Referências bibliográficas

AL-DARZI, S. Y. K., CHEN, A. R., LIU, Y. Q. Finite Element Simulation and Parametric Studies of "perfobond" Rib Connector. American Journal of Applied Sciences, 4 (3), pp. 122-127, 2007.

AHN, J.-H.; KIM, S.-H.; JEONG, Y.-J. Shear behaviour of perfobond rib shear connector under static and cyclic loadings. Magazine of Concrete Research, 60, n^o5, pp. 347-357, 2008.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5738:1994, Moldagem e cura de corpos de prova cilíndricos ou prismáticos de concreto, 1994.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118:2002, Projeto de estruturas concreto – Procedimento, 2002.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8800:2008, Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios, 2008.

CHAPMAN, J. C., BALAKRISHNAN, S. Experiments on composite beams. The Structural Engineer, 42, 11, 369–383, 1964.

CHROMIAK, P.; STUDNICKA, J. Experimental and numerical investigation of perforated shear connector for composite structures. Eurosteel 2008 – European Conference on Steel Structures, Graz, Austria, September 2008, Volume A, pp. 255-260, 2008.

COSENZA, E.; ZANDONINI, R. "Composite construction". Structural Engineering Handbook, Ed. Chen Wai-Fah, Boca Raton: CRC Press LLC, 1999.

CRUZ, P.J.S.; VALENTE, M.I.B.; VERÍSSIMO, G.; PAES, J.L.R.; FAKURY, R. Desenvolvimentos recentes no domínio da conexão aço-concreto no contexto das estruturas mistas. Simpósio EPUSP sobre estruturas de concreto: Anais, Escola Politécnica da Universidade de São Paulo, 20p, 2006.

DAVID, D.L. Análise teórica e experimental de conectores de cisalhamento e vigas mistas constituídas por perfis de aço formados a frio e laje de vigotas prémoldadas. Tese de Doutorado, Escola de Engenharia de São Carlos da Universidade de São Paulo, 250p., 2007.

EUROCODE 2. EN 1992, Design of concrete structures Part 1.1 General rules and rules for buildings, Brussels, CEN-European Committee for Standardisation; 2005.

EUROCODE 4. EN 1994, Design of composite steel and concrete structures Part 1.1 General rules and rules for buildings, Brussels, CEN-European Committee for Standardisation; 2005.

EUROCODE 4. EN 1994. Design of composite steel and concrete structures Part 1.1 General rules and rules for buildings. CEN, European Committee for Standardisation. Document CEN/TC 250/SC 4, Brussels, 2001.

FERREIRA, L.T.S. Sistemas Construtivos Semi-Rígidos Mistos para Edificações. Tese de Doutorado, PUC-Rio, Rio de Janeiro, 281p, 2000.

GATTESCO, N.; Analytical modelling of non linear behaviour of composite beams with deformable connection. Journal of Constructional Steel Research; 52, 195-218, 1999.

HEGGER, J; SEDLACEK, G; DÖINGHAUS, P; TRUMPF, H. Studies on the ductility of shear connectors when using high-strength steel and high-strength concrete, International Symposium on Connections between Steel and Concrete, University of Stuttgart, Vol. 2, 1025-1045, 2001.

id_pag=324>. Acesso em: 04 mai. 2009.

IWASAKI, H, FUJII, K, FUKADA, K, TOYOTA, T, NAKAMURA, H, A consideration on slip test methods for Perfobond shear connector focusing on concrete confinements, 1st International Conference on Advances in Experimental Structural Engineering, AESE 2005, Nagoya, 871-876, 2005.

JEONG, Y-J; KIM, H-Y; KOO, H-B. Longitudinal shear resistance of steelconcrete composite slabs with perfobond shear connectors, Journal of Constructional Steel Research, 65, pp. 81-88, 2009.

KOTINDA, T. I. Modelagem numérica de vigas mistas aço-concreto simplesmente apoiadas: ênfase ao estudo da interface laje-viga. Dissertação de Mestrado, Departamento de Estruturas, EESC-USP, 114 p., 2006.

KRAUS, D.; WURSER, O. Non linear finite element analysis of concrete dowels, Computers & Structures, 64, nº 5/6, 1271-1279, 1997.

LEE, PIL-GOO; SHIM, CHANG-SU; CHANG, SUNG-PIL. Static and fatigue behaviour of large stud shear connectors for steel-concrete composite bridges. Journal of Constructional Steel Research; 61, 1270-1285, 2005.

