3 Modelos Teóricos

A instabilidade de dutos enterrados pode ocorrer de dois modos: flambagem vertical (upheaval buckling) ou flambagem horizontal (snaking buckling). Segundo Einsfeld, Murray e Yoosef-Ghodsi[17] o modo de flambagem depende, em geral, das condições de contorno, magnitude e forma inicial das imperfeições do duto, o tipo de restrições axiais e reações do solo.

Um estudo pioneiro sobre a flambagem de dutos foi desenvolvido por Palmer e Baldry[16], onde demonstram que a restrição da expansão do duto devido ao aumento de pressão interna pode causar flambagem.

Primeiramente, serão abordados neste capítulo os modelos analíticos para flambagem vertical e lateral. Esses modelos foram pesquisados por muitos anos pelos engenheiros de ferrovias, para o estudo da flambagem em trilhos de trem que representa um problema análogo ao da flambagem de dutos. Trabalhos considerando modelos analíticos ou numéricos foram desenvolvidos para a estabilidade de dutos com relação a variação de temperatura, tendo como base essas formulações analíticas [18, 19, 20, 21, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

Os modelos analíticos desenvolvidos para a interação solo-duto serão também abordados neste capítulo.

3.1 Modelos analíticos para flambagem vertical

O primeiro trabalho que analisa a flambagem em trilhos é de Martinet[2]. Neste artigo é descrito um modelo analítico para o problema de flambagem vertical e lateral, considerando o duto sem imperfeição, o solo como uma base rígida e atrito de Coulomb entre o solo e o duto. Posteriormente esse modelo analítico foi aplicado para duto e pode ser observado nos trabalhos de Hobbs[29, 34].

Outros modelos para a flambagem vertical foram desenvolvidos considerando o duto com uma imperfeição inicial (Ju e Kyriakides[18], e Pedersen e Jensen[30]).

No trabalho de Ju e Kyriakides[18] é apresentado um gráfico da variação de temperatua versus o comprimento de flambagem, que está ilustrado na Figura 3.1. Pode-se observar a diferença da trajetória do gráfico para modelos perfeitos e com imperfeição geométrica. Segundo Ju e Kyriakides[18], essa diferença é explicada pelo fato de que quando o carregamento de temperatura é aplicado no duto, pequenos deslocamentos na pré-flambagem podem ocorrer onde estão localizadas as imperfeições iniciais. No descarregamento, os deslocamentos começam a traçar o mesmo caminho da configuração sem imperfeição. Esta resposta para uma geometria do duto sem imperfeição e com imperfeição são diferentes até a temperatura mínima (ΔT_M).

Pode-se também observar na Figura 3.1 o comportamento dos dutos com grandes imperfeições ou em zig-zag.

Figura 3.1: Variação da temperatura versus comprimento de flambagem para dutos com e sem imperfeições geométricas [18]

3.1.1 Hobbs - Modelo sem imperfeição

Este modelo analítico descrito por Hobbs[29], considera o solo como uma base rígida, análogo aos artigos sobre flambagem de trilhos em ferrovias descritos em [2, 6]. O primeiro passo que Hobbs realiza é encontrar a equação da linha elástica para o trecho de flambagem do duto, o qual é tratado como uma viga-coluna com um carregamento (w) lateral uniforme igual ao peso próprio. A representação desta viga pode ser observada na Figura 3.2.

(b) Distribuição da Força Axial

Figura 3.2: Flambagem vertical - Variação da força axial ao longo do duto

A equação da linha elástica é obtida por Marek e Daniels[6] e Hobbs[29]. O momento externo é dado por:

$$M = \frac{wL^2}{8} - \frac{wx^2}{2} - Py$$
(3-1)

onde w é o valor do carregamento do solo, L o comprimento de flambagem e P a carga axial no trecho flambado. O valor do momento interno para a mesma seção é:

$$M = -EIy'' \tag{3-2}$$

onde E é o modulo de elasticidade do material e I o momento de inércia da seção transversal. Das equações 3-1 e 3-2 obtem-se a equação da linha elástica:

$$y'' + n^2 y + \frac{m}{8}(4x^2 - L^2) = 0$$
(3-3)

onde m = w/(EI) e $n = \sqrt{P/EI}$. A solução da equação 3-3 é dada por:

$$y = \frac{m}{n^4} \left(A \cos nx + B \sin nx - \frac{1}{2}n^2x^2 + \frac{1}{8}n^2L^2 + 1 \right)$$
(3-4)

Condições de contorno

As condições de contorno para a configuração da flambagem vertical representada na Figura 3.2 e os valores das constantes $A \in B$ são:

$${}^{y'}|_{x=0} = \frac{B}{n^3} = 0 \longrightarrow B = 0 \tag{3-5}$$

$${}^{y}|_{\pm L/2=0} = A \frac{nL}{2} + 1 = 0 \longrightarrow A = -\left(\cos\frac{nL}{2}\right)^{-1}$$
 (3-6)

$$|y'|_{\pm L/2=0} = \frac{m}{n^3} \left(\frac{\pm \sin \frac{nL}{2}}{\cos \frac{nL}{2}} \mp \frac{nL}{2} \right) = 0 \longrightarrow \frac{nL}{2} = \tan \frac{nL}{2}$$
(3-7)

Substituindo as equações3-5e3-6na equação3-4finalmente temos a equação da linha elástica:

$$y = \frac{m}{n^4} \left(-\frac{\cos nx}{\cos \frac{nL}{2}} - \frac{1}{2}n^2x^2 + \frac{1}{8}n^2L^2 + 1 \right)$$
(3-8)

A menor raiz encontrada para a equação 3-7 é:

$$nL = 8,9868$$
 (3-9)

Condições de Compatibilidade

O carregamento distribuído devido ao atrito (q) e o valor da reação devido ao atrito (Q), que podem ser observados na figura 3-1, são dados por

$$q = \phi \cdot w \tag{3-10}$$

$$Q = \frac{qL}{2} = \frac{\phi wL}{2} \tag{3-11}$$

sendo ϕ o coeficiente de atrito. A força axial P pode ser obtido através da Figura 3.2:

$$P = P_0 - qL_q - Q (3-12)$$

Com base na lei de Hooke e substituindo os valores de Q e q dados nas equações 3-11 e 3-10, determinamos o valor de ΔL

$$\sigma = E\varepsilon = \frac{F}{A} \quad , \quad \varepsilon = \frac{\Delta L}{L_q}$$
$$\Delta L = \frac{q L q^2}{2AE}$$
$$\Delta L = \frac{(P_0 - P - Q)^2}{2AEq} \tag{3-13}$$

O valor do comprimento da curva dado pelo segmento B'C'D', observado na Figura 3.3 é:

Figura 3.3: Condições de compatibilidade para a região de flambagem

$$\overline{B'C'D'} = L + \left(\frac{P_0 - P}{AE}\right)L + 2\Delta L + \left(\frac{P_0 - P}{AE}\right)2\Delta L$$
$$= (L + 2\Delta L)\left(1 + \frac{P_0 - P}{AE}\right)$$
(3-14)

