY, F. Experimental study of two-phase pumping in a progressing cavity pump metal to metal. Society of Petroleum Engineers SPE, 77730, 2002.
- [3] GAMBOA, J.; OLIVET, A. ; SORELYS, E.. New approach for modelling progressive cavity pumps performance. Society of Petroleum Engineers - SPE, 84137, 2003.
- [4] PALADINO, E.; LIMA, J. A. ; ALMEIDA, R. F.. Computing modeling of the three-dimensional flow in a metallic stator progressing cavity pump. Society of Petroleum Engineers - SPE, 114110, 2008.
- [5] VETTER, G.; WIRTH, W.. Understand progressive cavity pumps characteristics and avoid abrasive wear. Proceedings 12th Pump User Symposium - Pump User, 1995.
- [6] CARVALHO, M. S.; DE PINA, E. P. F.. Three-dimensional flow of a newtonian liquid through an annular space with axially varying eccentricity. Journal of Fluids Engineering, 128:226–230, 2006.
- [7] CHOLET, H.: Progressive Cavity Pumps. Editions Technip, Paris, 1997.
- [8] CEREIJO, A. M. M. Estudio experimental del bombeio bifasico (gas y liquido) en bombas de cavidad progressiva. Universidad Simón Bolívar, 1999.
- [9] SOPILKA, A. J. O.. Estudio experimental del desempeño de una BCP de estator rígido con flujo bifasico. Universidad Simón Bolívar, 2002.
- [10] BRATU, C.. Progressing cavity pumps (PCP) behavior in multiphase conditions. Society of Petroleum Engineers SPE, 95272, 2005.

- [11] MARTIN, A.; KENYERY, F. ; TREMANTE, A. Experimental study of two phase pumping in progressive cavity pumps. Society of Petroleum Engineers SPE, 53967, 1999.
- [12] ASSMAN, B. W.. Estudo de estratégias de otimização para poços de petróleo com elevação por bombeio de cavidades progressivas. Universidade Federal do Rio Grande do Norte, 2008.
- [13] SCHLISCHTING, H.. Boundary Layer Theory. McGraw Hill, New York, 1986.
- [14] PANTON, R. L.. Incompressible Flow. Wiley Intercience Publication, USA, 1996.
- [15] R. B. BIRD, W. E. S.; LIGHTFOOT, E. N.. Transport Phenomena. John Wiley & Sons Inc., New York, 1960.
- [16] CARVALHO, M. S.; SCRIVEN, L. E.. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover. Journal of Computational Physics, 138:449–479, 1997.

Sumário das notações

Parâmetros geométricos

L	comprimento característico ou comprimento do passo do rotor
	(m),
Lb	comprimento da bomba (m),
Ro	raio do tubo externo (na geometria simplificada) ou parede
	do estator (na BCP)(m),
Rs	maior raio (ou crista) do rotor (na geometria simplificada) ou
	raio menor do estator (na BCP)(m),
Rr	menor raio (ou vale) do rotor (na geometria simplificada) ou
	raio do rotor (na BCP)(m),
Ri(z)	qualquer raio do rotor na geometria simplificada (m),
F	folga ou diferença radial entre o estator e o rotor (m) ,
Dr	diâmetro da seção transversal do rotor (m),
Ds	diâmetro do estator (m),
E	excentricidade (m),
Pst	passo do estator (m),
Pr	passo do rotor (m),
Nr	número de passos do rotor,
Vb	volume da bomba (m^3) ,
δ	parâmetro geométrico que relaciona a folga com o raio.

Modelo matemático

z	coordenada axial (m),
r	coordenada radial (m),
θ	coordenada tangencial (rad),
u	componente axial do vetor velocidade (m/s),
v	componente radial do vetor velocidade (m/s),
W	componente tangencial do vetor velocidade (m/s),

c_1, c_2, c_3, c_4	constantes de integração,
U	velocidade axial (m/s),
W	velocidade tangencial (m/s),
C_1	coeficiente do termo de gradiente de pressão tangencial,
C_2	coeficiente do termo de gradiente de pressão axial,
C_0	coeficiente do termo independente da pressão,
C_{0U}	coeficiente do termo independente da pressão relacionado à
	velocidade axial,
C_{0W}	coeficiente do termo independente da pressão relacionado à
	velocidade tangencial,
NZ	parâmetro de malha: número de nós da direção z ,
$N\theta$	parâmetro de malha: número de nós da direção θ ,
NT	parâmetro de malha: dimensão total da matriz,
A	matriz dos coeficientes,
M	matriz dos coeficientes modificada (sistema de blocos),
Q_t	vazão instantânea (m^3/s) ,
Q_m	vazão média (m^3/d) ,
Q_n	vazão nominal (m^3/d) ,
Q_{adim}	vazão adimensional,
η_V	eficiência volumétrica (%).

Características do fluido e do ambiente

μ	viscosidade (centipoise),
ρ	massa específica do fluido (kg/m^3) ,
g	aceleração da gravidade (m/s^2) ,
P_e	pressão na admissão (entrada da bomba) (pascal),
P_s	pressão na descarga (saída da bomba) (pascal),
ΔP	diferencial de pressão (diferença de pressão entre a saída e a
	entrada da bomba) (pascal),
$\Delta P_a dim$	diferencial de pressão adimensional,
t	tempo (s).

A Apêndice: Análise Dimensional

Apresenta-se a análise dimensional realizada sobre os termos das equações do movimento e da continuidade, a partir das considerações geométricas da BCP.

A.1 Definições

– Variáveis com dimensão ($[\phi]$) e direção ($\hat{\phi}$):

Velocidade axial: $u = [U]\hat{u}$ Velocidade radial: $v = [V]\hat{v}$ Velocidade tangencial: $w = [W]\hat{w}$ Pressão: $p = [P]\hat{p}$ Aceleração gravitacional: $g = [G]\hat{g}$

– Dimensões características do domínio físico:

Dimensão longitudinal: $\Delta z = L\hat{z}$

Dimensão radial: $\Delta r = (R_o - R_r)\hat{r} = F\hat{r}$

Dimensão azimutal: $r\Delta\theta = R_o \hat{r}\partial\hat{\theta}$

– Observações geométricas sobre o domínio físico:

Comprimento em relação ao raio interno do estator: $L \sim R_o$ Comprimento em relação à folga: $R_o - R_r \ll L$

Expressões dimensionais da pressão, da aceleração da gravidade e do tempo:

$$[P] = \frac{\mu U L}{F^2}$$
$$[G] = \frac{\mu U}{\rho F^2}$$
$$[t] = [T]\hat{t} = \frac{[L]}{[U]}\hat{t}$$

- Relações dimensionais decorrentes:

$$\frac{\partial u}{\partial t} = \frac{[U]}{[L/U]} \frac{\partial \hat{u}}{\partial \hat{t}}$$
$$\partial r = [F] \partial \hat{r}$$
$$r \partial \theta = [R_o] \hat{r} \partial \hat{\theta}$$

A.2 Equação da Continuidade

Equação da continuidade adimensionalizada, para regime permanente e propriedades constantes:

$$\frac{1}{\hat{r}F}\frac{\partial[\hat{r}(V\hat{v})]}{\partial\hat{r}} + \frac{1}{R_o\hat{r}}\frac{\partial(W\hat{w})}{\partial\hat{\theta}} + \frac{\partial(U\hat{u})}{\partial(L\hat{z})} = 0$$
(A-1)

Reescrevendo, colocando o termo U/L em evidência, tem-se que A-1:

$$\frac{U}{L} \begin{bmatrix} \frac{\partial \hat{u}}{\partial \hat{z}} \\ 1^{\circ \text{termo}} + \underbrace{\frac{L}{U} \frac{W}{R_o} \frac{1}{\hat{r}} \frac{\partial \hat{w}}{\partial \hat{\theta}}}_{2^{\circ \text{termo}}} + \underbrace{\frac{L}{U} \frac{V}{F} \frac{1}{\hat{r}} \frac{\partial (\hat{r}\hat{v})}{\partial \hat{r}}}_{3^{\circ \text{termo}}} \end{bmatrix} = 0$$
(A-2)

Analisando-se dimensionalmente a equação acima, observa-se que:

- -1° termo: como é composto somente por vetores unitários, tem ordem 1.
- -2° termo: como $L \sim R_o$ e $W \sim U$, este termo tem ordem 1.
- 3° termo: como a folga é muito menor que o comprimento, $F \ll L$, é necessário que $V \ll U$ para que este termo seja da mesma ordem de grandeza dos demais.

