1 Introdução

1.1 Contexto Geral

No presente trabalho é desenvolvido um modelo matemático descrevendo o processo APCI C3MR de liquefação de gás natural. Do modelo matemático constam as equações de conservação de massa e energia e as equações de propriedades das substâncias, e de transferência de calor entre os fluidos de trabalho.

Uma visão geral do trabalho é apresentada a seguir. O processo APCI C3MR divide-se em duas etapas: a primeira representa um processo de préresfriamento do Gás Natural (GN) utilizando propano como fluido refrigerante de um ciclo de refrigeração por compressão de vapor, o qual trabalha em 4 níveis de pressão. A segunda etapa é o processo de liquefação do GN, tendo como fluido de trabalho uma mistura de refrigerante (MR) composta por N, CH₄, C₂H₆, C₃H₈, que é elevada à pressão de condensação mediante 3 compressores centrífugos. Depois do condensador, a MR vai para um separador de líquido e vapor para dividir-se em duas secções e aproveitar ao máximo as baixas temperaturas alcançadas na pressão de evaporação.

1.2

Preâmbulo

1.2.1

Demandas dos processos de liquefação no mercado atual

O consumo mundial de energia vem crescendo em ritmo acelerado, e a procura por fontes alternativas que não impactem o meio ambiente vem

propiciando o desenvolvimento de novas tecnologias, para fazer frente a estes desafios. Uma destas fontes é o gás natural GN que, apesar de não ser renovável, caracteriza-se por menores níveis de poluição, e representa uma combustão com menos resíduos, o que prolonga a vida útil de motores.

Em 1895, Carl Von Linde, na Alemanha, foi o pioneiro em processar o GN para GNL, para fins industriais, tendo patenteado um processo com seu nome, sendo hoje a empresa Linde uma das principais companhias criogênicas do mundo.

Desde 1960 têm-se procurado processos mais eficientes que permitam o transporte do GN até o ponto de destino, o qual nem sempre se situa próximo ao local de sua produção. Assim, nasceram os primeiros processos para liquefazer GN, a saber: processos das empresas TECHNIP (francesa), Air Products and Chemical Inc (APCI) e Pitchard Corporation (americanas), que, na época, alcançavam a produção de até 3 MTPA¹ (Pita, 2005).

Atualmente, dentre os diversos processos de liquefação, pode-se destacar o de cascata otimizada, mediante o uso de refrigerantes puros (metano, etileno, propano), desenvolvido pela Phillips Petroleum, o ciclo opera em diferentes pressões, sendo a mais importante a Planta de GNL Atlântica, localizada em Trinidad e Tobago, com produção de 3.0 MTPA.

Deve ser mencionado também o processo C3MR da APCI, em que o GN é pré-resfriado a -35 °C, com um ciclo de refrigeração a propano, passando depois por um ciclo de refrigerante misto, onde sua temperatura é reduzida a -161 °C. Este processo é o mais usado em plantas de GNL, respondendo por 87% em termos de mercado de produção, com capacidades de até 4,7 MTPA, Robert (2005).

Ocorre que a APCI melhorou o desempenho de seu processo, incluindo mais um ciclo de refrigeração, que troca calor na fase final, dando origem ao processo APCI-APX, que contém o mesmo circuito anterior até a fase de liquefação, sendo que, na fase final, incorpora um trocador de calor, que é parte de um ciclo de compressão de vapor com nitrogênio como refrigerante. Sua produção se encontra entre 7 a 8 MTPA, constituindo-se num processo de grande produção.

¹ MTPA: Milhões de Toneladas por ano, unidade de produção de GNL.

Existe, também, um outro processo desenvolvido pela companhia inglesa Shell, utilizando dois refrigerantes mistos, em cascata, sendo um para préresfriamento e outro para liquefação, cada um com diversos níveis de pressão, com produção de até 4,8 MTPA.

Por outro lado, o grupo norueguês-alemão STATOIL-Linde desenvolveu também um processo de três refrigerantes mistos, em cascata, apresentando produção maior que 4 MTPA. Há também novos processos como, por exemplo, o da francesa Axens Liquefin, de 6 MTPA, além do processo PRICO de dois trens² de produção da americana Black&Veatch, que tem duas etapas para a produção de GNL, de 1,3 MTPA por trem.