LEITE, M.D.R.N., 2006. Avaliação de Conectores de Cisalhamento Tipo Perfobond em Estruturas de Aço. Projeto final de graduação em engenharia civil, UERJ, Rio de Janeiro, 81p., 2006.

MACHACEK, J.; STUDNICKA, J. Perforated shear connector. Steel and Composite Structures, VOL. 2, NO 1, PP. 51-66, 2002.

MACHACEK, J; CUDEJKO, M. Longitudinal shear in composite steel and concrete trusses. Engineering Structures, 2008, 31, pp-1313-1320, Junho 2009.

MALEKI, S. B.; BAGHERI, S. Behavior of channel shear connectors, Part I: Experimental study, Journal of Constructional Steel Research, 64, pp. 1333-1340, 2008.

MALEKI, S. B.; BAGHERI, S. Behavior of channel shear connectors, Part II: Analytical study, Journal of Constructional Steel Research, 64, pp. 1341-1348, 2008.

MARTINS, J.P.S.C. Avaliação do comportamento estrutural de conectores em estruturas mistas: o perfobond. Dissertação de Mestrado, Departamento de Engenharia Civil, Universidade de Coimbra, 64p., 2008.

MEDBERRY, S.B., SHAHROOZ, B.M., J. M., Perfobond shear connector for composite construction, AISC Engineering Journal, Chicago, 2002-1, 2-12, 2002.

METÁLICA. Tabela da Gerdau Açominas mantida pela Revista Metálica. Disponível em: < http://www.metalica.com.br/pg_dinamica/bin/pg_dinamica.php?

NEVES, LFC; LIMA, LRO, Concepção e construção de uma estrutura metálica para reforço de um edifício de pequeno porte, Congresso de Construção Metálica e Mista, V CMM, Lisboa, 2005.

NIE, J.; XIAO, Y.; CHEN, L. Experimental studies on shear strength of steelconcrete composite beams. Journal of Structural Engineering, v.130, n.8, p.1206-1213, 2004.

OEHLERS, D.J. Splitting induced by shear connectors in composite beams. Journal of Structural Engineering, v.115, p.341-362, 1989.

OEHLERS, D.J..; BRADFORD, M.A. Elementary Behaviour of Composite Steel & Concrete Structural Members. Oxford: Butterworth-Heinemann, 259p., 1999.

OEHLERS, D.J.; NGUYEN, N.T.; AHMED, M.; BRADFORD, M.A. Partial interaction in composite steel and concrete beams with full shear connection, Journal of Constructional Steel Research, 41, pp. 235-248, 1997.

OEHLERS, D.J.; Park, S.M. Shear connectors in composite beams with longitudinally cracked slabs. Journal of Structural Engineering, v.118, p.2004-2022, 1992.

OEHLERS, D.J.; SERACINO, R.; YEO, M.F. Effect of friction on shear connection in composite bridge beams, Journal of Bridge Engineering, 5, pp. 91-98, 2000.

OEHLERS, D.J.; SVED, G. Composite beams with limited-slip-capacity shear connectors. Journal of Structural Engineering, v.121, n.6, p.932-938, 1995.

OGUEJIOFOR, EC, HOSAIN MU, A parametric study of perfobond rib shear connectors, Canadian Journal of Civil Engineering, 21, 614-625, 1994.

OGUEJIOFOR, EC, HOSAIN MU, Numerical analysis of push-out specimens with Perfobond rib connectors, Computers and Structures, 62 (4), 617-624, 1997.

QUEIROZ, F. D., VELLASCO, P.C.G.S., NETHERCOT, D.A. "Finite element modelling of composite beams with full and partial shear connection", Journal of Constructional Steel Research, 63, pp. 505-521, 2007.

QUEIROZ, G.; PIMENTA, R.J.; MATA, L. A. C. Elementos das Estruturas Mistas Aço-Concreto. Belo Horizonte: Editora O Lutador, 336p., 2001.

ROVNAK, M.; Duricova, A. Behaviour evaluation of shear connection by means of shear-connection strips. Steel and Composite Structures, vol. 4, no 3, pp. 247-263, 2004.

SERACINO, R.; OEHLERS, D.J.; YEO, M.F. Partial-interaction flexural stresses in composite steel and concrete bridge beams, Journal of Engineering Structures, 23, pp. 1186-1193, 2001.