Portanto, dada a geometria da BCP, conclui-se que a velocidade radial V é desprezível em relação a U e W, de forma que a equação da continuidade A-2 reduz-se a:

$$\frac{W}{R_0}\frac{1}{\hat{r}}\frac{\partial\hat{w}}{\partial\hat{\theta}} + \frac{U}{L}\frac{\partial\hat{u}}{\partial\hat{z}} = 0 \tag{A-3}$$

Reescrevendo-se a equação A-4 com dimensão, tem-se:

$$\frac{1}{r}\frac{\partial w}{\partial \theta} + \frac{\partial u}{\partial z} = 0 \tag{A-4}$$

A.3 Equações de Navier-Stokes

Adimensionalizando-se as equações do movimento, em coordenadas cilíndricas, iniciando-se pela direção axial (z):

$$\rho \left[\frac{U}{L/U} \frac{\partial \hat{u}}{\partial \hat{t}} + \frac{VU}{F} \hat{v} \frac{\partial \hat{u}}{\partial \hat{r}} + \frac{W}{R_0} \frac{\hat{w}}{\hat{r}} \frac{\partial(U\hat{u})}{\partial \hat{\theta}} + \frac{U^2}{L} \frac{\partial \hat{u}}{\partial \hat{z}} \right] = \\\rho[G]\hat{g}_z - \frac{P}{L} \frac{\partial \hat{p}}{\partial \hat{z}} + \mu \left[\frac{U}{R_0} \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} \left(\frac{\hat{r}\partial \hat{u}}{\partial \hat{r}} \right) + \frac{U}{R_0^2} \frac{1}{\hat{r}^2} \frac{\partial^2 \hat{u}}{\partial \hat{\theta}^2} + \frac{U}{L^2} \frac{\partial^2 \hat{u}}{\partial \hat{z}^2} \right]$$
(A-5)

Tendo vista as observações geométricas do domínio e considerando-se as conclusões da seção A.2, a equação A-5 assume a seguinte forma:

$$\frac{\rho U^2}{L} \left[\frac{\partial \hat{u}}{\partial \hat{t}} + \underbrace{\frac{VL}{FU}}_{\text{ordem unitaria}} \hat{v} \frac{\partial \hat{u}}{\partial \hat{r}} + \frac{\hat{w}}{\hat{r}} \frac{\partial \hat{u}}{\partial \hat{\theta}} + \hat{u} \frac{\partial \hat{u}}{\partial \hat{z}} \right] = \frac{\mu U}{F^2} \left\{ \hat{g}_z - \frac{\partial \hat{p}}{\partial \hat{z}} + \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} \left(\frac{\hat{r} \partial \hat{u}}{\partial \hat{r}} \right) + \frac{F^2}{L^2} \left[\frac{1}{\hat{r}^2} \frac{\partial^2 \hat{u}}{\partial \hat{\theta}^2} \right] + \frac{F^2}{L^2} \left[\frac{\partial^2 \hat{u}}{\partial \hat{z}^2} \right] \right\}$$
(A-6)

Rearranjando-se a equação A-6:

$$\underbrace{\left(\frac{\rho UL}{\mu}\right)\left(\frac{F^2}{L^2}\right)}_{\operatorname{Re}^*} \left[\frac{\partial \hat{u}}{\partial \hat{t}} + \hat{v}\frac{\partial \hat{u}}{\partial \hat{r}} + \frac{\hat{w}}{\hat{r}}\frac{\partial \hat{u}}{\partial \hat{\theta}} + \frac{\partial \hat{u}}{\partial \hat{z}}\right] = \hat{g}_z - \frac{\partial \hat{p}}{\hat{z}} + \left[\frac{1}{r}\frac{\partial}{\partial \hat{r}}\left(\hat{r}\frac{\partial \hat{u}}{\partial \hat{r}}\right)\right] (A-7)$$

Na equação A-7, o termo indicado como Re^* equivale a um "Número de Reynolds reduzido" e contém uma fração dimensionalmente desprezível $(F/L)^2 \ll 1$. Logo, os termos que multiplicam F/L tornam-se desprezíveis, fazendo com que a equação A-7 fique reduzida a:

$$\hat{g}_z - \frac{\partial \hat{p}}{\hat{z}} + \left[\frac{1}{r}\frac{\partial}{\partial \hat{r}}\left(\hat{r}\frac{\partial \hat{u}}{\partial \hat{r}}\right)\right] = 0 \tag{A-8}$$

Na direção radial, a equação de Navier Stokes em coordenadas cilíndricas com variáveis adimensionais é dada por:

$$\rho \left[\frac{V}{(L/V)} \frac{\partial \hat{v}}{\hat{t}} + \frac{V^2}{F} \frac{\partial \hat{v}}{\hat{r}} + \frac{W}{R_o} \frac{\hat{w}}{\hat{r}} \frac{V \partial \hat{v}}{\partial \theta} - \frac{W^2}{R_o} \frac{\hat{w}^2}{\hat{r}} + U \hat{u} \frac{V}{L} \frac{\partial \hat{v}}{\partial \hat{z}} \right) = \\
\mu \left[\frac{\partial}{F \partial \hat{r}} \left(\frac{V R_o}{F \hat{r}} \frac{\partial \hat{v} \hat{r}}{F \partial \hat{r}} \right) + \frac{V}{R_o^2 \hat{r}^2} \frac{\partial^2 \hat{v}}{\partial \hat{\theta}^2} + \frac{V}{L^2} \frac{\partial^2 \hat{v}}{\partial \hat{z}^2} - \frac{2W}{R_o^2 \hat{r}^2} \frac{\partial \hat{w}}{\partial \hat{\theta}} \right] - \\
- \frac{P}{F} \frac{\partial \hat{p}}{\partial \hat{r}} + \rho G \hat{g}_r \qquad (A-9)$$

Considerando-se que $U \sim V \sim W$ e que $L \sim R_o$, pode-se fazer algumas substituições e reescrever a expressão acima da seguinte maneira:

$$\rho \frac{U^2}{L} \left(\frac{\hat{v}^2}{\hat{t}} + \frac{L}{F} \frac{\partial \hat{v}}{\partial \hat{r}} + \frac{\hat{w}}{\hat{r}} \frac{\partial \hat{v}}{\partial \hat{\theta}} - \frac{\hat{w}^2}{\hat{r}} + \hat{u} \frac{\partial \hat{v}}{\partial \hat{z}} \right) = \\ \mu \frac{U}{F^2} \left[\frac{\partial}{\partial \hat{r}} \left(\frac{1}{\hat{r}} \frac{\partial (\hat{v}\hat{r})}{\partial \hat{r}} \right) + \frac{F^2}{L^2} \frac{\partial^2 \hat{v}}{\hat{r}^2 \partial \hat{\theta}^2} + \frac{F^2}{L^2} \frac{\partial^2 \hat{v}}{\partial \hat{z}^2} - 2 \frac{F^2}{L^2} \frac{\partial \hat{w}}{\hat{r}^2 \partial \hat{\theta}} \right] - \\ \frac{P}{F} \frac{\partial \hat{p}}{\partial \hat{r}} + \rho G \hat{g}_r \qquad (A-10)$$

