Referências Bibliográficas

- [Bad04] BADDOUR, K. E.; BEAULIEU, N. C.. Improved pilot symbol aided estimation of rayleigh fading channels with unknown autocorrelation statistics. In: IEEE VEHICULAR TECH. CONFERENCE – FALL, Los Angeles, EUA, 2004. 3.1.4
- [Bad05] BADDOUR, K. A.; BEAULIEU, N. C.. Autoregressive modeling for fading channel simulation. IEEE Transactions on Wireless Communications, 4(4):1650–1662, 2005. 2.4, 2.4
- [Bee95] VAN DE BEEK, J.-J.; EDFORS, O.; SANDELL, M.; WILSON, S. K. ; BÖRJESSON, P. O.. On channel estimation in OFDM systems. In: PROC. IEEE VEHICULAR TECHNOLOGY CONFERENCE, Chicago, EUA, 1995. 3
- [Bin90] BINGHAM, J.. Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, 28:5–14, 1990. 2, 2.3
- [Bol06] BÖLCSKEI, H.. MIMO-OFDM wireless systems: Basics, perpectives and challenges. IEEE Wireless Communications, 13(4):31–37, 2006. 1
- [Cam99] CAMPELLO, J.. Discrete bit loading for DMT. In: PROC. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, Vancouver, Canadá, 1999. 2.2
- [Cim85] J. CIMINI, JR., L.. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Wireless Communications, 3(7):666-675, 1985. 1, 3
- [Col02] COLERI, S.; ERGEN, M.; PURI, A. ; BAHAI, A.. Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, 48(3):223–229, 2002. 3
- [Edf96] EDFORS, O.; SANDELL, M.; VAN DE BEEK, J.-J.; LANDSTÖM, D. ; SJÖBERG, F.. An introduction to ortoghonal frequency-dvision multiplexing. Technical report, Luleå University of Technology, 1996. 2

- [Edf98] EDFORS, O.; SANDELL, M.; VAN DE BEEK, J.-J.; WILSON, S. K. ; BÖRJESSON, P. O.. OFDM channel estimation by singular value decomposition. IEEE Transactions on Communications, 46(7):931–939, 1998. 3
- [Gol02] GOLDFELD, L.; LYANDRES, V. ; WULICH, D.. Minimum BER power loading for OFDM in fading channel. IEEE Transactions on Communications, 50(11):1729–11733, 2002. 1, 4, 4.2, 4.2
- [Gol05] GOLDSMITH, A.. Wireless Communications. Cambridge University Press, 2005. 1
- [ltu08] INTERNATIONAL TELECOMMUNICATION UNION (ITU). Worldwide mobile cellular subscribers to reach 4 billion mark late 2008, 2008. 1, i
- [Jak74] JAKES, W. Mobile Microwave Communications. John Wiley & Sons, 1974. 2.4
- [Jia08] JIANG, T.; WU, Y.. An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broacasting, 54(2):257-268, 2008. 2.3
- [Li98] LI, Y.; J. CIMINI, JR., L. ; SOLLENBERGER, N. L.. Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Transactions on Wireless Communications, 46(7):902–915, 1998. 1, 3
- [Lov07] LOVE, D. J.; W. HEATH, JR., R. OFDM power loading with limited feedback. IEEE Transactions on Vehicular Techology, 54(5):1733– 1780, 2005. 4.2
- [Mar05] DE MARINS NETO, A. S.. Equalização e estimação de canal em sistemas de transmissão OFDM. Dissertação de Mestrado, Pontifícia Universidade Católica do Rio de Janeiro, 2005. 2, 2.3
- [Mor01] MORELLI, M.; MENGALI, U.: A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Transactions on Signal Processing, 49(12):3065–3073, 2001. 3, 3.1.1, 3.1.1, 3.1.2, 3.1.2
- [Mor08] MORAES, R.; DORTSCHY, B.; KLAUTAU, A. ; I RIU, J. R. Semiblind power allocation for digital subscriber lines. In: PROC. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, Beijing, China, 2008. 2.2