O segmento B'C'D' também pode ser definido como:

$$\overline{B'C'D'} = 2 \int_{-L/2}^{L/2} \sqrt{1 + {y'}^2} dx = 2 \int_{-L/2}^{L/2} 1 + \frac{{y'}^2}{2} dx$$
$$= L + \frac{1}{2} \int_{-L/2}^{L/2} {y'}^2 dx \qquad (3-15)$$

Substituindo o valor de $\Delta L,$ igualando as equações 3-14 e 3-15 temos:

$$\overline{B'C'D'} = \left(L + \frac{(P_0 - P - Q)^2}{AEq}\right) \left(1 + \frac{P_0 - P}{AE}\right) = L + \frac{1}{2} \int_{-L/2}^{L/2} y'^2 dx \quad (3-16)$$

Calcula-se a integral da equação 3-16 utilizando a equação 3-8:

$$\frac{1}{2} \int_{-L/2}^{L/2} y'^2 dx = 1,597 \cdot 10^{-5} \frac{w^2 L^7}{E^2 I^2}$$
(3-17)

Substituindo o valor da integral na equação 3-16 e isolando P_0 temos o valor do carregamento axial:

$$P_0 = P + \frac{wL}{EI}\sqrt{1,597 \cdot 10^{-5}EA\phi wL^5 - 0,25(\phi EI)^2}$$
(3-18)

P é obtido substituindo o valor da equação 3-9 em $P = n^2 EI$:

$$P = 80,76 \cdot \frac{EI}{L^2} \tag{3-19}$$

O valor para a máxima amplitude é encontrado quando x = 0 na equação 3-8 e substituindo o valor da equação 3-19 temos:

$$\hat{y} = 2,409 \cdot 10^{-3} \frac{wL^4}{EI} \tag{3-20}$$

A temperatura é obtida pela equação:

$$T = \frac{P_0}{EA\alpha} \tag{3-21}$$

Esta análise pressume que a seção transversal do duto continua circular. Isto é verdade nos estágios iniciais da flambagem, contudo as respostas da flambagem global podem provocar uma flambagem local, ovalização e ainda o escoamento ou mesmo fratura do duto na região de concentração de deformações.

3.1.2 Ju e Kyriakides - Modelo com imperfeição

Ju e Kyriakides[18] compararam várias funções que descrevem formas para a imperfeição inicial. O problema também foi considerado como uma viga sobre uma base rígida, e o contado entre o duto e a fundação é considerado com atrito, como em Hobbs[29].

Ju e Kyriakides primeiramente definem uma função geral para a imperfeição da fundação:

$$y_0 = \begin{cases} f(x), 0 \le |X| \le L_0 f(0) = \Delta_0 \\ 0 & |X| > 0 \end{cases}$$
(3-22)

O momento fletor é dado por:

$$M(x) = P(\delta - y(x)) + M(0) - \frac{1}{2}qx^2$$
(3-23)

sendo $\delta = y(0)$ ver (Figura 3.4).

As componentes de deformação de membrana e de flexão na viga são dadas por:

$$\epsilon = u_{,x} + 1/2[(y_{,x})^2 - (y_{0,x})^2]$$

$$\kappa = y_{,xx} - y_{0,xx}$$
(3-24)

A força axial e o momento de flexão estão relacionados com 3-24:

$$P = EA(\epsilon - \alpha \Delta T)$$

$$M = EI\kappa$$
(3-25)

Substituindo os valores de 3-24 e 3-25 em 3-23, temos:

$$y_{,xx} + k^2 y = y_{0,xx} + k^2 \delta + \frac{M(0)}{EI} - \frac{qx^2}{2EI}$$
(3-26)

sendo $k^2 = P/EI$.

Figura 3.4: Configuração do problema proposto por [18]. (a) Geometria do problema (b) Distribuição da força axial

A solução de 3-26 é dada por:

$$y_x = A\sin kx + B\cos kx + \delta + \frac{M(0)}{EIk^2} - \frac{qx^2}{2EIk^2} + \frac{q}{EIk^4} + g(x)$$
(3-27)

onde g(x) depende de $y_0(x)$.

Condições de Contorno

As condições de contorno para satisfazer a solução são:

$$y|_{x=0} = \delta$$
, $y_{0,x}|_{x=0} = 0$ (3-28)

$$y|_{x=\xi} = y_0|_{x=\xi}$$
, $y'|_{x=\xi} = y'_0|_{x=\xi}$ (3-29)

$$y''|_{x=\xi} = y_0''|_{x=\xi} \tag{3-30}$$

Com as condições de contorno 3-28, 3-29 e 3-30, a equação 3-27 resulta nas equações características:

$$\sin \overline{k\xi}G(\overline{k},\overline{\xi}) - \cos \overline{k\xi}F(\overline{k},\overline{\xi}) = 0 , \quad 0 \le \overline{\xi} \le 1$$
(3-31)

$$\sin \overline{k\xi} - \overline{k\xi} \cos \overline{k\xi} = H(\overline{k}) , \quad (\overline{\xi}) > 1$$
(3-32)

onde $\overline{k} = kL_0, \ \overline{\xi} = \xi L_0.$

Condição de Compatibilidade

Pela compatibilidade do deslocamento axial, de forma análoga à equação 3-16, obtem-se:

$$\int_{0}^{\xi} \frac{P_0 - P}{EA} dx + \int_{0}^{\xi} \frac{1}{2} [y'^2 - y_0'^2] dx + \int_{0}^{L_1} \frac{P_0 - P(x)}{EA} dx = 0$$
(3-33)

onde $L_1 = (P_0 - P + q\phi\xi)/(q\phi)$

Das equações 3-21 e 3-33, obtemos o valor da variação da temperatura:

$$\Delta T = \frac{1}{EA\alpha} \left\{ P + \sqrt{2q\phi EA \int_0^{\xi} \frac{1}{2} [y'^2 - y_0'^2] dx - (q\phi\xi)^2} \right\}$$
(3-34)

As equações 3-31 e 3-32 são resolvidas prescrevendo um valor para $\overline{\xi}$ e o valor para \overline{k} é determinado numericamente pelo método da bisseção.

3.1.3 Pedersen e Jensen - Modelo com imperfeição

O modelo de Pedersen e Jensen[30] considera uma imperfeição inicial diferente das imperfeições iniciais descritas no modelo de Ju e Kyriakides[18] apresentado anteriormente. Os procedimentos para as soluções das equações para este modelo são os mesmos que foram desenvolvidos no modelo de Ju e Kyriakides. A função da imperfeição da fundação é definida como:

$$y_0(X) = \begin{cases} \frac{w}{72EI} X^3 (4L_0 - 3X), 0 \le |X| \le L_0 \\ 0 & |X| < 0 \end{cases}$$
(3-35)

sendo w o valor do carregamento do solo.

