5 Modelagem numérica

Neste trabalho foram desenvolvidos modelos numéricos bidimensionais e tridimensionais. O modelo bidimensional foi adotado na simulação do conector *T*-*Perfobond*, e o tridimensional na simulação de um ensaio em escala real.

A simulação numérica foi realizada por meio da ferramenta ANSYS 10.0. Este programa é um conjunto de sistemas computacionais cujo procedimento de análise e cálculo baseia-se no Método dos Elementos Finitos.

5.1. Conectores T-Perfobond

Como descrito no Capítulo 2, a segunda etapa de ensaios de *push-out* foi realizada a fim de se buscar um conector com características mais dúcteis. Para isto, optou-se em adotar para a nova geometria do conector *T-Perfobond*, um conector com espessura de alma e mesa iguais, em torno de 12mm, espessura esta adotada nos outros ensaios com conectores *Perfobond*. Um estudo foi realizado através de simulação numérica para verificar a capacidade de deformação do conector com a nova geometria comparando com a geometria adotada na primeira etapa de ensaios.

5.1.1. Elementos finitos utilizados

Os modelos numéricos propostos foram elaborados a partir do elemento Shell 63 disponibilizado na biblioteca do programa ANSYS.

5.1.1.1. Elemento Shell 63

O elemento Shell 63 foi utilizado para discretizar a mesa do conector *T*-*Perfobond*. Trata-se de um elemento plano, com quatro nós e seis graus de liberdade por nó, três translações e três rotações, Figura 5.1. O elemento em questão permite a consideração de não-linearidade do material, além de outras características não utilizadas nesta análise.

Figura 5.1 – Elemento Shell 63, Manual do Ansys

5.1.2. Malha, condições de contorno e aplicação da solicitação

A fim de se verificar a capacidade de deformação da mesa do conector, a simulação foi realizada utilizando simplificação de simetria. Os nós correspondentes ao apoio, representando parte da solda do conector no perfil, e os nós pertencentes a linha de simetria da mesa, foram restringidos em todos os graus de liberdade. Desta forma, tornou-se possível verificar a capacidade máxima de deformação da extremidade da mesa do conector.

A solicitação foi aplicada em forma de pressão na área da mesa, simulando o carregamento da laje de concreto no ensaio de push-out. Este valor foi calculado em função do valor médio dos resultados obtidos dos ensaios com os conectores *T-Perfobond* invertidos da primeira etapa. O valor aproximado foi de 510kN (carga máxima do conector). Dividiu-se esse valor por dois, considerando uma metade da mesa. O valor correspondente a pressão foi calculado dividindo-se 255kN pela área de 5219,7mm² (76,2x68,5mm), resultando em 48,85MPa. A seção da mesa modelada está apresentada na Figura 5.2, região destacada.

A Figura 5.3 apresenta a modelagem da mesa do conector.

Figura 5.2 – Conector T-Perfobond

Figura 5.3 - Malha e restrições da mesa do conector

5.1.3. Relações constitutivas utilizadas

Neste estudo, foi considerado o comportamento linear dos materiais, com propriedade estrutural isotrópica. O módulo de elasticidade foi de 205000MPa e coeficiente de Poisson 0,3.

5.1.4. Análise dos resultados

A Figura 5.4 e a Figura 5.5 apresentam a capacidade de deslocamento e deformação elástica nodal na direção Z das chapas com 18,3mm e 12mm de espessura. A espessura 18,3mm corresponde a espessura da mesa dos conectores *T-Perfobond* utilizados na primeira fase de ensaios *push-out*. A espessura de 12mm foi uma espessura aproximada para início do estudo.

(b) Deformação nodal direção Z

 Incoal Solution
 Max 6 2000

 STEP=1
 17
 23
 22
 21
 20
 19
 18
 501
 13:53:24
 10
 13
 13:53:24
 10
 13
 13:53:24
 10
 13
 13:53:24
 10
 13
 13:53:24
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14

Figura 5.4 - Conector IPN340 - espessura 18,3mm.