- [Muq02] MUQUET, B.; WANG, Z.; GIANNAKIS, G. B.; DE COURVILLE, M. ; DUHAMEL, P.. Cyclic prefix or zero padding for wireless multicarrier transmissions? IEEE Transactions on Communications, 50(12):2136– 2148, 2002. 1, 2, 2.3
- [Neg98] NEGI, R.; CIOFFI, J. M.. Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Transactions on Consumer Electronics, 44(3):1122–1128, 1998. 3, 3.1.1
- [Ozd07] OZDEMIR, M. K.; ARSLAN, H.. Channel estimation for wireless OFDM systems. IEEE Communications Surveys & Tutorials, 9(2):18–48, 2007. 3
- [Pan08] PANAH, A. Y.; NOSRAT-MAKOUEI, B. ; VAUGHAN, R. G.. Nonuniform pilot-symbol allocation for closed-loop OFDM. IEEE Transactions on Wireless Communications, 7(7):2723–2731, 2008. 1, 2.4, 4, 4.2, 4.3.1, 4.3.1, 4.3.1
- [Pel80] PELED, A.; RUIZ, A.. Frequency domain data transmission using reduced computational complexity algorithms. In: PROC. IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, Denver, EUA, 1980. 2
- [Pro00] PROAKIS, J. G.. Digital Communications, 4^a Ed. McGraw-Hill, 2000. 3.3
- [San96] SANDELL, M.; EDFORS, O.. Comparative study of pilot-based channel estimators for wireless OFDM. Technical report, Luleå University of Technology, 1996. 3
- [Wan00] WANG, Z.; GIANNAKIS, G. B.. Wireless multicarrier communications: where Fourier meets Shannon. IEEE Signal Processing Magazine, 17(3):1–17, 2000. 1, 2, 2.3, 4
- [Wei71] WEINSTEIN, S. B.; EBERT, P. M.. Data-transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications, 19(5):628-634, 1971. 2
- [Zou95] ZOU, W. Y.; WU, Y.. COFDM: an overview. IEEE Transactions on Broadcasting, 41(1):1–8, 1995. 2

A Abreviações

BER	Bit Error Rate
BITE	Busca Iterativa
CDMA	Code Division Multiple Access
CP	Cyclic Prefix
DAB	Digital Audio Broadcasting
DFT	Discrete Fourier Transform
DMT	Discrete Multitone
DSL	Digital Subscriber Lines
DVB	Digital Video Broadcasting
ERB	Estação Rádio-Base
ESA	Estacionário no Sentido Amplo
FDM	Frequency Division Multiplexing
FFT	Fast Fourier Transform
IBI	Inter-Block Interference
ICI	Inter-Carrier Interference
IDFT	Inverse Discrete Fourier Transform
MIMO	Multiple Input, Multiple Output
ML	Maximum Likelihood
MMSE	Minimum Mean Squared Error
MSE	Mean Squared Error
OFDM	Orthogonal Frequency Division Multiplexing
PAPR	Peak to Average Power Ratio
RD	Ruído de Distorção
RI	Ruído de Interpolação
\mathbf{SC}	Single Carrier
VA	Variável Aleatória
ZP	Zero Padding

B Operadores Matemáticos

a	escalar	
a	vetor	
Α	matriz	
$\mathbf{a}[i]$	i-ésimo elemento de a	
$\mathbf{A}[i,j]$	(i, j)-ésimo elemento de A	
\mathbf{I}_K	matriz identidade de tamanho ${\cal K}$	
$0_{K imes J}$	matriz de zeros com tamanho especificado	
	pelo sub-escrito	
$1_{K imes J}$	matriz de 1's com tamanho especificado pelo	
	sub-escrito	
$ \mathcal{A} $	cardinalidade do conjunto $\mathcal A$	
a	módulo do escalar a	
$\operatorname{diag}\left\{\mathbf{a}\right\}$	matriz com ${\bf a}$ na diagonal principal	
$(\cdot)^*$	conjugado de um número	
$(\cdot)^T$	transposta de uma matriz	
$(\cdot)^{\dagger}$	pseudo-inversa de uma matriz	
$(\cdot)^{-1}$	inversa de uma matriz	
$(\cdot)^{\mathcal{H}}$	hermitiano de uma matriz	
$\mathcal{E}\left[\cdot ight]$	valor esperado	
$\operatorname{tr}\{\cdot\}$	traço de uma matriz	
$\left\ \cdot\right\ _{\mathcal{F}}$	norma de Frobenius	
$[\mathbf{A}]_{ ext{lin }i}$	i -ésima linha de \mathbf{A}	
$[\mathbf{A}]_{\mathrm{col}\ i}$	i -ésima coluna de \mathbf{A}	
$\lfloor a \rfloor$	arredondar para menor inteiro	
$\lceil a \rceil$	arredondar para o maior inteiro	
$\mathcal{N}(x,y)$	variável aleatória gaussiana de média \boldsymbol{x} e	
	variância y	
$\Re\{\cdot\}$	parte real de um complexo	