Substituindo-se as expressões de P e G e reescrevendo-se a equação A-10 obtém-se:

$$\left(\frac{\rho UL}{\mu}\right) \left(\frac{F}{L}\right)^2 \left[\frac{\hat{v}^2}{\hat{t}} + \frac{L}{F}\frac{\partial\hat{v}}{\partial\hat{r}} + \frac{\hat{w}}{\hat{r}}\frac{\partial\hat{v}}{\partial\hat{\theta}} - \frac{\hat{w}^2}{\hat{r}} + \hat{u}\frac{\partial\hat{v}}{\partial\hat{z}}\right] = \left(\frac{F}{L}\right)^2 \left[\frac{L^2}{F^2}\frac{\partial}{\partial\hat{r}}\left(\frac{1}{\hat{r}}\frac{\partial(\hat{v}\hat{r})}{\partial\hat{r}}\right) + \frac{\partial^2\hat{v}}{\hat{r}^2\partial\hat{\theta}^2} + \frac{\partial^2\hat{v}}{\partial\hat{z}^2} - 2\frac{\partial\hat{w}}{\hat{r}^2\partial\hat{\theta}}\right] - \frac{L}{F}\frac{\partial\hat{p}}{\partial\hat{r}} + \hat{g}_r \quad (A-11)$$

Dado que $(F/L)^2 << 1$, na equação A-11 todos termos que multiplicam $(F/L)^2$ tornam-se desprezíveis, de forma que a equação do movimento na direção radial reduz-se a:

$$\frac{L}{F}\frac{\partial\hat{p}}{\partial\hat{r}} = \hat{g_r} \tag{A-12}$$

A menos da componente da força gravitacional, conclui-se que, no domínio da BCP, a pressão não varia na direção radial.

Na direção tangencial, a equação do movimento em coordenadas cilíndricas e com variáveis adimensionais é expressa por:

$$\rho \left(\frac{W}{W/L} \frac{\partial \hat{w}}{\partial \hat{t}} + \frac{VW\hat{v}}{F} \frac{\partial \hat{w}}{\partial \hat{r}} + \frac{W\hat{w}}{R_o \hat{r}} \frac{\partial \hat{w}}{\partial \hat{\theta}} + \frac{VW}{R_o} \frac{\hat{v}\hat{w}}{\hat{r}} + \frac{UW}{L} \frac{\hat{u}\partial \hat{w}}{\partial \hat{z}} \right) = \\
\mu \left[\frac{\partial}{F\partial \hat{r}} \left(\frac{1}{R_o \hat{r}} \frac{FW}{F} \frac{\partial (\hat{r}\hat{w})}{\partial \hat{r}} \right) + \frac{W}{R_o^2 \hat{r}} \frac{\partial^2 \hat{w}}{\partial \theta^2} + \frac{W}{L^2} \partial^2 \hat{w} \partial \hat{z}^2 + \frac{2V}{R_o^2 \hat{r}} \frac{\partial \hat{v}}{\partial \hat{\theta}} \right] \\
- \frac{P}{R_o \hat{r}} \frac{\partial \hat{p}}{\partial \hat{r}} + \rho G \hat{g}_{\theta} \quad (A-13)$$

Substituindo-se variáveis e rearranjando-se a equação A-13 se transforma em:

$$\rho \frac{U^2}{L} \left(\frac{\hat{w}}{\hat{r}} \frac{\partial \hat{w}}{\partial \hat{\theta}} + \hat{u} \frac{\partial \hat{w}}{\partial \hat{z}} \right) = \rho[G] \hat{g}_{\theta} - \frac{[P]}{L} \frac{\partial \hat{p}}{\hat{r} \partial \hat{\theta}} + \mu \left\{ \frac{U}{F^2} \frac{\partial}{\partial \hat{r}} \left[\frac{1}{\hat{r}} \frac{\partial (\hat{r} \hat{w})}{\partial \hat{r}} \right] + \frac{U}{L^2} \frac{\partial^2 \hat{w}}{\partial \hat{\theta}^2} + \frac{U}{L^2} \frac{\partial^2 \hat{w}}{\partial \hat{z}^2} \right\}$$
(A-14)

Mais uma vez desprezando-se os termos de $(F/L)^2$ por sua ordem de grandeza significativamente inferior aos demais termos da equação A-14, esta reduz-se a:

$$\frac{\partial \hat{p}}{\hat{r}\partial\hat{\theta}} = \frac{\partial}{\partial\hat{r}} \left[\frac{1}{\hat{r}} \frac{\partial(\hat{r}\hat{w})}{\partial\hat{r}} \right] \tag{A-15}$$

Com relação à força gravitacional, observa-se que, para o caso de bomba na vertical, os termos gravitacionais nas direções radial (\hat{g}_r) e tangencial (\hat{g}_{θ}) , não se aplicam, restando apenas a componente $\hat{g}_z \neq 0$. Estando a bomba posicionada horizontalmente, tem-se $\hat{g}_z = 0$ e, neste caso, despreza-se $\hat{g}_r \in \hat{g}_{\theta}$.

Recolocando a dimensão nas três equações de Navier-Stokes A-8, A-12 e A-15, tem-se que as mesmas reduziram-se a:

$$\rho g - \frac{\partial p}{\partial z} + \mu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) = 0 \tag{A-16}$$

$$\frac{\partial p}{\partial r} = 0 \tag{A-17}$$

$$-\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu \frac{\partial}{\partial r} \left[\frac{1}{r}\frac{\partial (rw)}{\partial r}\right] = 0 \tag{A-18}$$

Conclui-se que a análise dimensional apresentada resultou em três equações diferenciais (A-16, A-17 e A-18), cuja integração leva às expressões das velocidades.

B Apêndice: Programa

Neste Apêndice 2 apresenta-se o programa criado para solução do modelo que simula o escoamento monofásico em BCP com estator rígido. Este modelo, que utilizou-se a teoria de lubrificação em coordenadas cilíndricas nas equações de Navier-Stokes, resolve os campos de pressão e velocidade na BCP. O programa, implementado em ambiente Matlab[®], fornece a solução numérica da equação de Poisson que representa o campo de pressão do referido escoamento.

O programa é composto por 11 rotinas, que seguem o seguinte roteiro:

- Principal: faz as chamadas das outras rotinas, constrói e resolve o sistema matricial.
- FuncRo: descreve a superfície do estator, para um dado zpas e t, a partir das características geométricas da BCP.
- DifRo: resolve a derivada da função Ro em relação a theta.
- Geometria: calcula a geometria do estator.
- CalculaCf: constantes que multiplicam os gradientes de pressao.
- EntradasA: preenche as entradas não nulas da matriz.
- CondCont: crias as condições de contorno.
- Bloco: divide a matriz em blocos, para melhorar a precisão da solução.
- Pospro: realiza o pós-processamento, após a solução da matriz.
- Resultados: gera gráficos e salva dados.
- Valores: entrada de todos os dados necessários à simulação (geométricos, características dos fluidos e operacionais).