A máxima capacidade de deslocamento na direção Z da chapa de 18,3mm de espessura foi de 0,49mm, enquanto que na chapa de 12mm foi de 1,74mm, ocorrendo na região azul da Figura 5.4a e da Figura 5.5a no nó 9. Com a

diminuição da espessura da chapa, houve um ganho de 255% na capacidade de deformação.

Um estudo foi realizado com a chapa de espessura de 11,3mm. Essa espessura corresponde a espessura da mesa e alma do perfil HP200x53.

(a) Deslocamento nodal direção Z
(b) Deformação nodal direção Z
Figura 5.6 – Conector HP200x53 – espessura 11,3mm.

A máxima capacidade de deslocamento na direção Z da chapa de 11,3mm foi de 2,089mm. Comparando com a espessura de 18,3mm houve um ganho de 326% na capacidade de deformação.

5.1.5. Conclusões

Após um breve estudo das espessuras das chapas que compõem as mesas dos conectores *T-Perfobond*, verificou-se que reduzindo a espessura da mesa do conector de 18,3mm para 12mm, um ganho significativo foi alcançado na capacidade de deformação da extremidade do conector.

Buscou-se então um perfil que possuísse tais espessuras, e optou-se em adotar o perfil HP200x53, que apresentava espessura de 11,3mm para a mesa e alma. Comparando com os resultados da chapa de 18,3mm, constatou-se um aumento em torno de quatro vezes na capacidade de deslocamento da extremidade do conector. A partir deste resultado, optou-se em se realizar uma segunda etapa de ensaio do tipo push-out com um conector com tais características. O perfil HP200x53 já adotado em tal estudo, foi utilizado para a fabricação dos conectores. Esperava-se que tais conectores apresentassem uma capacidade de deformação maior, sendo portanto um conector com características dúcteis. Isto foi comprovado e apresentado anteriormente no Capítulo 3, na apresentação dos resultados da segunda etapa.

5.2. Ensaio em escala real

Uma simulação numérica foi realizada para avaliação do desempenho estrutural dos conectores de cisalhamento em vigas mistas. Os conectores estudados foram os: Perfobond, T-Perfobond e os Studs. Os conectores Perfobond e T-Perfobond-IN modelados neste estudo foram calibrados com os resultados obtidos dos ensaios de push-out realizados no Departamento de Engenharia Civil da Universidade de Coimbra. Para os conectores Perfobond, foram utilizados os resultados do ensaio com o conector P-2F-120 da segunda série de ensaios (conector com dois furos, laje de 120mm). Para os T-Perfobond-IN, foram utilizados os resultados do ensaio com o conector TP-2F-120-IN-12 da quarta série de ensaios. Relembrando que no ensaio com os conectores T-Perfobond-IN foram utilizados armaduras passantes de 12mm nos furos e nos estribos, este apresentou resistência a compressão do concreto dentro da classe C30/37, e o conector foi formado a partir de um perfil IPN340, Figura 5.7a. Outro conector modelado neste estudo foi o T-Perfobond-IN-12-16, formado a partir de um perfil HP200x53, Figura 5.7b. Este conector foi calibrado com os resultados obtidos do ensaio de push-out realizado no Departamento de Engenharia Civil da PUC-Rio. Este protótipo adotou uma armadura passante nos furos de 16mm de diâmetro, e nos estribos, armadura de 12mm, com resistência do concreto a compressão na classe de C25/30. A Figura 5.7c apresenta a curva carga normalizada versus deslizamento destes conectores. Utilizou-se valores normalizados em função da diferença da resistência à compressão do concreto. Os conectores Studs foram calibrados com os resultados obtidos em Chapman & Balakrishnan (1964). Neste ponto, é importante salientar que a rigidez do conector e sua resistência última utilizada na modelagem numérica foram baseadas em evidências experimentais reais.

a) IPN 340

c) Resultados push-out Perfobond e T-Perfobond

b) W200x46,1

Figura 5.7 – Força versus deslizamento dos conectores Perfobond e T-Perfobond

5.2.1. Elementos finitos utilizados

Os elementos finitos adotados na modelagem numérica foram o elemento de casca elasto-plástico (SHELL43) para a seção de aço, o sólido (SOLID65) para a laje de concreto, e a mola não linear (COMBIN39) para representar o conector de cisalhamento. As armaduras longitudinais e transversais da laje de concreto foram consideradas dispersas em todo o elemento sólido.