C Cálculos para o MMSE

C.1 MSE

Seja o MSE temporal da estimação MMSE, i.e.

$$\operatorname{mse}_{\operatorname{mmse},n} = \mathcal{E}\left[\left\|\mathbf{h}_{n} - \hat{\mathbf{h}}_{\operatorname{mmse},n}\right\|^{2}\right].$$
 (C-1)

Usando (3-26), obtemos

$$mse_{mmse,n} = \mathcal{E} \left[\left\| \mathbf{V}_{n}^{-1} \left(\mathbf{F}^{\mathcal{H}} \mathbf{S}_{n}^{\mathcal{H}} \mathbf{w}_{p,n} - \sigma \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathbf{h}_{n} \right) \right\|^{2} \right]$$
$$= \operatorname{tr} \left\{ \mathbf{V}_{n}^{-1} \left[\mathcal{E} \left[\mathbf{F}_{L}^{\mathcal{H}} \mathbf{S}_{n}^{\mathcal{H}} \mathbf{w}_{p} \mathbf{w}_{p}^{\mathcal{H}} \mathbf{S}_{n} \mathbf{F}_{L} \right] \right.$$
$$\left. + \mathcal{E} \left[\sigma^{2} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathbf{h} \mathbf{h}^{\mathcal{H}} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \right] \right] \mathbf{V}_{n}^{-1,\mathcal{H}} \right\}$$
$$= \operatorname{tr} \left\{ \mathbf{V}_{n}^{-1} \left[\sigma \mathbf{F}_{L}^{\mathcal{H}} \mathbf{D}_{n} \mathbf{F}_{L} + \sigma^{2} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \right] \mathbf{V}_{n}^{-1,\mathcal{H}} \right\}.$$
(C-2)

Aqui usamos $\mathcal{E}\left[\mathbf{w}_{p}\mathbf{w}_{p}^{\mathcal{H}}\right] = \sigma \mathbf{I}_{K_{p}} \in \mathcal{E}\left[\mathbf{h}_{n}\mathbf{h}_{n}^{\mathcal{H}}\right] = \text{diag}\left\{\boldsymbol{\gamma}\right\}$, como já definido no texto. Seguimos identificando que $\mathbf{V}^{-1} = \mathbf{V}^{-1,\mathcal{H}}$ e reduzindo (C-2) a

$$mse_{mmse,n} = tr\left\{\mathbf{V}_{n}^{-1}\sigma\mathbf{V}\mathbf{V}_{n}^{-1,\mathcal{H}}\right\}$$
$$= \sigma tr\left\{\mathbf{V}_{n}^{-1}\right\}, \qquad (C-3)$$

onde usamos a definição de ${\bf V}.$

Considere agora o MSE da estimação de um determinado tom da resposta de freqüência do canal:

$$\mathrm{MSE}_{\mathrm{mmse},n}^{k} = \mathcal{E}\left[\left\|q_{n}^{k} - \hat{q}_{\mathrm{mmse},n}^{k}\right\|^{2}\right].$$
 (C-4)