Figura B.1: Principal

_____ ===== % PUC-Rio % Departamento de Engenharia Mecânica % Dissertação de mestrado % Selma Fontes de Araujo Andrade % Modelo para simulação dos campos de pressão e velocidade de escoamento monofásico em BCP com estator rígido. % Utilizou-se a teoria de lubrificação em coordenadas cilíndricas nas % equações de Navier-Stokes. %_____ ____ % Limpeza da memória clear all; clc: format long; % Lendo os dados de entrada: Valores: % Construindo a matriz A (matriz dos coeficientes) t = 0; kt=1: while (t) <= tmax; % Constantes que multiplicam os gradientes de pressao: [UC0,WC0,C1,C2,RVro,DRWro,Folga] = CalculaCf(t); % Preenchendo as entradas nao nulas da matriz S(ROWVEC,COLVEC): [ROWVEC,COLVEC,S,f,icont] = EntradasA(UC0,WC0,C1,C2,RVro,DRWro); % Impondo as condices de contorno: [ROWVEC,COLVEC,S,f] = CondCont(ROWVEC,COLVEC,S,f,icont); % Montando a matriz de forma esparsa: SP=sparse(ROWVEC,COLVEC,S,NTOTAL, NTOTAL); % Resolvendo o sistema matricial, cuja incognita eh o campo de pressao: %Opcao de resolver usando LU: % % [LSP,USP]=lu(SP); % YLU = LSP\f'; % P = USP YLU;% %opcao de resolver usando o LU depois de blocar a matriz: Bloco: P = P2: % Gerando resultados: Resultados; tempo(kt)=t; Qvet(kt)=Q; t = t + Dtkt=kt+1; end % Calculando a vazão e apresentando o gráfico Q X t: vol=trapz(tempo,Qvet) disp(' Vazão média '); Qm=vol/tempo(kt-1) figure; plot(tempo,Qvet) xlabel('Tempo(s)') ylabel('Vazão (m3/s)')

disp(' FIM DO PROGRAMA ');

Figura B.2: FuncRo (1a. parte)

% Descreve a superfície do estator, para um dado zpas e t, a partir das % características geométricas da BCP.

```
function [Ro] = FuncRo(tetapas,zpas,t)
Valores;
tetaS=(pi*zpas/L);
dcsr = 2*e*cos((Omega)*t-tetaS);
alfa1 =atan(Rs/(2*e-dcsr)); alfa2 =atan(Rs/(2*e+dcsr));
% Limites iniciais dos angulos que definem as regiões do estator
  % Situacao inicial onde a ordem crescente eh (lim1, lim2, lim3, lim4)
lim1 = (alfa1-tetaS);
\lim 2 = (pi - (tetaS + alfa2));
lim3 = (pi + (alfa2-tetaS))
lim4 = (2*pi - (alfa1+tetaS));
 % lim1 passa para o hemisferio inferior
                                           % nova ordem: (lim2, lim3, lim4, lim1)
if ((alfa1-tetaS) < 0) lim1 = 2*pi+ (alfa1-tetaS); while (lim1 < 0)
   \lim 1 = \lim 1+2^*pi;
 end
end
% lim2 passa para o hemisferio inferior % nova ordem: (lim3, lim4, lim1, lim2)
if ((pi - (tetaS+alfa2)) < 0) lim2 = 2*pi + (pi - (tetaS+alfa2));
 while (\lim 2 < 0)
   \lim 2 = \lim 2 + 2^* pi;
 end
end
% lim3 passa para o hemisferio inferior % nova ordem: (lim4, lim1, lim2, lim3)
if ((pi + (alfa2-tetaS)) < 0) lim3 = 2*pi + (pi + (alfa2-tetaS));
 while (\lim 3 < 0)
   \lim 3 = \lim 3+2^*pi;
 end
end
% lim4 passa para o hemisferio inferior % recupera a ordem inicial, porem tetaS eh 2*pi, ordem: (lim1, lim2,
lim3, lim4)
if ((2*pi - (alfa1+tetaS)) < 0) lim4 = 2*pi + (2*pi - (alfa1+tetaS));
 while (\lim 4 < 0)
   lim4 = lim4+2*pi;
 end end
% vetor que armazena os angulos limites
angvet = [lim1,lim2,lim3,lim4];
% sort = Ordena os limites pra descobrir qual regiao vai ser dividida.
% (ordem crescente)
angord = sort(angvet);
if (angord(1)==lim1)
  % Situacao 1 - Regiao 1 dividida com tetaS proximo de 0
 if ((tetapas >= 0) && (tetapas < lim1)) % Região 1A
   Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2);
 elseif ((tetapas >= lim1) && (tetapas < lim2)) % Região 3
   Ro = Rs/(sin(tetapas+tetaS));
 elseif ((tetapas >= lim2) && (tetapas < lim3))% Região 2
   Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2);
 elseif (tetapas >= lim3 && (tetapas < lim4))% Região 4
   Ro = - Rs/(sin(tetapas+tetaS));
 else %((tetapas >= lim4) && (tetapas < 2*pi))% Região 1B
   Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2);
 end
```

Figura B.3: FuncRo (2a. parte)

```
end
```

```
if (angord(1)==lim2)
                         % Situacao 2 - Regiao 3 dividida
                                                             if ( (tetapas \geq 0) && (tetapas \leq 100 )
% Região 3A
    Ro = Rs/(sin(tetapas+tetaS));
                                   elseif ((tetapas >= lim2) && (tetapas < lim3)) % Região 2
    Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2);
  elseif ((tetapas >= lim3) && (tetapas < lim4))% Região 4
    Ro = - Rs/(sin(tetapas+tetaS));
  elseif (tetapas >= lim4 && (tetapas < lim1))% Região 1
    Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2);
  else %( (tetapas >= lim1 ) && (tetapas <= 2*pi ) ) % Região 3B
    Ro = Rs/(sin(tetapas+tetaS));
                                   end end
if (angord(1)==lim3)
                           % Situacao 3 - Regiao 2 dividida
   if ((tetapas >= 0) && (tetapas < lim3)) % Região 2A
    Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2);
  elseif ((tetapas >= lim3) && (tetapas < lim4)) % Região 4
                                    elseif ((tetapas >= lim4) && (tetapas < lim1))% Região 1
    Ro = - Rs/(sin(tetapas+tetaS));
    Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2);
                                                                                       elseif (tetapas
>= lim1 && (tetapas < lim2))% Região 3
    Ro = Rs/(sin(tetapas+tetaS)); else %((tetapas >= lim2) && (tetapas <= 2*pi)) % Região 2B
    Ro = -(2^{e}+dcsr)^{2}cos(tetapas+tetaS)+sqrt(Rs^{2}-(2^{e}+dcsr)^{2}sin(tetapas+tetaS)^{2});
  end
end
  if (angord(1)==lim4)
                                 % Situacao 4 - Regiao 4 dividida
                                                                     if ( ( tetapas >= 0) && (tetapas <
lim4) ) % Região 4A
    Ro = - Rs/(sin(tetapas+tetaS)): elseif ((tetapas >= lim4) && (tetapas < lim1)) % Região 1
    Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2);
                                                                                      elseif ((tetapas
>= lim1) && (tetapas < lim2) )% Região 3
    Ro = Rs/(sin(tetapas+tetaS));
                                   elseif (tetapas >= lim2 && (tetapas < lim3))% Região 2
    Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2);
  else %((tetapas >= lim3) && (tetapas <= 2*pi))% Região 4B
   Ro = - Rs/(sin(tetapas+tetaS));
                                    end
 end
```

PUC-Rio - Certificação Digital Nº 0611803/CA

```
Figura B.4: DifRo (1a. parte)
```