5.2.1.1. Elemento Solid 65

O elemento concreto armado tridimensional SOLID 65 foi utilizado para a discretização da laje de concreto. Este elemento é constituído por oito nós e cada nó possui três graus de liberdade, no caso, translações em x, y e z, Figura 5.8. O elemento Solid 65 permite simular fissuração na tração (nas três direções ortogonais), esmagamento na compressão, deformação plástica, e fluência.

Este elemento possibilita também a inclusão das barras de armadura na forma de taxas, denominada armadura dispersa, as quais são resistentes apenas a esforços de tração e de compressão. No entanto, caso seja de interesse, o elemento Solid 65 permite ainda a introdução de barras de armadura na forma discreta.

Figura 5.8 - Elemento SOLID65, fonte: Manual do Ansys

5.2.1.2. Elemento Shell 43

O elemento SHELL43 foi utilizado para discretizar o perfil de aço. Trata-se de um elemento plano com quatro nós com seis graus de liberdade, em cada modalidade, três translações e três rotações, Figura 5.9. O elemento tem plasticidade, fluência, rigidez, grande capacidade de deflexão e deformação.

Figura 5.9 - Elemento SHELL43, fonte: Manual do Ansys

5.2.1.3. Combin 39

Este elemento foi utilizado na modelagem dos conectores. O COMBIN39 é um elemento unidirecional com capacidade de força-deformação não linear que pode ser utilizado em qualquer análise. O elemento tem capacidade de deformação em três dimensões. A opção longitudinal permite ter um elemento uniaxial tração-compressão com até três graus de liberdade em cada nó: translações nodais nas direções x, y, e z. Não é considerada flexão ou torção. O elemento tem grande capacidade de deslocamento que pode haver dois ou três graus de liberdade em cada nó

5.3. Modelagem Numérica

Considerando a simetria da viga, somente metade desta foi modelada. A discretização típica do modelo de elemento finito da viga mista é apresentada na Figura 5.10

Figura 5.10 - Discretização típica da viga mista

O critério de escoamento de Von Mises com encruamento isotrópico (material multilinear) foi utilizado para representar a viga de aço. A relação tensão-deformação é linear elástica até o escoamento, perfeitamente plástica entre o limite elástico e o início do encruamento da deformação, e segue a lei constitutiva utilizada por Gattesco (1999) e apresentado por Queiroz et al. (2007) para a deformação-encruamento.

O critério de escoamento de Von Mises com encruamento isotrópico também foi utilizado para as armaduras da laje. Um trabalho elástico-linear de endurecimento do material foi considerado, com o módulo tangente igual a 1/10000 do módulo elástico, a fim de evitar problemas numéricos. Os valores medidos nos ensaios experimentais realizados por Chapman e Balakrishnan (1964) foram utilizados para modelar as propriedades dos materiais dos componentes de aço (viga de aço e armaduras).

O comportamento da laje de concreto foi modelado pelo relacionamento do endurecimento multilinear isotrópico, usando o critério de Von Mises associado a um trabalho de endurecimento isotrópico. O comportamento uniaxial foi modelado pela curva multilinear tensão total versus deformação total, começando pela origem, com valores de tensões e deformações positivas, considerando a forca de compressão concreto (fc) correspondente a uma deformação de 0,2%. A curva tensão-deformação também pressupôs um aumento total de 0,05 N/mm² na força de compressão até 0,35% da deformação do concreto, para evitar problemas numéricos devido a um fluxo irrestrito de escoamento. Os coeficientes de transferência de cisalhamento no elemento de concreto foram os seguintes: 0,2 (fissura aberta) e 0,6 (fissura fechada). Os valores típicos variam de 0 a 1, em que 0 representaram uma fissura considerável (completa perda de transferência de cisalhamento) e 1 uma fissura pequena (sem perda de de transferência de cisalhamento). A capacidade de esmagamento do elemento de concreto foi desabilitada para melhorar a convergência.