Considerando (3-27), obtemos

$$MSE_{mmse,n}^{k} = \mathcal{E} \left[\left\| \mathbf{f}^{k} \mathbf{V}_{n}^{-1} \left(\mathbf{F}_{L}^{\mathcal{H}} \mathbf{S}_{n}^{\mathcal{H}} \mathbf{w}_{p,n} - \sigma \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathbf{h}_{n} \right) \right\|^{2} \right]$$

$$= \operatorname{tr} \left\{ \mathbf{f}^{k} \mathbf{V}_{n}^{-1} \left[\mathcal{E} \left[\mathbf{F}_{L}^{\mathcal{H}} \mathbf{S}_{n}^{\mathcal{H}} \mathbf{w}_{p} \mathbf{w}_{p}^{\mathcal{H}} \mathbf{S}_{n} \mathbf{F}_{L} \right] \right.$$

$$\left. + \mathcal{E} \left[\sigma^{2} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathbf{h} \mathbf{h}^{\mathcal{H}} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \right] \left] (\mathbf{f}^{k})^{\mathcal{H}} \mathbf{V}_{n}^{-1,\mathcal{H}} \right\}.$$
(C-5)

A solução de (C-5) é muito parecida com a de (C-2):

$$MSE_{mmse,n}^{k} = \mathbf{f}^{k} \mathbf{V}_{n}^{-1} (\mathbf{f}^{k})^{\mathcal{H}}.$$
 (C-6)

C.2 Filtro de Wiener

Precisamos calcular a matriz $\mathcal{R}_{\mathbb{YY}}$ e o vetor $\mathcal{R}_{\mathbf{h}_n\mathbb{Y}}$ levando em conta as características do MMSE. Primeiramente, temos

$$\mathcal{R}_{\mathbb{YY}} = \mathcal{E}\left[\mathbb{YY}\right] = \mathcal{E}\left[(\mathbb{H} + \mathbb{W})^{\mathcal{H}}(\mathbb{H} + \mathbb{W})\right]$$
$$= \underbrace{\mathcal{E}\left[\mathbb{H}^{\mathcal{H}}\mathbb{H}\right]}_{\mathcal{A}} + \underbrace{2\Re\left\{\mathcal{E}\left[\mathbb{H}^{\mathcal{H}}\mathbb{W}\right]\right\}}_{\mathcal{B}} + \underbrace{\mathcal{E}\left[\mathbb{W}^{\mathcal{H}}\mathbb{W}\right]}_{\mathcal{C}}, \quad (C-7)$$

onde \mathbb{H} é dado por (3-35) e \mathbb{W} é dado por (3-49) e $\Re{\cdot}$ denota a parte real de um elemento. A solução de \mathcal{A} é fácil pois já foi visto que $\mathcal{E}\left[\mathbb{H}^{\mathcal{H}}\mathbb{H}\right] = \mathcal{R}_{hh,t}$. Partimos agora para a solução de \mathcal{B} e \mathcal{C} .

$$\mathcal{B} = -2\Re \left\{ \mathcal{E} \left[\mathbb{H}^{\mathcal{H}} \mathbb{W} \right] \right\}$$
$$= -2\sigma \begin{bmatrix} \Re \{ \operatorname{tr} \{ \mathbf{V}_{n}^{-1} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathcal{E} \left[\mathbf{h}_{n} \mathbf{h}_{n}^{\mathcal{H}} \right] \} \} & \cdots \\ \Re \{ \operatorname{tr} \{ \mathbf{V}_{n-1}^{-1} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathcal{E} \left[\mathbf{h}_{n-1} \mathbf{h}_{n}^{\mathcal{H}} \right] \} \} & \cdots \\ \vdots & \ddots \end{bmatrix} .$$
(C-8)

Sendo $\mathcal{E}\left[\mathbf{h}_{n}\mathbf{h}_{n-i}^{\mathcal{H}}\right] = \operatorname{diag}\left\{\boldsymbol{\gamma}\right\} \times \mathcal{R}_{h,t}[i]$, simplificamos (C-8) para

$$\mathcal{B} = -2\sigma \mathrm{tr} \{ \mathbf{V}^{-1} \} \mathcal{R}_{hh,t}.$$
 (C-9)

Aqui consideramos os pilotos constantes no tempo, ou seja, $\mathbf{p}_i = \mathbf{p}_j \ \forall i, j$, o que implica em $\mathbf{V}_i^{-1} = \mathbf{V}_j^{-1} \ \forall i, j$.

Agora falta \mathcal{C} .

$$\mathcal{C} = \mathcal{E}\left[\mathbb{W}^{\mathcal{H}}\mathbb{W}\right] \tag{C-10}$$

Essa variável terá duas parcelas, representadas respectivamente por C_1 e C_2 .