% Descreve a superfície do estator, para um dado zpas e t, a partir das % características geométricas da BCP.

```
function [DRot,Ro] = DifRo(tetapas,zpas,t)
Valores;
tetaS=(pi*zpas/L);
dcsr = 2*e*cos((Omega)*t-tetaS);
alfa1 =atan(Rs/(2*e-dcsr)); alfa2 =atan(Rs/(2*e+dcsr));
% Limites iniciais dos angulos que definem as regiões do estator
  % Situacao inicial onde a ordem crescente eh (lim1, lim2, lim3, lim4)
lim1 = (alfa1-tetaS);
lim2 = (pi - (tetaS+alfa2));
lim3 = (pi + (alfa2-tetaS))
lim4 = (2*pi - (alfa1+tetaS));
 % lim1 passa para o hemisferio inferior
                                           % nova ordem: (lim2, lim3, lim4, lim1)
if ((alfa1-tetaS) < 0) lim1 = 2*pi+ (alfa1-tetaS); while (lim1 < 0)
   \lim 1 = \lim 1+2^*pi;
 end
end
% lim2 passa para o hemisferio inferior % nova ordem: (lim3, lim4, lim1, lim2)
if ((pi - (tetaS+alfa2)) < 0) lim2 = 2*pi + (pi - (tetaS+alfa2));
 while (\lim 2 < 0)
   \lim 2 = \lim 2 + 2^* pi;
 end
end
% lim3 passa para o hemisferio inferior % nova ordem: (lim4, lim1, lim2, lim3)
if ((pi + (alfa2-tetaS)) < 0) lim3 = 2*pi + (pi + (alfa2-tetaS));
 while (\lim 3 < 0)
   \lim 3 = \lim 3+2^*pi;
 end
end
% lim4 passa para o hemisferio inferior % recupera a ordem inicial, porem tetaS eh 2*pi, ordem: (lim1, lim2,
lim3, lim4)
if ((2*pi - (alfa1+tetaS)) < 0) lim4 = 2*pi + (2*pi - (alfa1+tetaS));
 while (\lim 4 < 0)
   lim4 = lim4+2*pi;
 end end
% vetor que armazena os angulos limites
angvet = [lim1,lim2,lim3,lim4];
% sort = Ordena os limites pra descobrir qual regiao vai ser dividida.
% (ordem crescente)
angord = sort(angvet);
if (angord(1)==lim1)
  % Situacao 1 - Regiao 1 dividida com tetaS proximo de 0
 if ((tetapas >= 0) && (tetapas < lim1)) % Região 1A
   Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2 );
   DRot = -(2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*e-
dcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS);
 elseif ((tetapas >= lim1) && (tetapas < lim2)) % Região 3
   Ro = Rs/(sin(tetapas+tetaS));
   DRot = -Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS);
 elseif ((tetapas >= lim2) && (tetapas < lim3))% Região 2
   Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2 );
   DRot =-(-2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-
(2*e+dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*e+dcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS);
```

Figura B.5: DifRo (2a. parte) elseif (tetapas >= lim3 && (tetapas < lim4))% Região 4 Ro = - Rs/(sin(tetapas+tetaS)); DRot =Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS); else %((tetapas >= lim4) && (tetapas < 2*pi)) % Região 1B Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2); $DRot = -(2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2)^{(1/2)}(2*e-dcsr)^2$ dcsr)²*sin(tetapas+tetaS)*cos(tetapas+tetaS); end end if (angord(1)==lim2) % Situacao 2 - Regiao 3 dividida if ((tetapas ≥ 0) && (tetapas ≤ 100) % Região 3A Ro = Rs/(sin(tetapas+tetaS)); DRot = -Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS); elseif ((tetapas >= lim2) && (tetapas < lim3)) % Região 2 Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2); DRot =-(-2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*e+dcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS); elseif ((tetapas >= lim3) && (tetapas < lim4))% Região 4 Ro = - Rs/(sin(tetapas+tetaS)); DRot =Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS); elseif (tetapas >= lim4 && (tetapas < lim1))% Região 1 Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2); DRot =-(2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*edcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS); else %((tetapas >= lim1) && (tetapas <= 2*pi))% Região 3B Ro = Rs/(sin(tetapas+tetaS)); DRot = -Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS); end end if (angord(1)==lim3) % Situacao 3 - Regiao 2 dividida if ((tetapas >= 0) && (tetapas < lim3)) % Região 2A Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2); DRot =-(-2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*e+dcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS); elseif ((tetapas >= lim3) && (tetapas < lim4)) % Região 4 Ro = - Rs/(sin(tetapas+tetaS)); DRot =Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS); elseif ((tetapas >= lim4) && (tetapas < lim1))% Região 1 Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2); DRot =-(2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*edcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS); elseif (tetapas >= lim1 && (tetapas < lim2))% Região 3 Ro = Rs/(sin(tetapas+tetaS)); DRot = -Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS); else %((tetapas >= lim2) && (tetapas <= 2*pi))% Região 2B Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2); DRot =-(-2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*e+dcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS); end end if (angord(1)==lim4) % Situacao 4 - Regiao 4 dividida if ((tetapas >= 0) && (tetapas < lim4))% Região 4A Ro = - Rs/(sin(tetapas+tetaS)); DRot =Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS); elseif ((tetapas >= lim4) && (tetapas < lim1)) % Região 1 Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2); DRot =-(2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*edcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS); elseif ((tetapas >= lim1) && (tetapas < lim2))% Região 3

Ro = Rs/(sin(tetapas+tetaS)); DRot = -Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS);

```
Figura B.6: DifRo (3a. parte)
  elseif (tetapas >= lim2 && (tetapas < lim3))% Região 2
   Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2 );
   DRot =-(-2*e-dcsr)*sin(tetapas+tetaS)-1/(Rs^2-
(2*e+dcsr)^2*sin(tetapas+tetaS)^2)^(1/2)*(2*e+dcsr)^2*sin(tetapas+tetaS)*cos(tetapas+tetaS);
  else %( (tetapas >= lim3 ) && (tetapas <= 2*pi ) ) % Região 4B
   Ro = - Rs/(sin(tetapas+tetaS));
   DRot =Rs/sin(tetapas+tetaS)^2*cos(tetapas+tetaS);
   end
 end
 %
         % Situacao 1 - Regiao 1 dividida com tetaS ate 2*pi
%
    if ((tetapas >= 0) && (tetapas < lim1)) % Região 1A
%
      Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2 );
%
    elseif ((tetapas >= lim1) && (tetapas < lim2)) % Região 3
%
      Ro = Rs/(sin(tetapas+tetaS));
%
    elseif ((tetapas >= lim2) && (tetapas < lim3))% Região 2
      Ro = -(2*e+dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e+dcsr)^2*sin(tetapas+tetaS)^2 );
%
%
     elseif (tetapas >= lim3 && (tetapas < lim4))% Região 4
%
      Ro = - Rs/(sin(tetapas+tetaS));
%
    else ((tetapas >= lim4) && (tetapas <= 2*pi))% Região 1B
      Ro = (2*e-dcsr)*cos(tetapas+tetaS)+sqrt( Rs^2-(2*e-dcsr)^2*sin(tetapas+tetaS)^2 );
%
%
    end
```

```
PUC-Rio - Certificação Digital Nº 0611803/CA
```

%

Figura B.7: Geometria

function [Rint,zvet,tetavet] = Geometria(t)
Valores;
%zvet=zeros(NZ); % alocando memoria previamente (sugestao do matlab).
for ic=1:NZ
 zvet(ic)=(ic-1)*DZ; for j=1:NTETA
 tetavet(j)=(j-1)*DTETA;
 zpas = zvet(ic);
 tetapas = tetavet(j);
 [Ro] = FuncRo(tetapas,zpas,t);
 Rint(ic,j)=Ro; end
end