A resistência a compressão do concreto utilizada foi obtida dos ensaios à compressão dos corpos de prova cilíndricos. A resistência a tração do concreto considerada foi de 1/10 da sua resistência a compressão, e o coeficiente de Poisson foi de 0,2. O módulo de elasticidade do concreto foi avaliado de acordo com o EUROCODE 4 (2005).

O modelo permitiu adotar várias distribuições dos conectores, variando assim o número de conectores e espaçamento. As curvas carga versus deslizamento dos conectores (obtidas dos ensaios de push-out) foram utilizadas como dados de entrada para os elementos de mola não linear. As molas foram modeladas na interface aço-concreto, Figura 5.11.

Figura 5.11 – Modelagem dos conectores, Queiroz et al. (2007)

O carregamento foi aplicado de forma incremental, por meio de controle de deslocamento. Para o critério de convergência foi considerada a norma L2 dos deslocamentos (raiz quadrada da soma dos quadrados). A tolerância associada a este critério de convergência (CNVTOL comando da ANSYS) e o incremento do passo de carga foram variados para resolver eventuais problemas numéricos. Sempre que a solução não convergia para o conjunto de parâmetros considerados, como o tamanho do passo de carga e o critério de convergência eram interligados, o comando de RESTART era restabelecido em conjunto com a opção CNVTOL, Queiroz et al.(2007).

Dois limites foram estabelecidos para definir a carga máxima de cada investigação no modelo numérico: um inferior e um superior, correspondendo a deformação do concreto a compressão de 0,2% e 0,35%, respectivamente, Figura 5.12. Estes dois limites definem o intervalo no qual a falha da viga mista é atingida. Para o conector de cisalhamento, se o ponto da falha é localizado antes de atingir o limite inferior do concreto, então significa que o modo de falha da viga mista ocorrerá devido a falha da ligação aço-concreto. Por outro lado, se o ponto de falha é localizado depois do limite superior do concreto, o modo de falha é assumido devido ao esmagamento do concreto. Para o caso intermediário, onde a falha da ligação ocorre entre o limite inferior e superior do concreto, então o modo de falha poderia ser qualquer um deles. Portanto, o modelo de elementos finitos proposto tem capacidade de prever os dois modos de falha.

Figura 5.12 - Diagrama tensão-deformação idealizado do concreto, NBR 6118 (2002)

5.4. Validação da modelagem numérica

A modelagem numérica foi validada através das comparações com os modelos apresentados por Queiroz et al.(2007). Os testes numéricos executados por Queiroz et al.(2007) com êxito, ilustram o comportamento do sistema misto que foi aqui investigado. As vigas consideradas tiveram um vão de 5490mm em perfil laminado I com altura de 305mm (12"x 6" x 44 lb/ft BSB) e a laje de concreto teve 120mm de espessura e 1220mm de largura. A laje foi longitudinalmente armada com quatro barras superiores e quatro barras inferiores de 8mm. A armadura transversal incorporada na superfície superior e inferior foi de 12,7mm a cada 152mm, e 12,7 a cada 305mm, respectivamente. A resistência a tração, o módulo Young e o coeficiente de Poisson das armaduras foram 320 N/mm², 205 000 N/mm² and 0.3, respectivamente. Uma descrição completa da viga é apresentada na Figura 5.13.

Figura 5.13 - Layout da viga simplesmente apoiada, Queiroz et al. (2007)

No modelo com conectores *Studs*, foram utilizados 25 pares de conectores com 19mm de diâmetro, espaçados a cada 114,4mm, totalizando em 50 conectores de cisalhamento. A Tabela 5.1 apresenta o tipo de conector considerado, a quantidade utilizada, o espaçamento entre os conectores, e as respectivas cargas últimas correspondentes ao modo de falha do concreto.

A Figura 5.14 apresenta a curva típica carga versus deslocamento vertical das configurações investigadas como também os limites relacionados com a falha do concreto, de 0,2% e 0,35%, como mencionado anteriormente.