Consideramos de novo pilotos constantes no tempo. Temos

$$\mathcal{C}_{1} = \begin{bmatrix} \operatorname{tr} \{ \mathbf{V}^{-1} \mathbf{F}_{L}^{\mathcal{H}} \mathbf{S}^{\mathcal{H}} \mathcal{E} [\mathbf{w}_{p,n} \mathbf{w}_{p,n}^{\mathcal{H}}] \mathbf{S} \mathbf{F}_{L} \mathbf{V}^{-1} \} & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & \operatorname{tr} \{ (\cdot)_{n-M+1} \} \end{bmatrix}$$
$$= \sigma \operatorname{tr} \{ \mathbf{V}^{-1} \mathbf{U} \mathbf{V}^{-1} \} \mathbf{I}_{M}, \qquad (C-11)$$

1		۱	
t			
	~	/	

$$\mathcal{C}_{2} = \begin{bmatrix} \sigma^{2} \operatorname{tr} \{ \mathbf{V}^{-1} \operatorname{diag} \{ \boldsymbol{\gamma}^{-1} \} \mathcal{E} [\mathbf{h}_{n} \mathbf{h}_{n}^{\mathcal{H}}] \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathbf{V}^{-1} \} & \cdots \\ \sigma^{2} \operatorname{tr} \{ \mathbf{V}^{-1} \operatorname{diag} \{ \boldsymbol{\gamma}^{-1} \} \mathcal{E} [\mathbf{h}_{n-1} \mathbf{h}_{n}^{\mathcal{H}}] \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathbf{V}^{-1} \} & \cdots \\ \vdots & \ddots \end{bmatrix} \\ = \sigma^{2} \operatorname{tr} \{ \mathbf{V}^{-1} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathbf{V}^{-1} \} \times \mathcal{R}_{hh,t}.$$
(C-12)

Finalmente, combinando \mathcal{A} com (C-9), (C-11) e (C-12), chegamos a

$$\mathcal{R}_{\mathbb{YY}} = \mathcal{R}_{hh,t} \times \left(1 - 2\sigma \operatorname{tr} \{ \mathbf{V}^{-1} \} + \sigma^2 \operatorname{tr} \{ \mathbf{V}^{-1} \operatorname{diag} \{ \boldsymbol{\gamma} \}^{-1} \mathbf{V}^{-1} \} \right) \\ + \sigma \operatorname{tr} \{ \mathbf{V}^{-1} \mathbf{U} \mathbf{V}^{-1} \} \mathbf{I}_M. \quad (C-13)$$

A solução de $\mathcal{R}_{\mathbf{h}_n \mathbb{Y}}$ é mais fácil.

$$\boldsymbol{\mathcal{R}}_{\mathbf{h}_{n}\mathbb{Y}} = [\boldsymbol{\mathcal{R}}_{hh,t}]_{\text{col }1} \times \left(1 - \sigma \text{tr}\left\{\mathbf{V}^{-1}\right\}\right).$$
(C-14)

C.3 MSE para MMSE mais filtro de Wiener

Seja

$$\operatorname{mse}_{\operatorname{mmse}+w,n} = \mathcal{E}\left[\left\|\mathbf{h}_{n} - \hat{\mathbf{h}}_{n}\right\|^{2}\right], \qquad (C-15)$$

 $\operatorname{com} \hat{\mathbf{h}}_n = \mathbb{Y} \boldsymbol{\lambda}$ e com o filtro $\boldsymbol{\lambda}$ calculado especificamente para o MMSE. Usando (3-27), obtemos

$$\operatorname{mse}_{\operatorname{mmse}+w,n} = \mathcal{E}\left[\left\|\mathbf{h}_{n} - \sum_{i=0}^{M-1} \lambda[i]\mathbf{h}_{n-i} + -\sum_{i=0}^{M-1} \lambda[i]\sigma \mathbf{V}_{n-i}^{-1} \left(\mathbf{F}_{L}^{\mathcal{H}} \mathbf{S}_{n-i}^{\mathcal{H}} \mathbf{w}_{p,n} - \operatorname{diag}\left\{\boldsymbol{\gamma}\right\}^{-1} \mathbf{h}_{n-i}\right)\right\|^{2}\right]. \quad (C-16)$$