Figura B.8: CalculaCf (1a. parte)

```
%====
=====
% Calcula as constantes que formam a equacao de Poisson da
% pressão discreta (diferencas centrais nas segundas derivadas)
%
=====
function [UC0,WC0,C1,C2,RVro,DRWro,Folga] = CalculaCf(t)
Valores:
%alocando memoria --- sugestao do matlab
% C1 = zeros(NZ,NTETA-1);
% WC0 = zeros(NZ,NTETA-1);
% UC0= zeros(NZ-1,NTETA);
% C2= zeros(NZ-1.NTETA):
% Cw= zeros(NZ,NTETA);
% Nós internos
for ic=1:NZ-1
  zno=(ic-1)*DZ;
                  zface=zno+DZ/2;
                           tetano=(j-1)*DTETA;
   for j=1:NTETA-1
                                                   tetaface = tetano + (DTETA/2);
                                                                                    % quando a funcao
depender de teta em RoU entra tetano e em RoW entra tetaface
                                                                [RoU] = FuncRo(tetano,zface,t);
   [RoW] = FuncRo(tetaface,zno,t);
   %[Ro] = FuncRo(tetano,zno,t);
   [DRot,Ro] = DifRo(tetano,zno,t);
   Wro(ic,j)= -2*e*(Omega)*sin((Omega)*t-(pi*zno/L))*sin(tetano+(pi*zno/L));
   Vro(ic,j)= 2*e*(Omega)*sin((Omega)*t-(pi*zno/L))*cos(tetano+(pi*zno/L));
     % k so aparece em C1, logo recebe RoW:
   k=( Rr^2*(log(Rr)-0.5)-RoW^2*(log(RoW)-0.5) )/(RoW^2-Rr^2);
          C1(ic,j)=(Rr/(2*visc))*( (1/(2*Rr))*( RoW^2*(log(RoW))-Rr^2*(log(Rr)) -...
     (RoW^2 - Rr^2) + k*(RoW^2 - Rr^2)) - Rr*log(RoW/Rr)*(log(Rr)-1/2+k));
                                                                               %
                                                                                     C2(ic,j)= -
(Rr^2/(8*visc))*((RoU^2-Rr^2)-((RoU^4-Rr^4)/(2*Rr^2))+ ...
%
       (((RoU/Rr)^2-1)/(log(RoU/Rr)))* ( (RoU^2*(log(RoU)-0.5))-(Rr^2*(log(Rr)-0.5))-log(Rr)*(RoU^2-Rr^2) )
);
   C2(ic,j)= -(Rr^2/(8*visc))*( (RoU^2-Rr^2)-((RoU^4-Rr^4)/(2*Rr^2))+ ...
     (((RoU/Rr)^2-1)/(log(RoU/Rr)))*(RoU^2*log(RoU/Rr)-0.5*(RoU^2-Rr^2)));
       WC0(ic,j) = -( (Wro(ic,j)*RoW - Rr^2*Omega )/(RoW^2-Rr^2) )*...
      ((RoW^2-Rr^2)/2 - Rr^2*log(RoW/Rr)) + (Rr^2*Omega)*log(RoW/Rr);
   UCO(ic,j) = Rho^*g^*C2(ic,j);
       RVro(ic,j) = -Ro*Vro(ic,j);
   DRWro(ic,j) = DRot*Wro(ic,j);
   Folga(ic,j)=(Ro-Rr);
   end end
% Nós da fronteira direita
ic=NZ;
  zno=(ic-1)*DZ;
                   for j=1:NTETA-1
   tetano=(j-1)*DTETA;
                          tetaface = tetano + (DTETA/2);
                                                            [RoW] = FuncRo(tetaface,zno,t);
   %[Ro] = FuncRo(tetano,zno,t);
   [DRot,Ro] = DifRo(tetano,zno,t);
   Wro(ic,j)= -2*e*(Omega)*sin((Omega)*t-(pi*zno/L))*sin(tetano+(pi*zno/L));
   Vro(ic,j)= 2*e*(Omega)*sin((Omega)*t-(pi*zno/L))*cos(tetano+(pi*zno/L));
   k=( Rr^2*(log(Rr)-0.5)-RoW^2*(log(RoW)-0.5) )/(RoW^2-Rr^2);
   C1(ic,j)=(Rr/(2*visc))*( (1/(2*Rr))*( RoW^2*(log(RoW))-Rr^2*(log(Rr)) -...
     (RoW<sup>2</sup> - Rr<sup>2</sup>) + k*(RoW<sup>2</sup> - Rr<sup>2</sup>)) - Rr<sup>*</sup>log(RoW/Rr)*(log(Rr)-1/2+k));
                                                                              WC0(ic,j) = -(
(Wro(ic,j)*RoW - Rr^2*Omega )/(RoW^2-Rr^2) )*...
```

```
((RoW^2-Rr^2)/2 - Rr^2*log(RoW/Rr)) + (Rr^2*Omega)*log(RoW/Rr);
                                                                              RVro(ic,j) = -Ro*Vro(ic,j);
   DRWro(ic,j) = DRot*Wro(ic,j);
   Folga(ic,j)=(Ro-Rr);
  end
% Nó superiores j=NTETA;
  tetano=(j-1)*DTETA;
  for ic=1:NZ-1
   zno=(ic-1)*DZ;
                      zface=zno+DZ/2;
   [RoU] = FuncRo(tetano,zface,t);
   %[Ro] = FuncRo(tetano,zno,t);
   [DRot,Ro] = DifRo(tetano,zno,t);
       Wro(ic,j)= -2*e*(Omega)*sin((Omega)*t-(pi*zno/L))*sin(tetano+(pi*zno/L));
   Vro(ic,j)= 2*e*(Omega)*sin((Omega)*t-(pi*zno/L))*cos(tetano+(pi*zno/L));
   C2(ic,j)= -(Rr^2/(8*visc))*( (RoU^2-Rr^2)-((RoU^4-Rr^4)/(2*Rr^2))+ ...
     (((RoU/Rr)^2-1)/(log(RoU/Rr)))*(RoU^2*log(RoU/Rr)-0.5*(RoU^2-Rr^2)));
       UCO(ic,j) = Rho^*g^*C2(ic,j);
```

Figura B.9: CalculaCf (2a. parte)

```
RVro(ic,j) = -Ro*Vro(ic,j);
DRWro(ic,j) = DRot*Wro(ic,j);
```

Folga(ic,j)=(Ro-Rr); end

Figura B.10: EntradasA

% Preenchendo os valores nao nulos na matriz esparsa S(ROWVEC,COLVEC).

function [ROWVEC,COLVEC,S,f,icont] = EntradasA(UC0,WC0,C1,C2,RVro,DRWro)

```
Valores;
icont=1;
% --> Para os nós internos:
for ic=2:(NZ-1)
 for j=2:(NTETA-1)
    k=(j-1)*NZ+ic;
ke=((j-1)-1)*NZ+ic;
    kd=((j+1)-1)*NZ+ic;
    ka=(j-1)*NZ+(ic+1);
    kb=(j-1)*NZ+(ic-1);
        ROWVEC(icont)=k;
    COLVEC(icont)=k;
    S(icont)=(-1/(DTETA^2))*(C1(ic,j)+C1(ic,j-1))...
     +(-1/(DZ^2))*(C2(ic,j)+C2(ic-1,j));
    icont=icont+1;
                           ROWVEC(icont)=k;
    COLVEC(icont)=ka;
    S(icont)=(1/(DZ^2))*(C2(ic,j));
    icont=icont+1;
                         ROWVEC(icont)=k;
    COLVEC(icont)=kb;
    S(icont)=(1/(DZ^2))*(C2(ic-1,j));
    icont=icont+1;
        ROWVEC(icont)=k;
    COLVEC(icont)=kd;
    S(icont)=(1/(DTETA^2))*(C1(ic,j));
    icont=icont+1;
        ROWVEC(icont)=k;
    COLVEC(icont)=ke;
    S(icont)=(1/(DTETA^2))*(C1(ic,j-1));
    icont=icont+1;
        f(k)= ((UC0(ic,j)-UC0(ic-1,j))/(DZ) + (WC0(ic,j) - WC0(ic,j-1))/DTETA + RVro(ic,j)+ DRWro(ic,j));
    %Rr*DRt(ic,j);
    end
 end
```