A Figura 5.15 apresenta em uma maior escala os resultados dos diferentes tipos de conectores adotados, sem os conectores *Studs*. De todas as configurações avaliadas, a que apresentou maior rigidez inicial foi a configuração com 9 conectores *Perfobond*, simulando uma interação total. As outras configurações, com 5 e 3 conectores *Perfobond*, foram para simular uma interação parcial.

	Número de		Carga (kN)	
Tipo de Conector	Conectores	s (mm)*	0.20%	0.35%
	9	343.2	100.01	121.27
	5	686.25	56.88	64.42
Perfobond	3	1372.5	35.43	39.92
	5	686.25	63.14	66.90
T-Perfobond (IPN 340)	3	1372.5	39.97	44.51
T-Perfobond (W200x46,1)	3	1372.5	34.11	39.04
Studs	50	114.4	67.29	98.39

Tabela 5.1- Configurações dos modelos e resultados

* s - espaçamento

Figura 5.14 - Carga versus deslocamento vertical no meio do vão

Figura 5.15 - Carga versus deslocamento vertical no meio do vão

A Figura 5.16 apresenta os resultados com os conectores *T-Perfobond*. Observou-se que as simulações com 5 conectores *T-Perfobond* (T-Perf-120-IN-12) e 3 conectores *T-Perfobond* (T-Perf-120-IN-12-16) apresentaram praticamente a mesma rigidez inicial adotando quantidades diferentes de conectores.

Figura 5.16 - Carga versus deslocamento vertical no meio do vão

Os resultados também mostraram que os conectores *Perfobond* e *T-Perfobond* apresentaram uma boa correlação em termos das cargas últimas e da resposta estrutural, embora as curvas associadas aos ensaios de push-out de cada conector serem bastante distintas, Figura 5.7c. Uma simples inspeção destas curvas indica que a carga de colapso do conector *T-Perfobond* corresponde ao dobro da capacidade de carga ao equivalente conector *Perfobond*. Uma possível explicação para o comportamento estrutural semelhante destes dois diferentes conectores pode estar relacionada ao fato de que na viga mista, o comportamento à flexão prevalece, ao contrário do ensaio de cisalhamento direto que é o ensaio de *push-out*.

Outra razão para esta tendência semelhante pode ser interpretada a partir do fato de que em todas as simulações a ruptura do concreto foi diretamente responsável pela falha da viga mista, impedindo que o conector de cisalhamento pudesse alcançar sua capacidade última de resistência. Da Figura 5.17 a Figura 5.22 são apresentadas a distribuição de deformação da viga mista para os diversos modelos investigados próximos a fase última de carregamento.

Figura 5.17 – Deformação da laje de concreto – 3 Perfobonds.

Figura 5.18 – Deformação da laje de concreto – 9 Perfobonds.

Figura 5.19 – Deformação da laje de concreto – regiões sob maiores tensões dos modelos com Perfobond e T-perfobond.

Figura 5.20 - Deformação da laje de concreto - 3 T-Perfobonds (IPN 340).

Figura 5.21 – Deformação da laje de concreto – 3 T-Perfobonds (HP200x46,1).

Figura 5.22 – Deformação da laje de concreto – 50 Studs

5.5. Conclusões

Um modelo de elementos finitos tridimensional de viga mista foi adotado utilizando o programa comercial Ansys, baseando-se no estudo de Queiroz et al.(2007). Este se mostrou efetivo em termos de prever a resposta de carga e deflexão para vigas sujeitas a cargas concentradas ou uniformemente distribuídas, o deslizamento longitudinal na interface aço-concreto, a força de cisalhamento no conector e o modo de falha (falha do conector ou da laje de concreto por esmagamento). O modelo também foi capaz de investigar as vigas com interação total ou parcial ao cisalhamento.

A proposta de modelo tridimensional proporciona entre outras vantagens a oportunidade de desenvolver conhecimentos que seria praticamente impossível utilizando ensaios experimentais, devido aos custos e, sobretudo, com a dispersão das propriedades dos materiais que inevitavelmente ocorre no trabalho de laboratório.