É fácil ver que dois dos termos do MSE resultante são dados por $\lambda' \mathcal{R}_{hh,t} \lambda'$ e por $\sigma \sum_{i=0}^{M-1} \lambda[i]^2 \operatorname{tr} \{ \mathbf{V}_{n-i}^{-1} \}$. Há, porém, mais um termo, que chamaremos de \mathcal{D} , dado por

$$\mathcal{D} = \mathcal{E}\left[\left\|\mathbf{h}_{n} - \sum_{i=0}^{M-1} \lambda[i]\mathbf{h}_{n-i} - \sum_{i=0}^{M-1} \lambda[i]\mathbf{V}_{n-i}^{-1}\sigma \operatorname{diag}\left\{\boldsymbol{\gamma}\right\}^{-1}\mathbf{h}_{n-i}\right\|^{2}\right]. \quad (C-17)$$

Notamos que podemos escrever

$$\mathbf{h}_{n} - \sum_{i=0}^{M-1} \lambda[i] \mathbf{h}_{n-i} = \sum_{i=0}^{M-1} \lambda'[i] \mathbf{h}_{n-i}$$
(C-18)

е

$$\mathcal{D} = -\sigma \mathcal{E} \left[\sum_{i=0}^{M-1} \lambda'[i] \mathbf{h}_{n-i}^{\mathcal{H}} \sum_{j=0}^{M-1} \lambda[j] \mathbf{V}_{n-j}^{-1} \operatorname{diag} \left\{ \boldsymbol{\gamma} \right\}^{-1} \mathbf{h}_{n-j} \right]$$
$$= -\sigma \operatorname{tr} \left\{ \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \lambda'[i] \lambda[j] \mathbf{V}_{n-j}^{-1} \operatorname{diag} \left\{ \boldsymbol{\gamma} \right\}^{-1} \mathcal{E} \left[\mathbf{h}_{n-j} \mathbf{h}_{n-i}^{\mathcal{H}} \right] \right\}$$
$$= -\sigma \operatorname{tr} \left\{ \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \lambda'[i] \lambda[j] \mathbf{V}_{n-j}^{-1} \mathcal{R}_{h,t}[\left|i-j\right|] \right\}.$$
(C-19)

Se considerarmos pilotos constantes no tempo, podemos retirar o termo \mathbf{V}^{-1} do somatório. Obtemos

$$\mathcal{D} = -\sigma \operatorname{tr} \left\{ \mathbf{V}_{n}^{-1} \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \lambda'[i]\lambda[j]\mathcal{R}_{h,t}[\left|i-j\right|] \right\}$$
$$= -\sigma(\boldsymbol{\lambda}')^{T} \mathcal{R}_{hh,t} \boldsymbol{\lambda} \operatorname{tr} \left\{ \mathbf{V}_{n}^{-1} \right\}$$
(C-20)

Finalmente, conseguimos

$$mse_{mmse+w,n} = (\boldsymbol{\lambda}')^{T} \boldsymbol{\mathcal{R}}_{hh,t} \boldsymbol{\lambda}' + \sigma \sum_{i=0}^{M-1} \lambda[i]^{2} tr \{ \mathbf{V}_{n-i}^{-1} \} - \sigma(\boldsymbol{\lambda}')^{T} \boldsymbol{\mathcal{R}}_{hh,t} \boldsymbol{\lambda} tr \{ \mathbf{V}_{n}^{-1} \}.$$
(C-21)

Na freqüência, tom k, obtemos

$$MSE_{mmse+w,n}^{k} = (\boldsymbol{\lambda}')^{T} \boldsymbol{\mathcal{R}}_{hh,t} \boldsymbol{\lambda}' + \sigma \sum_{i=0}^{M-1} \lambda[i]^{2} \mathbf{f}^{k} \mathbf{V}_{n-i}^{-1}(\mathbf{f}^{k})^{\mathcal{H}} + \sigma \mathbf{f}^{k} \mathbf{V}_{n}^{-1}(\mathbf{f}^{k})^{\mathcal{H}} (\boldsymbol{\lambda}')^{T} \boldsymbol{\mathcal{R}}_{hh,t} \boldsymbol{\lambda}. \quad (C-22)$$