O valor do comprimento L_0 é encontrado substituindo na equação 3-35 X por L_0 :

$$L_0 = 2,913\sqrt[4]{\delta\frac{EI}{w}} \tag{3-36}$$

sendo δ o valor da amplitude da imperfeição

A solução da equação da linha elástica é:

$$y = A\cos(nx) + B\sin(nx) + \frac{1}{n^2}\left(-\frac{1}{2}\alpha x^2 + \beta x + \frac{\alpha}{n^2} + \gamma\right)$$
 (3-37)

onde:

$$\beta = \frac{q_p(3L - 2L_0 + 3qL)}{3EI}$$

$$\gamma = \begin{cases} \frac{w}{6EI}(L_0 - L)(3L - L_0), & L \le L_0\\ 0 & L > L_0 \end{cases}$$
$$A = -\left(\frac{\alpha}{n^4} + \frac{\gamma}{n^2}\right)$$
$$B = -\frac{\beta}{n^3} + \frac{\chi}{n}$$

Sendo χ :

$$\kappa = \begin{cases} \frac{w}{6EI} (L_0 - L)^2 L, & L \le L_0 \\ 0 & L > L_0 \end{cases}$$

O valor de nL é determinado com a condição de contorno y'(L) = 0encontrando a equação:

$$\left(\frac{\alpha}{n^3} + \frac{\chi}{n}\right)\sin(nL) - \left(\frac{\beta}{n^2 - \kappa}\right)\cos(nL) + \frac{1}{n^2}(-\alpha L + \beta) = 0$$
(3-38)

A carga axial inicial é definida pela equação:

$$P_0 = P + \sqrt{\left(q\phi EA \int_0^L (y'^2 - y_0'^2)dx - (q\phi L)^2\right)}$$
(3-39)

3.2 Modelo analítico para flambagem lateral

Segundo Sriskandarajah et al.[26], a estabilidade lateral de dutos offshore depende do atrito do solo, do peso do duto submerso e da presença de imperfeições iniciais. Serão descritos nesta seção os métodos analíticos desenvolvidos para a flambagem lateral de dutos. Os métodos analíticos adotam várias hipóteses simplificadoras e são geralmente restritos a casos de somente um comprimento de flambagem em dutos com comprimento infinito.

A flambagem lateral pode ocorrer de vários modos, que podem ser observados na Figura 3.5.

Figura 3.5: Modos da Flambagem Lateral

Estes modos serão apresentados nesta seção. Martinet[2] desenvolve as equações para o Modo 1 e o Modo 3. Kerr[3] desenvolve as equações para o Modo 2 e o Modo 4. Os dois autores consideram que a base é rígida e o duto sem imperfeição.

3.2.1 Martinet - Modo 1

O Modo 1 é semelhante à flambagem vertical, a diferença é que para a flambagem lateral o carregamento de solo não é considerado. Sendo assim, o valor da força axial P pode ser definido como:

$$P = P_0 - qL_q \tag{3-40}$$

O valor de P e da amplitude máxima \hat{y} são os mesmos encontrados para a flambagem vertical, pois as condições de contorno são as mesmas:

$$P = 80,76 \cdot \frac{EI}{L^2}$$
$$\hat{y} = 2,409 \cdot 10^{-3} \frac{wL^4}{EI}$$

Para o cálculo da equação do carregamento axial P_0 , calcula-se o valor de ΔL e utiliza-se a equação 3-16:

$$\Delta L = \frac{(P_0 - P)^2}{2AEq}$$
(3-41)

$$\left(L + \frac{(P_0 - P)^2}{AEq}\right) \left(1 + \frac{P_0 - P}{AE}\right) = L + \frac{1}{2} \int_{-L/2}^{L/2} y'^2 dx \tag{3-42}$$

Substituindo o valor da integral que é o mesmo para da flambagem vertical calculado anteriormente, e aplicando a equação de báskara para a equação de segundo grau encontrada, temos:

$$P_0 = P + 0.5\phi wL \left(\sqrt{1.597 \cdot 10^{-5} EA\phi wL^5 + 0.25(\phi EI)^2} - 1\right)$$
(3-43)

3.2.2 Martinet - Modo 3

Para o Modo 3 a equação da linha elástica é calculada como foi feito para a flambagem vertical. Inicialmente achamos o valor do momento para o trecho BC (Figura 3.6).

Figura 3.6: Modo 3 - Trecho BC

$$M = -Py + \frac{wx}{2}(2L_1 - L - x)$$
(3-44)

Substituindo a equação 3-44 na equação 3-2 temos:

$$y'' + \frac{P}{EI}y = \frac{wx}{2EI}(2L_1 - L - x)$$
(3-45)

A solução da equação 3-45 é:

$$y = \sin nxC2 + \cos nxC1 - \frac{(-2 + x(-2L_1 + L + x)n^2)w}{2n^4 EI}$$
(3-46)

Utilizando a equação 3-44 encontramos o valor do momento fletor no ponto $C(x = L_1, y = 0)$:

$$\mu = -\frac{wL1}{2}(L - L_1) \tag{3-47}$$

O momento fletor para o trecho CD mostrado na figura 3.7 é:

Figura 3.7: Modo 3 - Trecho CD

$$M = -Py - \mu + \frac{wx}{2}(L - x)$$
(3-48)

Substituindo a equação 3-48 na equação 3-2 temos:

$$y'' + \frac{P}{EI}y = -\frac{\mu}{EI} + \frac{wx}{2EI(L-x)}$$
(3-49)

A solução da equação 3-49 é:

$$y = \sin(nx)C2 + \cos(nx)C1 - \frac{(-2 + (L_1^2 - L_1L + x(-L + x))n^2)w}{2n^4 EI} \quad (3-50)$$

Condições de Contorno para os trechos BC e CD

As constantes C1, C2, C3 e C4 são determinadas com as seguintes condições de contorno:

$${}^{y}|_{BC,x=0} = 0 \longrightarrow C1 = \frac{(-2 + (-L_1 L + L_1^2)n^2)w}{2n^4 EI}$$
 (3-51a)

$$y'|_{BC,x=0} = 0 \longrightarrow C2 = \frac{(-2L_1 + L)w}{2n^2 EI}$$
 (3-51b)

$${}^{y}|_{CD,x=0} = 0 \longrightarrow C1 = \frac{w(-2 + (-L_1 L + L_1^2)n^2)}{2n^4 EI}$$
 (3-51c)

$${}^{y}|_{CD,x=L} = 0 \longrightarrow C2 = \frac{w(-n^{2}L_{1}L + n^{2}L^{2} - 2)(\cos(nL) - 1)}{n^{4}EI}$$
 (3-51d)

Substituindo as equações 3-51
a e 3-51b na equação 3-46 obtemos a equação da linha elástica para o tre
cho BC:

$$y = \frac{\sin(nx)(-2L_1 + L)w}{2n^3 EI} - \frac{\cos(nx)w}{n^4 EI} - \frac{(-2 + x(-2L_1 + L + x)n^2)w}{2n^4 EI}$$
(3-52)

A equação da linha elástica para o trecho CD é obtida substituindo as

equações 3-51c e 3-51d na equação 3-50:

$$y = -\frac{\sin(nx)w(-n^{2}L_{1}L + n^{2}L_{1}^{2} - 2)(\cos(nL) - 1)}{2n^{4}EI\sin(nL)} + \frac{\cos(nx)(-2 + (-L_{1}L + L_{1}^{2})n^{2})w}{2n^{4}EI} - \frac{(-2 + (L_{1}^{2} - L_{1}L + x(-L + x))n^{2})w}{2n^{4}EI}$$
(3-53)