Figura B.11: CondCont

```
% Condições de Contorno e de Periodicidade
function [ROWVEC,COLVEC,S,f] = CondCont(ROWVEC,COLVEC,S,f,icont)
Valores;
% --> Para os nós externos :
j=NTETA; % Fronteira direita: P(teta=0) = P(teta=2pi)
for i=2:NZ-1
 k=(j-1)*NZ+i;
 ke=i;
   ROWVEC(icont)=k;
 COLVEC(icont)=k;
 S(icont)=1;
 icont=icont+1;
   ROWVEC(icont)=k;
 COLVEC(icont)=ke;
 S(icont)=-1;
 icont=icont+1;
   f(k)=0;
end
j=1; % Fronteira esquerda
for i=2:NZ-1
               k=(j-1)*NZ+i;
  ke=(NTETA-1-1)*NZ+i;
  kd=((j+1)-1)*NZ+i;
    ROWVEC(icont)=k;
  COLVEC(icont)=k;
  S(icont)=-2;
  icont=icont+1;
                      ROWVEC(icont)=k;
  COLVEC(icont)=kd;
                        S(icont) = 1;
  icont=icont+1;
    ROWVEC(icont)=k;
  COLVEC(icont)=ke;
                       S(icont) = 1;
  icont=icont+1;
    f(k) = 0;
end
i=1; %Fronteira inferior
for j=1:NTETA
  k=(j-1)*NZ+i;
    ROWVEC(icont)=k;
  COLVEC(icont)=k;
  S(icont)=1;
  icont=icont+1;
    f(k)=Pent; % Condição de Contorno
end
i=NZ; %Fronteira superior
for j=1:NTETA
  k=(j-1)*NZ+i;
    ROWVEC(icont)=k;
  COLVEC(icont)=k;
  S(icont)=1;
                     f(k)=Ps; % Condição de Contorno
  icont=icont+1;
end
```

Figura B.12: Bloco

% Blocando a matriz para melhor inverter:

A11 = SP(1:NTOTAL-NZ,1:NTOTAL-NZ); A12 = SP(1:NTOTAL-NZ,NTOTAL-NZ+1:NTOTAL); A21 = SP(NTOTAL-NZ+1:NTOTAL,1:NTOTAL-NZ); A22 = SP(NTOTAL-NZ+1:NTOTAL,NTOTAL-NZ+1:NTOTAL);

bloco1 = f(1:NTOTAL-NZ); bloco2 = f(NTOTAL-NZ+1:NTOTAL);

Mbloco =(A11 - A12*A21); Fbloco = (bloco1'-A12*bloco2');

[Lbloco,Ubloco]=lu(Mbloco); Ybloco = Lbloco\Fbloco; x1 = Ubloco\Ybloco;

%x1 = inv(A11 - A12*A21)*(b1'-A12*b2');

x2 = bloco2' - A21*x1; P2 = [x1;x2]; Figura B.13: Pospro (1a. parte)

```
%===
                        ===== POS-PROCESSAMENTO
           ______
function [Pmat,Q,Ur] = Pospro(P,C1,C2,UC0,WC0)
Valores;
% Criando a matriz do campo de pressao:
for i=1:NZ
  for j=1:NTETA
    k=(j-1)*NZ+i;
    Pmat(i,j)=P(k);
  end
end
% Determinando os vetores Ur e Wr de velocidade integrados em r:
%======Nós internos =========
for i=1:(NZ-1)
 for j=1:(NTETA-1)
    Ur(i,j)=(C2(i,j)*(Pmat(i+1,j)-Pmat(i,j))/(DZ))-UC0(i,j);
    Wr(i,j)=(C1(i,j)*(Pmat(i,j+1)-Pmat(i,j))/(DTETA))-WC0(i,j);
                                                              end
end
% Fronteira esquerda e direita
i=NTETA:
for i=1:NZ-1
             Ur(i,j)=Ur(i,1);
end
Fronteira superior (saída da bomba)
i=NZ;
for j=1:NTETA-1
                   Wr(i,j)=(C1(i,j)*(Pmat(i,j+1)-Pmat(i,j))/(DTETA))-WC0(i,j);
                                                                            end
% Determinação da vazão total :
Q=0;
i=NZ-1;
for j=1:NTETA-1
 Um = (Ur(i,j+1)+Ur(i,j))/2;
 Q=Q+Um*DTETA; end
% Geometria simplificada:
% Campo de velocidade no referencial com estator em movimento
% Para um dado z e teta, calcular u em funcao de r:
NR = 100; %numero de intervalos da distancia radial.
         czf1 = round(NZ/4); %posicao equivalente a um quarto da bomba (o primeiro vale ou a primeira
crista, apos a entrada)
zf1 = zvet(czf1);
czf2 = round(NZ/2); %posicao equivalente a metade da bomba (o segundo vale ou a segundo crista,
contando a entrada)
zf2 = zvet(czf2);
[Rif1] = FuncRi(Rs,Rr,L,zf1);
[Rif2] = FuncRi(Rs,Rr,L,zf2);
DR1 = abs(Rif1 - Ro)/(NR-1);
r1 = [Rif1:DR1:Ro];
W1 = (Omega/60)*Rif1;
DR2 = abs(Rif2 - Ro)/(NR-1);
r2 = [Rif2:DR2:Ro];
W2 = (Omega/60)*Rif2;
%perfis de voelocidade para Z fixo em um quarto da bomba: (zf1)
k=( Rif1^2*(log(Rif1)-0.5)-Ro^2*(log(Ro)-0.5) )/(Ro^2-Rif1^2);
%constantes do campo de velocidade :
```

Figura B.14: Pospro (2a. parte) C1w1 = (Rif1/(2*visc))*((r1./Rif1).*(log(r1) - 1/2) - (Rif1./r1).*(log(Rif1) - 1/2) + ((r1./Rif1)-(Rif1./r1))*k);C2u1 = -(Rif1^2/(4*visc))*(1-(r1./Rif1).^2 + (((Ro/Rif1)^2-1)/(log(Ro/Rif1)))*log(r1./Rif1)); C0u1 = -Rho*g*C2u1 +(U/(log(Ro/Rif1)))*log(r1./Rif1); C0w1 = W1*Rif1*(1./r1*(1 + Rif1^2/(Ro^2-Rif1^2))-r1/(Ro^2-Rif1^2)); % % Posição dos vetores i=czf1; j=20; $u1=(C2u1^{*}(Pmat(i+1,j)-Pmat(i,j))/(2^{*}DZ))+C0u1;$ w1=(C1w1*(Pmat(i,j+1)-Pmat(i,j))/(2*DTETA)) + C0w1; % BCP %Em posse do workspace salvo para algum caso, com o giro completo da bomba, % calcula-se a pressao em funcao do tempo, nos sensores de Olivet, 2002, SPE 77730. % % Posição do estator equivalente aos pontos dos sensores do trabalho de % refência (Olivet, 2002, SPE 77730): vA=round(NZ/Nr); vB=round(2*NZ/Nr); yC=round(3*NZ/Nr); yD=round(4*NZ/Nr); yE=round(5*NZ/Nr); % % % Calculando a pressão média em teta, para as posições definidas, e convertendo de Pascal para psi. %Para comparar fielmente com Olivet ajustamos as pressoes diminuindo de %todas elas 10 psi. conv = 6894.7566; Suc = Pent/conv - 10; %psi MA = sum(Pmat(yA,:))/NTETA/conv - 10; MB = sum(Pmat(yB,:))/NTETA/conv - 10; MC = sum(Pmat(yC,:))/NTETA/conv - 10; MD = sum(Pmat(yD,:))/NTETA/conv - 10; ME = sum(Pmat(yE,:))/NTETA/conv - 10; Dis = Ps/conv - 10;% Perfil de pressão em posições equivalentes aos sensores do trabalho de % referência: MP = [Suc,MA,MB,MC,MD,ME,Dis]; Sensores = [0,zvet(yA),zvet(yB),zvet(yC),zvet(yD),zvet(yE),Lb]; figure; plot(Sensores,MP,'r-o') xlabel('Posição (m)') ylabel('\Delta P (psi)') title('Pressão ao longo da bomba') pprA = Pmat(yA,:); pprB = Pmat(yB,:); pprC = Pmat(yC,:); pprD = Pmat(yD,:);pprE = Pmat(yE,:); figure; plot(tetavet,pprA,'k:x',tetavet,pprB,'r:o',tetavet,pprC,'b:d',tetavet,pprD,'m:*',tetavet,pprE,'g:s') title('Perfil de Pressão') legend('zA','zB','zC','zD','zE') xlabel('Angulo \theta') ylabel('Pressao (Pa)') angulo = Omega*tempo; % Pressao, na posicao dos sensores, com teta fixo(180), em funcao do tempo. NTETAf = round(NTETA/2); for i=1:length(tempo) PA(i) = (Pmatt(yA,NTETAf,i));