O que a indústria de GNL vem buscando, incessantemente, é a melhoria do método de liquefação de GN, tanto em termos de eficiência energética quanto de custos de instalação e produção.

1.2.2 Breve História do GNL

O GNL data de antes do século XIX, quando o químico e físico inglês Michael Faraday experimentou a liquefação em diferentes tipos de gases, incluindo o gás natural.

O engenheiro alemão Karl Von Linde construiu a primeira máquina de refrigeração por compressão de vapor em Munich, em 1873. A primeira planta de GNL foi construída no estado de Virginia Oriental, em 1912. Começou o funcionamento em 1917. A primeira planta de liquefação comercial foi construída em Cleveland, Ohio, EUA em 1941 (Pita, 2006). O GNL foi armazenado em tanques à pressão atmosférica para ser transportado a destinos distantes (Michot, 2007).

Em janeiro de 1959, o primeiro petroleiro de GNL do mundo, The Methane Pioneer, um barco de carga da segunda guerra mundial convertido, com

² Trens: É uma terminologia típica para a unidade separadora do GN e GNL. De acordo com as quantidades de trens é determinado o tamanho da planta de liquefação GNL.

capacidade de 7000 barris, transportou uma carga de GNL do Lago Charles, Louisiana à Ilha de Canvey, no Reino Unido. Tal fato demonstrou que grandes quantidades de GNL poderiam ser transportadas de modo seguro pelo oceano (Michot, 2007).

Durante os 14 meses seguintes, entregaram-se sete cargas adicionais. Seguindo a atuação exitosa do The Methane Pioneer, decidiu-se importar GNL desde Venezuela à Ilha de Canvey. Entretanto, antes que os acordos comerciais pudessem finalizar-se, descobrir-se-iam grandes reservas de GN na Líbia, assim como o gigantesco campo Hassi R'Mel, na Argélia, que está à metade da distância a Inglaterra com relação a Venezuela (Pita, 2006).

Em 1964, a produção de 260 milhões de pés cúbicos por dia (mmcfd) da planta Arzew GL4Z Camel fez com que a Inglaterra se convertesse no primeiro importador de GNL do mundo e a Argélia, no primeiro exportador de GNL. Desde então, a Argélia converteu-se em um dos produtores mais importantes de GNL (Michot, 2007).

Depois, construíram-se quatro terminais marítimos nos Estados Unidos, entre 1971 e 1980. Ficam no Lago Charles (operado pelo CMS Energy), em Everett, Massachusetts (operado pelo Tractebel através de seu subsidiária Distrigas), na Ilha de Elba, Georgia (operado pela El Paso Energy), e no Ponto da Ensenada, Maryland (operado pela Dominion Energy). Atingiu-se o pico de volume de 253 BCF (bilhões de pés cúbicos) em 1979, o que representava 1,3% da demanda de gás mundial (Michot, 2007).

As primeiras exportações de GNL, dos EUA para a Ásia, ocorreriam em 1969, quando o GNL do Alaska foi enviado para o Japão. O Alaskan GNL é derivado do GN que é produzido pela Conoco Phillips & Marathon, oriundo de campos na região sul do estado de Alaska. O crescimento da produção de GNL começou nos anos 1970. Em 1999, entra em operação a planta de GNL de Trinidade e Tobago (Michot, 2007).

1.2.3 Importância do GNL na economia mundial

A matriz energética nos países tem marcada influência do petróleo e do carvão, combustíveis aos quais está associado alto índice de poluição e que a cada dia são mais custosos. No caso de petróleo, por exemplo, atingiu-se um valor de US\$ 148 por barril (Zieminski, 2008)³, enquanto que os países que não têm reservas de GN encontram sérias dificuldades lidar com a dependência. Como é observada na figura 1, com a matriz energética mundial, a demanda por petróleo, carvão e GN vêm crescendo a um ritmo acelerado.