Considerando $nL_1 = u_1$ e nL = u, aplicando as condições de contorno do ponto C na equação 3-52 encontramos:

$$4\sin^2 \frac{u_1}{2} = \sin u_1(2u_1 - u) + u_1(u - u_1)$$
(3-54)

Derivando as equações 3-52 e 3-53, sendo a derivada igual a tangente obtemos o valor da tangente para estas equações. Posteriormente aplicando as condições de contorno no ponto C para cada equação e igualando estes valores temos:

$$\tan\frac{u}{2} = \frac{2\sin u_1 - (2u_1 - u)\cos u_1}{2 + u_1(u - u_1)} \tag{3-55}$$

Com as equações 3-54 e 3-55 obtemos os valores de u_1 e u utilizando o método de Newton-Raphson:

$$u = 5,837$$
 e $u_1 = 4,633$

Condições de Compatibilidade

Como foi feito para a flambagem vertical, calcula-se o valor do comprimento da curva dado pelo segmento BCE, observado na Figura 3.6.

Utilizando as equações 3-14 e 3-15, temos o valor para o segmento BCE igual:

$$\overline{BCE} = \left(\left(L_1 + \frac{L}{2} \right) + \Delta L \right) \left(1 + \frac{P_0 - P}{AE} \right) \\ = \left(L_1 + \frac{L}{2} \right) + \frac{1}{2} \int_0^{L_1} y_1'^2 dx + \frac{1}{2} \int_0^{L/2} y'^2 dx$$
(3-56)

O valor de ΔL é:

$$\Delta L = \frac{q\lambda^2}{2AE} \quad , \quad P_0 = P + \lambda q \quad \longrightarrow \quad \Delta L = \frac{(P_0 - P)^2}{2AEq}$$

Substituindo o valor de ΔL em 3-56 e desconsiderando a parcela ((P_0 –

 $P) \cdot \Delta L)/AE$, pois é muito pequena temos:

$$2q(P_0 - P)\left(L_1 + \frac{L}{2}\right) + (P_0 - P)^2 = qEA \cdot \left(\int_0^{L_1} y_1'^2 dx + \int_0^{L/2} y'^2 dx\right) (3-57)$$

Calcula-se o valor das integrais com as equações 3-52 e 3-53:

$$\int_{0}^{L_{1}} y_{1}^{\prime 2} dx + \int_{0}^{L/2} y^{\prime 2} dx = \frac{2,795 \cdot 10^{-4} w^{2} L^{7}}{E^{2} I^{2}}$$
(3-58)

Substituindo a equação 3-58 na equação 3-57 obtemos a equação para o carregamento axial inicial:

$$Po = P + 1,294\phi wL \cdot \left(-1 + \sqrt{\frac{1,669 \cdot 10^{-4} EA\phi wL^5}{EI^2} + 1}\right)$$
(3-59)

Com o valor de u encontramos o valor de P:

$$P = \frac{u^2 EI}{L^2} = 5,835^2 \frac{EI}{L^2} = 34,06 \frac{EI}{L^2}$$
(3-60)

O valor da amplitude máxima é determinada com a equação 3-53 para x = L/2:

$$\hat{y} = 1,032 \cdot 10^{-2} \frac{wL^4}{EI} \tag{3-61}$$

3.2.3 Kerr - Modo 2

As equações para o Modo 2 da flambagem lateral foram determinadas por Kerr[3] e serão definidas abaixo:

Como foi feito para o Modo 1 e 3 será também determinada a equação da linha elástica.

A equação diferencial é definida:

$$EIy^{iv} + Py'' = -w \tag{3-62}$$

A solução da equação diferencial 3-62 é:

$$y = -\frac{EI}{P}\sin\left(\sqrt{\frac{P}{EI}}x\right)C2 - \frac{EI}{P}\cos\left(\sqrt{\frac{P}{EI}}x\right)C1 - \frac{1}{2}\frac{wx^2}{P} + xC3 + C4$$
(3-63)

Substituindo $P = n^2 E I$ na equação 3-63 temos:

$$y = -\frac{\sin(nx)}{n^2}C^2 - \frac{\cos(nx)}{n^2}C^2 - \frac{1}{2}\frac{wx^2}{n^2EI} + xC^3 + C^4$$
(3-64)

Condições de contorno

Com as condições de contorno abaixo encontramos as constantes da equação 3-64

$$y''|_{x=0} = 0 \longrightarrow C1 = \frac{w}{n^2 EI}$$
 (3-65a)

$$|w|_{x=0} = 0 \longrightarrow C4 = \frac{w}{n^4 EI}$$
 (3-65b)

$${}^{y'}|_{x=L} = 0 \longrightarrow C3 = \frac{C2\cos(nL)}{n} - \frac{w\sin(nL)}{n^3EI} + \frac{wL}{n^2EI}$$
 (3-65c)

$${}^{y}|_{x=L} = 0 \longrightarrow 0 = -\frac{C2 \sin(nL)}{n^{2}} - \frac{w \cos(nL)}{n^{4}EI} - \frac{1}{2} \frac{wL^{2}}{n^{2}EI} + C3L + \frac{w}{n^{4}EI}$$
 (3-65d)

Com as equações 3-65c e 3-65d temos um sistema e resolvendo este sistema obtemos as constantes C2 e C3:

$$C2 = \frac{1}{2} \frac{w \left(2 \cos\left(nL\right) - L^2 n^2 - 2 + 2L \sin\left(nL\right)n\right)}{n^2 EI \left(-\sin\left(nL\right) + L \cos\left(nL\right)n\right)}$$
(3-66a)

$$C3 = \frac{1}{2} \frac{w \left(L^2 n^2 \cos\left(nL\right) - 2 \cos\left(nL\right) + 2 - 2L\sin\left(nL\right)n\right)}{n^3 EI \left(-\sin\left(nL\right) + L\cos\left(nL\right)n\right)}$$
(3-66b)

Para encontrar o valor de nL diferencia-se a equação 3-64 duas vezes e utiliza-se a condição de contorno x = 0, y'' = 0, obtemos:

$$-2\cos(nL) - \sin(nL)nL + 2 = 0 \longrightarrow nL = 2\pi$$
(3-67)

Para o cálculo da equação do carregamento axial P_0 utilizamos a equação 3-42 e calculamos o valor da integral. Isolando P_0 nesta equação obtemos:

$$\int_{0}^{L} y'^{2} dx = 1,743 \cdot 10^{-4} \frac{w^{2} L^{7}}{EI^{2}}$$

$$P_{0} = P + \phi q L \left(-1 \sqrt{1,743 \cdot 10^{-4} \frac{EA\phi q L^{5}}{(EI)^{2}} + 1} \right)$$
(3-68)

O valor de P é:

$$P = \frac{n^2 EI}{L^2} = (2\pi)^2 \frac{EI}{L^2} = 4\pi^2 \frac{EI}{L^2}$$
(3-69)

O valor da amplitude máxima é:

$$\hat{y} = 5.532 \cdot 10^{-3} \frac{wL^4}{EI} \tag{3-70}$$

3.2.4 Kerr - Modo 4

As equações para o Modo 4 foram apresentadas no trabalho de Kerr[3] e são definidas como no Modo 2. O Modo 4 é dividido em duas partes para facilitar o cálculo da linha elástica, como foi feito para o Modo 3.