PB(i) = (Pmatt(yB,NTETAf,i));PC(i) = (Pmatt(yC,NTETAf,i)); Figura B.15: Pospro (3a. parte)

PD(i) = (Pmatt(yD,NTETAf,i)); PE(i) = (Pmatt(yE,NTETAf,i)); end

figure;

plot(angulo,PA,'k:x',angulo,PB,'r:o',angulo,PC,'b:d',angulo,PD,'m:*',angulo,PE,'g:s') title('Perfil de Pressão') legend('PA','PB','PC','PD','PE') xlabel('Angulo (\Omega t)') ylabel('\Delta P (psi)') Figura B.16: Resultados (1a. parte)

% Usa o pós-processamento e a geometria para gerar gráficos e salvar dados.

- % Os resultados desta simulação serão comparados com dados experimentais % apresentados por Olivet et al (SPE 77730)
- % Coordenadas dos sensores

% Coordenadas dos sensores

[Rint,zvet,tetavet] = Geometria(t);

[Pmat,Q,Ur] = Pospro(P,C1,C2,UC0,WC0);

% Gráficos

- % figure;
- % polar(tetavet,Rint(1,:))

% % figure;

% polar(tetavet,Rint(10,:))

% Perfil de pressão ao longo da bomba, em ângulos opostos:

- % x1=round(NTETA/2);
- % x2=round(NTETA/4);
- % pp = Pmat(:,1);

% pp1 = Pmat(:,x1);

- % pp2 = Pmat(:,x2);
- % % figure;
- % plot(zvet,pp,'k:*',zvet,pp2,'b-d',zvet,pp1,'r:o')
- % title('Perfil de pressão ao longo da bomba; Folga = 0,000185m')
- % legend('\theta=0', '\theta= \pi/2', '\theta= \pi')
- % xlabel('Comprimento da bomba (m)')
- % ylabel('Pressao (Pa)')
- % % % Posição do estator equivalente aos pontos dos sensores do trabalho de
- % % refência:
- % yA=round(NZ/Nr);
- % yB=round(2*NZ/Nr);
- % yC=round(3*NZ/Nr);
- % yD=round(4*NZ/Nr);
- % yE=round(5*NZ/Nr);
- % % % Calculando a pressão média em teta, para as posições definidas, e convertendo de Pascal para psi. % Suc = 30;
- % conv = 6894.7566;
- % MA = sum(Pmat(yA,:))/NTETA/conv;
- % MB = sum(Pmat(yB,:))/NTETA/conv;
- % MC = sum(Pmat(yC,:))/NTETA/conv;
- % MD = sum(Pmat(yD,:))/NTETA/conv;
- % ME = sum(Pmat(yE,:))/NTETA/conv;
- % Dis = 150;
- % % % Perfil de pressão em posições equivalentes aos sensores do trabalho de
- % % referência:
- % MP = [Suc,MA,MB,MC,MD,ME,Dis];
- % Sensores = [0,zvet(yA),zvet(yB),zvet(yC),zvet(yD),zvet(yE),Lb];

% figure;

- % plot(Sensores,MP,'r-o')
- % % pprA = Pmat(yA,:);
- % pprB = Pmat(yB,:);
- % pprC = Pmat(yC,:);
- % pprD = Pmat(yD,:);
- % pprE = Pmat(yE,:);
- % % figure;
- % plot(tetavet,pprA,'k:x',tetavet,pprB,'r:o',tetavet,pprC,'b:d',tetavet,pprD,'m:*',tetavet,pprE,'g:s')
- % title('Perfil de Pressão; Folga=0,000185m')
- % legend('SensorA','SensorB','SensorC','SensorD','SensorE')
- % xlabel('Angulo \theta')
- % ylabel('Pressao (Pa)')
- % % % Gráfico da variação da "folga" (distância radial entre a superfície do

Figura B.17: Resultados (2a. parte)

% % rotor e do estator") % fA = Folga(yA,:); % fB = Folga(yB,:); % fC = Folga(yC,:); % fD = Folga(yD,:); % fE = Folga(yE,:); % % figure; % plot(tetavet,fA,'k:x',tetavet,fB,'r:o',tetavet,fC,'b-d',tetavet,fD,'m:*',tetavet,fE,'g:s') % title('Folga; \Delta P = 120 psi') % legend('SensorA','SensorB','SensorC','SensorD','SensorE') % xlabel('Angulo \theta') % ylabel('Folga (m)')

% Salvando vetores

- % Cada rodada do programa salvará diferentes valores de DP e mu (viscosidade).
- % DP120 = Ps-Pent=120psi
- % m1=viscosidade 1 cP
- % R4=4 giros do rotor
- % % save Pmat_DP120_m1_R0.dat Pmat -ascii % % save Ro_DP120_m1_R0.dat Rint -ascii
- % % save z_DP120_m1_R0.dat zvet -ascii
- % % save teta_DP120_m1_R0.dat tetavet -ascii % % save tempo_DP120_m1_R4.dat tempo -ascii
- % % save Q_DP120_m1_R4.dat Qvet -ascii

Figura B.18: Valores (1a. parte)

%Entrada de dados relacionados ao escoamento:

% MALHA DO DOMÍNIO

% NZ, número de intervalos ao longo do eixo z (direção do escoamento): NZ=101;

% NTETA, número de intervalos ao longo do eixo Teta: NTETA=221; %OBSERVAÇÃO: NTETA deve ser ímpar!

% Intervalo de tempo (segundos) %Dt = N*tmax; % N representa quanto o rotor gira em cada rodada do programa Dt = (1/16)*1*2*pi/abs(Omega); % Tempo máximo (segundos) %tmax= M*2*pi/abs(Omega); % M representa o máximo de giros do rotor tmax=1*2*pi/abs(Omega) + Dt;

% Dados geométricos da bomba % Raio do rotor (em metros) : Rr=0.039878/2; % Raio do estator (em metros) : Rs=0.040248/2; % Passo do rotor (m) (comprimento de onda): L=0.059995;

% Número de passos do rotor Nr=6;

% Lb= Comprimento da bomba (m) : Lb=Nr*L;

%e = excentricidade (m)(distancia entre os centros da secao e da helice do rotor): e = 0.004039;

% Velocidade tangencial (periférica) do rotor (somente para a geometria simplificada) %W = (Omega)*Rr; %CARACTERISTICAS DO FLUIDO % Viscosidade (Pa.s) : % visc=0.001; % água visc=0.042; % Purolub 46 % visc=0.433; % Purolub 150

% Densidade do fluido(kg/m3) : % Rho=1000; Rho=868; % Purolub 46 Figura B.19: Valores (2a. parte)

% Rho=885; % Purolub 150

% gravidade (m/s²) g=-9.82;

% Subdivisão da malha do domínio: DZ=Lb/(NZ-1); DTETA=2*pi/(NTETA-1); NTOTAL=NZ*NTETA;