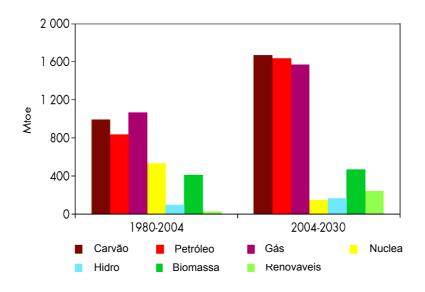


Figura 1 Demanda mundial de energia primária (World Energy Outlook, 2006)

A indústria do GN vem crescendo a cada dia, o que implica buscar-se opções para sua comercialização e o máximo aproveitamento na hora de transportá-lo, desde a produção até o ponto de consumo. Isto por que, muitas vezes, resulta econômica ou tecnicamente inviável a construção de gasoduto, principalmente no caso de longas distâncias entre produção e consumo.

O GNL é o GN que foi processado para ser transportado em forma líquida. É a melhor alternativa para reduzir seu custo final ao ser transportado para lugares afastados do local de produção, para onde não é econômico levar seu conteúdo

³ Registra-se aqui uma acentuada queda do preço do petróleo que se siguiu à crise financeira mundial.

energético ao mercado diretamente por gasoduto ou indiretamente, já transformado em eletricidade.

Para uma análise do transporte do GN mostra-se a figura 2, que relaciona produção de um poço (MMscfd⁴) e a distância entre o ponto de produção e o lugar de consumo (km.), onde as áreas sombreadas representam o melhor método para seu aproveitamento de um campo de GN até o destino final.

Para o caso de GNL, só se torna viável com distâncias maiores que 3000 km até o ponto de destino e com uma produção superior a 500 MMcsfd no poço.

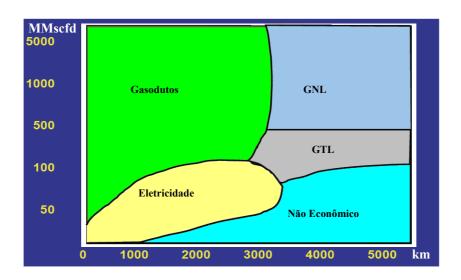


Figura 2 Viabilidade técnica e econômica do GNL em função das reservas e da distancia entre produção e consumo (Morgan, 2005).

É importante mencionar que o leque de abastecimento deve ser amplo, já que não é recomendável depender de um único país. Desta forma, o GNL permite diversificar as fontes de abastecimento, já que existem muitos provedores de GNL, tais como Indonésia, Argélia, Qatar, Trinidade e Tobago, entre outros, como mostra a tabela 1.

⁴ MMscfd (Milhões de pés cúbicos standard por dia). Unidade de medida da produção de gás em um reservatório.

	Desde													
	Φ													
Para	Estados Unidos	Trinidade e Tobago	Omã	Catar	Emiratos Árabes Unidos	Argélia	Egipto	Líbia	Nigeria	Austrália	Brunei	Indonésia	Malásia	Total Importado
America do Norte														
Estados Unidos	-	10,85	-	-	-	0,49	3,60	-	1,62	-	-	-	-	16,56
México	-	0,16	-	0,08	-	-	0,16	-	0,54	-	-	-	-	0,94
America do Sul e Centro														
República Dominicana	-	0,25	-	-	-	-	-	-	-	-	-	-	-	0,25
Porto Rico	-	0,72	-	-	-	-	-	-	-	-	-	-	-	0,72
Europa														
Bélgica	-	0,16	-	0,36	-	3,35	0,25	-	0,16	-	-	-	-	4,28
França	_	-	-	-	-	7,35	2,30	-	4,23	-	-	-	-	13,88
Grécia	-	-	-	-	-	0,45	0,04	-	-	-	-	-	-	0,49
Itália	-	-	-	-	-	3,00	0,10	-	-	-	-	-	-	3,10
Portugal	_	-	-	-	-			-	1,97	-	-	-	-	1,97
Espanha		3,00	1,00	5,00	-	2,80	4,80	0,72	7,10	-	-	-	-	24,42
Turquia	-		-	-	-	4,60		-	1,12	-	-	-	-	5,72
Reino Unido	-	0,60	-	-	-	2,00	0,96	-	-	-	-	-	-	3,56
Asia Pacifico														
China	-	-	-	-	-	-	-	-	-	1,00	-	-	-	1,00
Índia	-	-	0,24	6,80	0,08	0,08	0,55	-	0,08	0,08	-	-	0,08	7,99
Japão	1,71	0,44	3,04	9,87	7,00	0,24	0,80	-	0,22	15,68		18,60		81,86
Coreia do Sul	-	0,07	7,10	8,98	-	0,32	1,25	-	0,16	0,87	1,16	6,72	7,51	34,14
Taiwan			0,16	-	-		0,16	-	0,38	0,40	-	4,25	4,85	10,20
Exportação Total	1,71	16,25	11,54	31,09	7,08	24,68	14,97	0,72	17,58	18,03	9,81	29,57	28,04	211,08

Tabela 1 Exportações dos países produtores, em bilhões de metros cúbicos (BP, 2006).