Figura 3.8: Modo 4

As equações diferenciais para as duas partes são definidas:

$$EIy_{1}^{iv} + Py_{1}'' = w \qquad 0 \le x \le l_{1}$$

$$EIy_{2}^{iv} + Py_{2}'' = -w \qquad l_{1} \le x \le l \qquad (3-71)$$

As soluções para as equações 3-71 considerando $P = n^2 EI$ são:

$$y_1 = -\frac{\sin(nx)}{n^2} C2 - \frac{\cos(nx)}{n^2} C1 + x C3 + C4 - \frac{1}{2} \frac{wx^2}{n^2 EI}$$
(3-72a)

$$y_2 = -\frac{\sin(nx)}{n^2} C6 - \frac{\cos(nx)}{n^2} C5 + x C7 + C8 + \frac{1}{2} \frac{wx^2}{n^2 EI}$$
(3-72b)

Condições de contorno

Com as condições de contorno abaixo encontramos as constantes das equações 3-72a e 3-72b

$${}^{y_1''}|_{x=0} = 0 \longrightarrow C1 = \frac{w}{n^2 EI}$$
(3-73a)

$${}^{y_1}|_{x=0} = 0 \longrightarrow C4 = \frac{w}{n^4 EI} \tag{3-73b}$$

$${}^{y_1'''}|_{x=L_1} = {}^{y_2'''}|_{x=L_1} \longrightarrow \frac{C2\cos(nL1)n^2EI - w\sin(nL1)}{nEI} = (3-73c)$$
$$-n\left(-C6\cos(nL1) + C5\sin(nL1)\right)$$

$${}^{y_1'}|_{x=L_1} = {}^{y_2'}|_{x=L_1} \longrightarrow -\frac{C2 \cos(nL1) n^2 EI - w \sin(nL1) + wL1 n}{n^3 EI} (3-73d) \\ -\frac{-C3 n^3 EI}{n^3 EI} = \frac{-C6 \cos(nL1) nEI + C5 \sin(nL1) nEI}{n^2 EI} \\ \frac{+wL1 + C7 n^2 EI}{n^2 EI}$$

$${}^{y_1}|_{x=L_1} = 0 \longrightarrow \frac{-2C2\sin(nL1)n^2EI - 2w\cos(nL1) - wL1^2n^2}{n^4EI} + \frac{2C3L1n^4EI + 2w}{n^4EI} = 0$$
(3-73e)

$${}^{y_2}|_{x=L} = 0 \longrightarrow \frac{-2C6\sin(nL)EI - 2C5\cos(nL)EI + wL^2}{n^2 EI} + \frac{+2C7Ln^2 EI + 2C8n^2 EI}{n^2 EI} = 0$$
(3-73f)

$${}^{y'_2}|_{x=L} = 0 \longrightarrow \frac{-C6 \cos(nL) nEI + C5 \sin(nL) nEI + wL}{n^2 EI} \qquad (3-73g)$$
$$\frac{+C7 n^2 EI}{n^2 EI} = 0$$

$${}^{y_1''}|_{x=L_1} = {}^{y_2''}|_{x=L_1} \longrightarrow \frac{C2\sin(nL1)n^2EI + w\cos(nL1) - w}{n^2EI} = (3-73h)$$
$$\frac{C6\sin(nL1)n^2EI + C5\cos(nL1)n^2EI + w}{n^2EI}$$

Com as equações 3-73c, 3-73d, 3-73e, 3-73f, 3-73g e 3-73h temos um sistema de equações e resolvendo este sistema obtemos as constantes C2, C3, C5, C6, C7 e C8:

$$C2 = \frac{w(-2 + 2nL_1\sin(nL) - 4nL_1\sin(-nL_1 + nL))}{2n^2 EI(-\sin(nL_1) + nL_1\cos(nL))}$$
(3-74a)
$$\frac{w(-3L_1^2n^2 + 2\cos(nL_1) + 2n^2LL_1)}{2n^2 EI(-\sin(nL_1) + nL_1\cos(nL))}$$

$$C3 = \frac{w(2\sin(nL_1)nL + L_1^2n^2\cos(nL) - 2\cos(nL - 2nL_1))}{2n^3 EI(-\sin(nL_1) + nL_1\cos(nL))} \quad (3-74b)$$
$$\frac{w(-4\sin(nL_1)nL_1 + 2\cos(-nL_1 + nL))}{2n^3 EI(-\sin(nL_1) + nL_1\cos(nL))}$$

$$C5 = \frac{w}{n^2 E I} (-2 \cos(nL_1))$$
(3-74c)

$$C6 = \frac{w(2\cos(nL_1) - 2w\cos(2nL_1) + 2nL_1\sin(nL) -)}{2n^2 EI(-\sin(nL_1) + nL_1\cos(nL))}$$
(3-74d)
$$\frac{w(-2nL_1\sin(nL_1 + nL) - 2nL_1\sin(-nL_1 + nL))}{2n^2 EI(-\sin(nL_1) + nL_1\cos(nL))}$$
$$\frac{w(-3L_1^2n^2 + 2n^2 LL_1)}{2n^2 EI(-\sin(nL_1) + nL_1\cos(nL))}$$

$$C7 = -\frac{w\left(-2\cos\left(nL_{1}-nL\right)+2\cos\left(-nL+2nL_{1}\right)\right)}{2n^{3}EI\left(-\sin\left(nL_{1}\right)+nL_{1}\cos\left(nL\right)\right)}$$

$$-\frac{w(+3L_{1}^{2}n^{2}\cos\left(nL\right)-2\sin\left(nL_{1}\right)nL\right)}{2n^{3}EI\left(-\sin\left(nL_{1}\right)+nL_{1}\cos\left(nL\right)\right)}$$
(3-74e)

$$C8 = -\frac{w(3 \sin(nL) L_1^2 n^2 + 4 \cos(nL_1) nL_1 - 2 \sin(-nL + 2 nL_1))}{2n^4 EI (-\sin(nL_1) + nL_1 \cos(nL))} (3-74f) \\ -\frac{w(-2 nL \cos(-nL + 2 nL_1) + 2 \sin(nL_1 - nL))}{2n^4 EI (-\sin(nL_1) + nL_1 \cos(nL))} \\ -\frac{w(+L^2 n^2 \sin(nL_1) - 3 n^3 \cos(nL) LL_1^2 + 2 nL \cos(nL_1 - nL))}{2n^4 EI (-\sin(nL_1) + nL_1 \cos(nL))} \\ -\frac{w(-2 nL_1 + n^3 \cos(nL) L^2 L_1 - 2 \sin(nL) n^2 LL_1)}{2n^4 EI (-\sin(nL_1) + nL_1 \cos(nL))}$$