TOPKAYA, C.; YURA J.A.; WILLIAMSON E.B. Composite shear stud strength at early concrete ages. Journal of Structural Engineering, ASCE, v.130, n.6, pp. 952-960, 2004.

TRISTÃO, G. A.; NETO, J. M., "Comportamento de conectores de cisalhamento em vigas mistas aço concreto com análise da resposta numérica ", Cadernos de Engenharia de Estruturas, São Carlos, V.7, n.23, p.119-142, 2005.

USHIJIMA, Y.; HOSAKA, T.; MITSUKI, K.; WATANABE, H.; TACHIBANA, Y.; HIRAGI, H. An experimental study on shear characteristics of perfobond strip and its rational strength equations, International Symposium on Connections between Steel and Concrete, University of Stuttgart, Vol. 2, 1066-1075, 2001.

VALENTE, M.I.B. Estudo experimental de sistemas de conexão para pontes mistas de aço e betão leve. Tese de Doutorado, Universidade do Minho, Portugal, 411p, 2007.

VALENTE, M.I.B.; CRUZ, P.J.S. Experimental analysis of Perfobond shear connection between steel and lightweight concrete, Journal of Constructional Steel Research, 60, pp. 465-479, 2004.

VELDANDA, M.R., HOSAIN, M.U. Behaviour of perfobond rib shear connectors: push-out tests. Canadian Journal of Civil Engineering, 19, 1-10, 1992.

VELLASCO, PCGS ANDRADE, SAL, FERREIRA, LTS, LIMA, LRO, Semi-rigid composite frames with Perfobond and T-rib connectors Part 1: Full scale tests, Journal of Constructional Steel Research; 63, 263-279, 2007.

VERÍSSIMO, G. S., VALENTE, I., PAES, J. L. R., CRUZ, P. J. S., FAKURY, R. H. Design experimental analysis of a new shear connector for steel and concrete composite structures, in Cruz, P. J. S., Frangopol, D. M., Costa Neves, L.F., editors, Proceedings of the 3rd International Conference on Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost, IABMAS'06, Porto, 2006.

VERÍSSIMO, G.S. Desenvolvimento de um conector de cisalhamento em chapa dentada para estruturas mistas de aço e concreto e estudo do seu comportamento. Tese de Doutorado, Universidade Federal de Minas Gerais Belo Horizonte, 287p, 2007.

VERÍSSIMO, G.S.; OLIVERIA, A.F.N.; FAKURY, R.H.; RODRIGUES, F.C.; PAES, J.L.R.; VALENTE, I.; CRUZ, P.J.S. Avaliação do desempenho de um conector de cisalhamento em chapa dentada para estruturas mistas de aço e concreto. CMNE/CILAMCE 2007, Porto, Portugal, 2007.

VIANNA, J. C., COSTA NEVES, L. F., VELLASCO, P. C. G. S., ANDRADE, S. A. L., "Experimental assessment of "perfobond" and T-"perfobond" shear connectors' structural response", Journal of Constructional Steel Research, 2008b, 65, pp.408-421, 2009.

VIANNA, J.C., ANDRADE, S.A.L., VELLASCO, P.C.G.S., COSTA-NEVES, LF. Análise experimental e estudo comparativo de conectores de cisalhamento para estruturas mistas de aço e concreto. XXIX CILAMCE 2008, Maceió-Al., Brasil, 2008d.

VIANNA, J.C., COSTA-NEVES, L.F., VELLASCO, P.C.G.S., ANDRADE, S.A.L., Estudo comparativo de conectores de corte para estruturas mistas de aço-betão, Construção Magazine; nº 23, 23-30, 2008a.

VIANNA, J.C., COSTA-NEVES, LF, VELLASCO, P.C.G.S., ANDRADE, S.A.L., Comportamento estrutural de conectores de corte para estruturas mistas de aço e betão. Congresso de Construção Metálica e Mista, VI CMM, Porto, 2007.

VIANNA, J.C., COSTA-NEVES, LF, VELLASCO, P.C.G.S., ANDRADE, S.A.L., Structural behaviour of T-Perfobond shear connectors in composite girders: An experimental approach. Engineering Structures, 2008c, 30, pp.2381-2391, 2008.

WANG, Y.C. Deflection of steel-concrete composite beams with partial shear interaction. Journal of Structural Engineering, v.124, p.1159- 1165, 1998.