1.2.3.1 Países exportadores e importadores

1.2.3.1.1 Importadores

Entre os principais países importadores encontra-se o Japão, com 48% da exportação mundial, ainda que só 12% do GN estejam representados em sua matriz energética. Deste total, 66% são usados para geração de energia elétrica. O país conta com 23 terminais de regasificação. Em seguida, Coréia e Taiwan representam 20% da importação mundial do GNL.

Este valor é seguido pela Europa, com 28%, onde a França é o principal importador, e pelos Estados Unidos, com 4%. A Espanha é abastecida pela Argélia, 50% e de Qatar, Oman, Emiratos Árabes Unidos, Líbia, Trinidad e Tobago, Austrália contribuindo com os outros 50%.

A Índia e China estão construindo suas primeiras plantas de GNL. Na América Latina, o Chile começou a construção de sua planta de re-gasificação, sob a British Gás. Esta planta estará concluída no ano de 2009.

A figura 3 mostra o trânsito de GNL no mundo até o ano de 2006 em bilhões de metros cúbicos. Pode-se observar que o Japão é um grande consumidor de GNL, em valores equivalentes aos Estados Unidos.

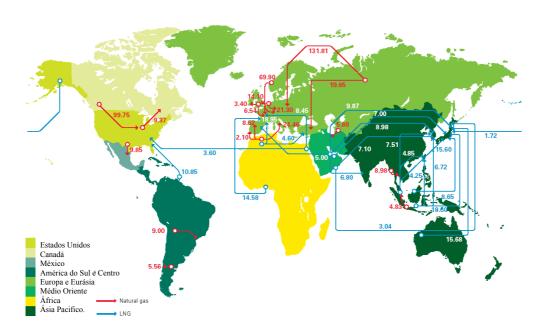


Figura 3 Comércio de GNL no mundo (BP, 2006)

1.2.3.1.2

Exportadores

A Bacia do Pacifico é o principal produtor mundial de GNL. Com 49% ocupa o primeiro lugar (2002). Indonésia contribui com 21%. Países do Meio Oriente, exportam 23%, Por outro lado os países da Bacia do Atlântico, como Argélia, exportam aproximadamente 29%.

Novos exportadores, como Iran, Iêmen, Guiné Equatorial, Angola, Venezuela, Bolívia (via Peru ou Chile), e Peru estão procurando exportar GNL como um caminho para trazer novos investimentos.

1.2.3.2

América do Sul

No caso da América do Sul, ainda não existe uma planta em funcionamento, mas, como mostra a figura 4, há boa perspectiva, já que existem projetos em construção e muitas projeções para o futuro.

1.2.3.3

Peru

O Peru conta com uma planta ainda em construção, a qual terá dois tanques de GNL com uma capacidade de 110.000 m³, que o manterão estocado até seu embarque. A duração projetada para a planta será de 30 anos, podendo prolongar-se, mediante uma adequada operação e manutenção. O objetivo é exportar entre 15 ou 20 milhões de metros cúbicos diários de GN.

O investimento estimado para a instalação da planta de GNL e o terminal marinho é de aproximadamente US\$ 2 bilhões. (Sociedad Nacional de Minería, Petróleo y Energía do Peru, 2005)

1.2.3.4

Chile

O Chile começou, no final de 2006, a construção de uma planta de regasificação de GNL. Esta planta demandou um investimento de 400 milhões de dólares e espera receber barcos de até 165.000 m³ de GNL. Este complexo compreende um terminal de descarga e dois estanques de armazenamento. Está localizado na Baia de Quintero, na costa central do país. O gás será suprido por barcos desde a Nigéria e Guiné e servirá como modelo para uma possível planta de regasificação na Argentina. (Anônimo, 2008).