Para encontrar o valor de nL e de nL1 utiliza-se as duas condições $y_2(L_1) = 0$ e $y_2''(L) = 0$, substituindo os valores das constantes já encontradas, o sistema com as duas equações é obtido:

$$0 = \frac{-2C6\sin(nL_1)EI - 2C5\cos(nL_1)EI + wL_1^2}{2n^2 EI} + 2C7L_1n^2 EI + 2C8n^2 EI}$$
(3-75a)
$$\frac{+2C7L_1n^2 EI + 2C8n^2 EI}{2n^2 EI}$$

$$0 = \frac{C6\sin(nL)n^2 EI + C5\cos(nL)n^2 EI + w}{n^2 EI}$$
(3-75b)

Capítulo 3 - Modelos Teóricos

$$nL_1 = 5.3067 \tag{3-76}$$

$$nL = 8.5387$$
 (3-77)

Para o cálculo da carga axial inicial P_0 , procede-se como realizado para o Modo 3 da flambagem lateral:

$$2q(P_0 - P)\left(\frac{L}{L_1}\right) + (P_0 - P)^2 = qEA \cdot \left(\int_0^{L_1} y_1'^2 dx + \int_{L_1}^L y_2'^2 dx\right)$$
(3-78)

Os valores das integrais são:

$$\int_{0}^{L_{1}} y_{1}^{\prime 2} dx = 5,492 \cdot 10^{-4} \frac{w^{2} L_{1}^{7}}{E^{2} I^{2}}$$
$$\int_{L_{1}}^{L} y_{2}^{\prime 2} dx = 5,344 \cdot 10^{-6} \frac{w^{2} L_{1}^{7}}{E^{2} I^{2}}$$

Substituindo os valores das integrais e isolando P_0 , obtemos:

$$P_0 = P + 1,609\phi qL\left(-1\sqrt{2,142 \cdot 10^{-4}\frac{EA\phi qL^5}{(EI)^2} + 1}\right)$$
(3-79)

O valor de P é:

$$P = \frac{n^2 EI}{L_1^2} = (5.3067)^2 \frac{EI}{L^2} = 28.161 \frac{EI}{L^2}$$
(3-80)

O valor da amplitude máxima é:

$$\hat{y} = 1,047 \cdot 10^{-2} \frac{wL^4}{EI} \tag{3-81}$$

3.3 Interação solo-duto

De acordo com Schaminée, Zorn e Schotmann[35] a ocorrência da flambagem em dutos é amplamente determinada pela capacidade de resistência do solo a movimentos do duto, sendo a modelagem da resistência do solo uma componente importante no estudo geotécnico de problemas de interação solo duto. Conseqüentemente, a disponibilidade de modelos precisos para a resistência do solo é importante para a segurança e um dimensionamento econômico destes dutos.

Segundo Selvadurai et al.[36], a resistência do solo a ser considerada é

influenciada por vários fatores incluindo a variabilidade das propriedades do solo ao longo do comprimento do duto, diferenças nas propriedades entre o solo natural e o aterro compactado, a condição de interface solo-duto e a flexibilidade relativa do sistema solo-duto. Selvadurai et al.[36] também define em seu trabalho três tipos de métodos para análise da interação solo-duto. Os métodos são: analítico, elementos finitos e simplificado. Os métodos analíticos envolvem soluções de equações tridimensionais de equilíbrio elasto-plástico no contexto de problemas com interação solo-duto. O uso de técnicas de elementos finitos para análise da interação solo-duto é garantida somente em situações onde os parâmetros de tensão-deformação para o solo são determinados por testes de laboratório ou testes in situ. Em uma análise simplificada a interação solo-duto é estudada idealizando o comportamento do solo que está envolvendo o duto por um modelo matemático de uma dimensão ou de mola.

Modelagem simplificada de problemas de interação solo-duto é uma tentativa por um lado representar condições mais gerais do que as previstas nas soluções analíticas e por outro lado viabilizar a aplicação do método dos elementos finitos dado o tamanho e complexidade de modelos para a representação do solo. É assumido que a relação força-deslocamento pode ser representada por relações elasto-plásticas, hiperbólicas e bi-lineares no qual a rigidez do solo K_T é governada por propriedades elásticas (Módulo de elasticidade (E) e coeficiente de poisson (ν)) do solo e do duto enquanto a resistência do solo P_L é governada pela resistência ao cisalhamento do solo ou pela interface solo-duto.

Serão descritas duas formas baseadas na relação carregamento x deslocamento. A forma hiperbólica é baseado em observações experimentais e a forma elasto-plástica é baseada em considerações empíricas.

No trabalho de Schaminée, Zorn e Schotmann[35] são apresentados resultados de um programa de testes em laboratório para a reação vertical e axial do solo para um duto com 4 polegadas de diâmetro, embutido em um solo saturado para uma grande variação de condições de solo. São apresentados neste trabalho formulações para solos drenados e não-drenados para a resistência do solo na direção vertical e axial. Estas equações serão descritas neste capítulo.

3.3.1 Direção lateral

No trabalho de Cardoso[37] é definido que a reação lateral do solo desenvolvida pela movimentação de dutos compreende essencialmente duas parcelas; a primeira, semelhante à existente na direção axial e comandada pelo atrito no contato solo-duto, e uma segunda dada pela mobilização da resistência ao cisalhamento do meio contínuo ao redor do duto, também chamado de resistência passiva.

$$P_{lat} = P_{\mu} + P_p \tag{3-82}$$

A reação lateral é geralmente expressa em termos de um coeficiente de atrito lateral equivalente obtido dividindo o peso submerso do duto pelo valor da reação lateral:

$$P_{lat} = \mu_{lat} W_{sub} \tag{3-83}$$

A equação a seguir é uma expressão clássica para a obtenção da reação lateral passiva de dutos apoiados sobre solos argilosos até enterramentos em torno de 30% do diâmetro do duto, considerando propriedades não-drenadas:

$$\frac{P_p}{DS_u} = 4,13 \left(\frac{S_u}{D\gamma}\right)^{-0,392} \left(\frac{H}{D}\right)^{1,31}$$
(3-84)

sendo γ a densidade do solo, S_u a resistência não-drenada do material, D diâmetro externo do duto e H o recobrimento

A expressão recomendada pela ASCE[38] para a reação lateral passiva de dutos totalmente enterrados é dada por:

$$P_p = N_{ch}cD + N_{qh}\gamma HD \tag{3-85}$$

sendo N_{ch} e N_{qh} fatores de capacidade de carga.

A equação pode ser definida separadamente para solos $argilosos(P_{pc})$ e arenosos (P_{pq}) , respectivamente:

$$P_{pc} = N_{ch} S_u D \tag{3-86}$$

$$P_{pq} = N_{qh}\gamma HD \tag{3-87}$$

Forma hiperbólica

Resultados experimentais [39, 40] indicaram que, para os solos testados, o comportamento carga-deslocamento pode ser aproximado por um relação hiperbólica que pode ser observado na Figura 3.9:

$$\bar{P}_T = \frac{\bar{\delta}_T}{a + b\bar{\delta}_T} \tag{3-88}$$

onde $\bar{P}_T = P_T/P_{LT}$, $\bar{\delta}_T = \delta_T/\delta_{LT}$, δ_{LT} é o deslocamento do duto para a carga P_{LT} e *a* e *b* são constantes. Os valores de *a*, *b*, P_{LT} e δ_{LT} são estimados a

partir de resultados experimentais. Com base nas investigações experimentais determinam-se valores para a e b:

$$a = 0,15$$
 $b = 0,85$ (3-89)

O valor de P_{LT} para solos arenosos e argilosos é respectivamente definido como:

$$P_{LT} = N_{qh}\gamma H_0 DL_d = P_{pq} \frac{L_d H_0}{H}$$
(3-90)

$$P_{LT} = N_{ch} S_u DL_d = P_{pc} \cdot L_d \tag{3-91}$$

onde L_d é o comprimento do duto e H_0 é o valor do cobrimento considerando até a metade do duto.

Forma empírica

Segundo Selvadurai et al.[36] o empirismo do método origina-se do fato que a rigidez do solo K_T é estimada a partir do limite de deslocamento necessário para mobilizar P_{LT} obtidos experimentalmente.

A partir de um estudo realizado[41], foi definida a expressão para a rigidez lateral do solo:

$$K_T = \frac{12\pi EL}{\left(9\ln(\rho) - \frac{\rho^2 - 1}{\rho^2 + 1}\right)}$$
(3-92)

sendo $\rho = 2H/D$

Com a faixa de valores para o cobrimento $(3D < H_0 < 5D)$ a rigidez do solo pode ser aproximada por:

$$K_T = \pi E L(0, 60 \ a \ 0, 80) \tag{3-93}$$

Representação bi-linear da resistência lateral do solo

O modelo de resistência lateral do solo aqui proposto foi definido no trabalho de Selvadurai et al[36], que descreve uma forma bi-linear ou tri-linear aproximada da forma hiperbólica. Este modelo bilinear está apresentado na Figura 3.9 pela linha OBC.

Figura 3.9: Modelo bilinear do carregamento lateral versus deslocamento [36]

A rigidez inicial K_{T1} é escolhida de forma a coincidir com a inclinação inicial da representação hiperbólica:

$$K_{T1} = \left(\frac{d}{d\delta_T} \left(\frac{K_T \delta_T}{1 + \lambda_T \delta_T}\right)\right)_{\delta_T = 0} = K_T$$
(3-94)

onde $\lambda_T = K_T / P_{LT}$

A segunda rigidez, K_{T2} , é definida como:

$$K_{T2} = K_T \Phi(\alpha) \tag{3-95}$$

sendo $\Phi(\alpha) = (1 - \sqrt{\alpha})^2$ e α uma constante. Na maioria das aplicações geotécnicas utiliza-se $\alpha = 1/3$.

Modelo linear isotrópico - LIPS (Villaraga, Rodríguez e Martínez[42])

Este modelo de interação solo-duto descrito por Villaraga, Rodríguez e Martínez[42] considera o solo como um fundação linear elástica. Sendo o valor da rigidez lateral do solo definido como:

$$K_z = \frac{P}{(z - z_I)} \tag{3-96}$$

onde P representa o carregamento distribuido na direção lateral, K_z é a constante linear elástica, z é o deslocamento na direção lateral e z_I é o deslocamento inicial na direção lateral.

Este modelo requer um valor para a resistência última do solo e fornece uma rigidez constante com o aumento de deformação do solo.

Modelo não-linear isotrópico - NIPS (Villaraga, Rodríguez e Martínez[42])

De acordo com (Donley e Kerr[43], 1987 apud Villaraga, Rodríguez e Martínez[42], 2004) este modelo representa a característica não-linear elástica do solo, considerando a interação solo-duto como uma fundação não-linear elástica. O valor da rigidez do solo é então definida como:

$$K_z = \frac{P}{z_0 \tanh(\frac{z-z_I}{z_0})} \tag{3-97}$$

onde z_0 é uma constante.

Esta representação é utilizada em aplicações de dutos enterrados com grande cobrimento, onde as propriedades mecânicas do solo circundante ao duto não mudam muito.

Modelo não-linear anisotrópico - NAPS (Villaraga, Rodríguez e Martínez[42])

Este modelo considera a interação solo-duto como uma fundação nãolinear elástica como no modelo NIPS. A diferença é que neste modelo o comportamento do solo é considerado anisotrópico em resistência e rigidez. A rigidez do solo é definida como:

$$K_{z}^{t} = \frac{P}{z_{0}^{t} \tanh(\frac{z-z_{I}}{z_{0}^{t}})} \quad se \quad z - z_{I} \ge 0$$
(3-98a)

$$K_z^c = \frac{P}{z_0^c \tanh(\frac{z-z_I}{z_0^c})} \quad se \quad z - z_I < 0 \tag{3-98b}$$

onde z_0^t e z_0^c são constantes.

Este tipo de modelo é utilizado para os casos de dutos enterrados com pequeno cobrimento, onde as propriedades mecânicas do solo de cobrimento podem ser diferentes do solo abaixo do duto.

3.3.2 Direção vertical

Segundo Schaminée, Zorn e Schotmann[35], dutos enterrados podem ser cobertos por materiais drenantes como areia, cascalho e rocha. O comportamento mecânico destes materiais é orientado pelo atrito interno das partículas. Intuitivamente, espera-se que a resistência vertical, P, destes materiais pela unidade de comprimento do duto seja uma função da quantidade de atrito que move o duto com o carregamento correspondente ao solo.

A resistência vertical é então definida por Shaminée incluindo o carregamento permanente e a componente da força de atrito:

$$P_{vS} = \gamma HD + \gamma H^2 K \tan \phi \tag{3-99}$$

sendo tan ϕ o coeficiente de atrito e K o coeficiente lateral de pressão.

Trautmann [44] define uma outra expressão para a resistência vertical:

$$P_{vT} = \gamma H D L + \gamma H^2 K \tan(\phi) L - \frac{\gamma \pi D^2 L}{8}$$

$$P_{vT} = P_{vS} \cdot L - \frac{\gamma \pi D^2 L}{8}$$
(3-100)

Os termos da equação 3-100 são respectivamente: o peso do solo acima do duto, a resistência ao cisalhamento e o peso do solo correspondente à metade superior do duto. Na equação 3-99 observa-se que o terceiro termo não é considerado.

Para solos não-drenantes Schaminée, Zorn e Schotmann[35] definem a seguinte expressão para o valor da resistência vertical:

$$P_{vS} = \gamma HD + 2HS_u \tag{3-101}$$

No trabalho de Cardoso[37] é considerado que a reação vertical do solo pode ser classificada em função da direção de mobilização do solo pela movimentação do duto. Caso o duto se movimente no sentido de aumentar o seu enterramento, tem-se a denominada reação vertical descendente; por outro lado, se o duto se movimentar no sentido de diminuir o seu enterramento, temos a reação vertical ascendente.