Figura 4 Mapa do Caribe, América do Sul e Central, e Peru, mostrando as plantas projetadas, em construção e existentes. (PLUSPETROL, 2008)

1.2.3.5

Brasil

O diretor financeiro de Petrobrás informou que se pretende construir duas plantas de regasificação no Brasil, a partir de 2008. São localizadas em Porto Pecém, Ceará, com uma vazão de 7 MM Nm³/d e na Baía de Guanabara, no Rio de Janeiro (PETROBRAS, 2005). Os investimentos estariam entre 200 e 300 milhões de dólares. Ainda se encontra em estudo de onde importariam o insumo, mas as possíveis opções são: Angola, Argélia, Nigéria e Trinidade e Tobago (Anônimo, 2008). Também se encontram propostas duas plantas de regasificação, uma operada pela PETROBRAS e outra pelo consórcio BP - Repsol YPF.

A PETROBRAS iniciou os estudos para suprimir o déficit de GN no mercado nacional, a partir de 2004, com instalações flexíveis em alto mar. O escopo do Terminal Flexível de GNL da Baía da Guanabara, como é mostrado na figura 5, compreende a implantação de um Píer de GNL, com dois berços, nas proximidades do píer secundário do Terminal da Ilha D'água, na Baía da Guanabara no Rio de Janeiro. A operação consistirá no recebimento de GNL do navio supridor, estocagem e regasificação de GNL, à vazão máxima de 14 MM Nm³/d, e na injeção de GN pressurizado até 100kgf/cm² no anel de gás residual, via gasoduto de 16 km e 24" de diâmetro (PETROBRAS, 2005).

Figura 5 Localização do terminal de GNL no Rio de Janeiro (Gonçalves, 2007).

1.3 Objetivos

Conclui-se, pelo acima exposto, pela importância estratégica do GNL na matriz energética de países como Brasil e Peru, por exemplo.

Tendo em vista a demanda do GNL nos países dependentes do GN, a qual se apresenta em crescente aumento, e também os avanços das tecnologias dos processos de liquefação, tornam-se importante conhecer o comportamento termodinâmico dos equipamentos e dos fluidos que estão envolvidos no processo de liquefação. Optou-se, no presente trabalho, pelo estudo de um processo de liquefação específico, atualmente disseminado, o APCI C3MR.

O presente trabalho tem por objetivo identificar os diferentes processos de liquefação de GN e simular o processo APCI C3MR.

Para alcançar este objetivo têm-se em consideração as seguintes metas:

- Identificar os principais processos existentes para a liquefação de GN;
- Elaborar um estudo dos equipamentos do processo APCI C3MR de liquefação de GN e definir o ciclo termodinâmico a ser estudado;
- Obter as equações para os balanços de energia e de massa de um sistema de liquefação APCI C3MR de GN;
- Elaborar modelo matemático que simule o desempenho de cada um dos equipamentos;
- Obter as curvas características do comportamento termodinâmico do ciclo estudado;
- Ajustar o modelo com os dados experimentais ou de projeto disponíveis;
- Determinar a eficiência de processos e sistemas, e a produção fornecida;

1.4 Conteúdo do trabalho

A presente dissertação foi dividida em 5 capítulos: um que apresenta considerações gerais, 3 de desenvolvimento e um de conclusões e recomendações. A seguir são indicados os aspectos mais importantes de cada um dos capítulos seguintes:

- No Capítulo 2 é apresentada uma visão global do mercado atual, a descrição dos processos de liquefação e uma análise do processo de liquefação de gás natural mediante o método APCI C3MR.
- No Capítulo 3 é descrito o modelo matemático dos ciclos de préresfriamento e de liquefação, onde são empregadas as equações da primeira lei da termodinâmica para cada equipamento que compõe os ciclos.
- No Capítulo 4 são apresentados os resultados da simulação, mediante o emprego da plataforma computacional EES, para o sistema final de equações algébricas não lineares resultante do modelo matemático, e o

desempenho do sistema para diferentes condições de operação (incluindo as pressões nos evaporadores).

 No Capítulo 5 são apresentadas as conclusões do trabalho e as recomendações para trabalhos futuros.