O expressão da reação vertical ascendente proposta pela ASCE[38], é mostrada abaixo, sendo válida para dutos com enterramentos moderados.

Como para a direção lateral, a reação vertical pode ser simplificada para os casos específicos de solos arenosos e argilosos, respectivamente:

$$P_{va} = N_{qv}\gamma HD \tag{3-102}$$

$$P_{va} = N_{cv} S_u D \tag{3-103}$$

onde N_{cv} e N_{qv} são fatores de capacidade de carga.

O cálculo da reação descendente proposta pela ASCE[38], definida para

solos arenosos e argilosos é repectivamente:

$$P_{vc} = N_q \gamma_s HD + N_\gamma \gamma \frac{D^2}{2} \tag{3-104}$$

$$P_{vc} = N_c S_u D + N_q \gamma H D \tag{3-105}$$

sendo N_c , $N_q \in N_\gamma$ fatores de capacidade de carga.

Para facilitar a aplicação dos resultados experimentais, a equação 3-99 pode ser reescrita, definindo $P_{vS}^* = P_{vS}/\gamma HD$ e $H^* = H/D$, como:

$$P_{vS}^* = 1 + KH^* \tan(\phi) \tag{3-106}$$

A maioria dos modelos resulta em uma relação linear da seguinte forma:

$$P_{vS}^* = b + f_d H^* \tag{3-107}$$

sendo f_d o fator de carregamento.

A equação 3-101 é transformada em adimensional introduzindo $P_{vS}^* = P_{vS}/DS_u$ e $w = \gamma H/S_u$, resultando em:

$$P_{vS}^* = w + 2H^* \tag{3-108}$$

Analogamente à equação 3-107, a equação 3-108 pode ser reescrita como:

$$P_{vS}^* = b + f_c H^* \tag{3-109}$$

A tabela 3.1 apresenta os valores para os coeficientes das equações (3-107) e 3-109:

Material do recobrimentoequaçãob f_c ou f_d aterro natural3-1071,00,4cascalho ou rocha3-1071,00,6argila3-1091,1-

Tabela 3.1: Valores para os coeficientes $b, f_c \in f_d$

Forma hiperbólica

Segundo Trautmann, Rourke e Kulhawy[44] a relação força-deslocamento pode ser modelada por uma hipérbole. A média da relação hiperbólica para os testes realizados é dada por:

$$P'' = \frac{\delta''}{(0,93+0,07\delta'')} \tag{3-110}$$

no qual $P'' = P_v / \gamma HDL$, $\delta'' = (\delta/D) / (\delta_f/D)$, P_v a força medida a cada incremento de deslocamento, δ o deslocamento atual e δ_f o deslocamento obtido para a força máxima.

Os modelos apresentados a seguir definidos por Villaraga, Rodríguez e Martínez[42], foram apresentados na seção 3.3.2 e são também empregados para a direção vertical:

Modelo linear isotrópico - LIPS (Villaraga, Rodríguez e Martínez[42])

A constante linear elástica vertical K_v para o modelo LIPS é dado por:

$$K_v = \frac{P}{(v - v_I)} \tag{3-111}$$

onde P representa o carregamento distribuido na direção vertical, v é o deslocamento na direção vertical e v_I é o deslocamento inicial na direção vertical.

Modelo não-linear isotrópico - NIPS (Villaraga, Rodríguez e Martínez[42])

A constante linear elástica vertical K_v para o modelo NIPS é dado por:

$$K_v = \frac{P}{v_0 \tanh(\frac{v - v_I}{v_0})} \tag{3-112}$$

onde v_0 é uma constante.

Modelo não-linear anisotrópico - NAPS (Villaraga, Rodríguez e Martínez[42])

A constante linear elástica vertical K_v para o modelo NAPS é dado por:

$$K_v^t = \frac{P}{v_0^t \tanh(\frac{v - v_I}{v_0^t})} \quad se \quad v - v_I \ge 0 \tag{3-113a}$$

$$K_{v}^{c} = \frac{P}{v_{0}^{c} \tanh(\frac{v-v_{I}}{v_{0}^{c}})} \quad se \quad v - v_{I} < 0$$
(3-113b)

onde v_0^t e v_0^c são constantes.

3.3.3 Direção axial

No trabalho de Cardoso[37] são definidas equações para o cálculo da reação axial para solos com comportamento não-drenado:

$$P_a = S_u A_{lat} \tag{3-114}$$

sendo S_u a resistência não-drenada no contato solo-duto e A_{lat} a área lateral de contato solo-duto.

Para solos com comportamento drenado temos:

$$P_a = \mu_{axi} W_{sub} \tag{3-115}$$

sendo $W_{sub} = \bar{\sigma}_n A_{lat}$ o peso submerso por unidade de comprimento e $\mu_{axi} = \tan(\phi)$ o coeficiente de atrito axial do contato solo-duto.

Segundo Schaminée, Zorn e Schotmann[35] o valor da força de resistência axial é dado por:

$$P_a = \frac{1}{4}\pi\gamma HD\left(2 + 2K + \beta^* + K\frac{D}{H}\right)\tan(\phi) + \alpha\pi DS_u \qquad (3-116)$$

onde $\beta^* = W_p / \gamma HD$, W_p o peso do duto por unidade de comprimento e α representa um fator de ativação para a resistência da argila.

Uma formulação adimensional pode ser introduzida, considernado $P_d^* = P_a/\gamma HD$ e $P_c^* = P_a/\pi S_u D$ para materiais não-coesos e coesos, respectivamente:

$$P_d^* = \frac{\pi}{4} \left(2 + 2K + \beta^* + \frac{KD}{H} \right) \tan(\phi) = b_{ad}$$
(3-117)

$$P_c^* = \alpha = b_{ac} \tag{3-118}$$

Através de testes experimentais foram obtidos valores para as constantes das equações 3-117 e 3-118 apresentados na Tabela 3.2:

Material do recobrimento equação b_{ad} b_{ac} aterro natural 3 - 1171,1_ cascalho ou rocha 3 - 1171,0argila 3-118 0,2_

Tabela 3.2: Valores para os coeficientes $b_{ad} \in b_{ac}$

Segundo Cardoso[37] a reação axial desenvolvida em dutos ainda não

é completamente compreendida principalmente em argilas, onde o valor da reação pode mudar ao longo do tempo devido ao processo de adensamento ocasionado pela dissipação de poropressões que pode durar até semanas.

Modelo linear isotrópico (LIPS), Modelo não-linear isotrópico (NIPS) e Modelo não-linear anisotrópico (NAPS) (Villaraga, Rodríguez e Martínez[42])

Diferente das direções lateral e vertical, para a direção axial a rigidez do solo é considerada linear para os três tipos de modelo (LIPS, NIPS E NAPS):

$$K_u = \frac{P}{(z - z_I)} \tag{3-119}$$

onde P representa o carregamento distribuido na direção vertical, K_u é a constante linear elástica, z é o deslocamento na direção lateral e z_I é o deslocamento inicial na direção lateral.