ZELLNER, W, Recent designs of composite bridges and a new type of shear connectors, IABSE/ASCE Engineering Foundation Conference on Composite Construction, Henniker NH: 240-252, 1987.

Anexo A Dimensionamento da armadura transversal

Neste anexo é apresentado o cálculo do dimensionamento da armadura transversal, segundo Cosenza & Zandonini (1999). Foi utilizada como ferramenta para cálculo o programa Excel.

Dimensionamento da armadura transversal

Dados do Projeto			
Fator de resistência do concreto:	φc =	0,6	
Fator de resistência do aço:	φ =	0,9	
Limite de escoamento do aço:	fy =	280	MPa
Limite de resistência do aço:	fu =	410	MPa
Módulo de elasticidade do aço:	E =	205000	MPa
Tensão de ruptura do concreto:	fck =	25	MPa
Viga Secundária - vão			
Comprimento:	L =	9	m
Laje Maciça			
Espessura da laje:	tc =	120	mm
Área média de cisalhamento de concreto por metro	Acv =	120000	mm ²
Armadura adotada	φ =	6,3	mm
Limite de escoamento da armadura:	fys =	500	MPa
Quantidade na viga / metro			
distânica adotada entre armaduras	d =	320	mm
quantidade de armadura transversal a viga:	n =	4,125	
Total de armaduras na viga (dupla camada)	n_tot =	8	
Área da armadura:	As =	249,38	mm^2/m

Área de armadura mínima por metro

FIGURE 6.45: Longitudinal shear surfaces.

Força de cisalhamento atuante por unidade de comprimento:

v = qu / s	ν=	290	kN/m	
Espaçamento entre conectores:	s =	1600	mm	
16-IN)		qu =	464	kN
Referindo-se somente a uma Seção A-A		ν=	145	kN/m
Valor real: $v* = (Aa / Ac) \cdot v$ $Aa = Ac = Ac = Ac$	v* =	136,171	kN/m	
<u>Força de cisalhamento</u> <u>resistida</u>				
v'' = 0,04.Acv.fck + As.fys		ν=	244,69	kN
$v1 = 2,5.\eta$.Acv. τ ud + As.fys / ys		v1 =	243,087	kN
$v1 = 0,2.\eta.Acv.0,85.fck / yc$	v1 =	340	kN	
η fator de densidade do concreto. Concreto τud resistência ao cisalhamento fct resistência a tração do concreto fct = 0,2	$\eta = \tau ud = fct = yc = vs = v$	1 0,25.fct 1,80 1,5 1,15	MPa	

280

Anexo B Dimensionamento da viga mista

Neste anexo é apresentado o cálculo do dimensionamento da viga mista para interação parcial. O dimensionamento seguiu a EUROCODE 4 e utilizou-se como ferramenta para cálculo o programa MathCad e Excel.

Dados:

Fator de resistência do Concreto:	φc := 1.5	γc := 1
Fator de resistência do Aço:	$\phi := 1$	γ _a := 1
Fator de resistência do conector de cisalhamento:	φsc := 1	
Limite de escoamento do Aço:	Fy := 345	MPa
Limite de resistência do Aço:	Fu := 450	MPa
Módulo de elasticidade do Aço:	E := 205000	MPa
Módulo de elasticidade transversal do Aço:	G := 77000	MPa

kPa :=
$$\frac{10 \text{kg}}{\text{m}^2}$$
 MPa := $\frac{\text{N}}{\text{mm}^2}$ γ_{m0} := 1

Cargas:

a) Sobrecarga:

g := 3.0 kPa (300 kg/m2)

b) Carga Permanente:

Revestimento: wod := 1.1 kN/m2Divisórias: wp := 1.8 kN/m2Impermeabilização: wi := 1.5 kN/m2

Materiais:

Perfil Soldado: ASTM A 572 Grau 50

Concreto:

 $fck:=22 \hspace{.1in} MPa \hspace{1.1in} \gamma_{\hspace{-.1in} C}:=2500 \hspace{.1in} kg/m^3 \hspace{1.1in} \gamma_{\hspace{-.1in} C}:=25 \hspace{.1in} kN/m^3$

Dados adotados no Projeto:

Espaçamento entre vigas principais: $s_p := 2.3 \text{ m}$ largura efetiva da laje: $b1 := s_p$ Comprimento da viga principal: $L_p := 8800 \text{ mm}$ Espessura da pré-laje: td := 0 mmEspessura do piso de concreto: tc := 120 mmEspessura total da laje: $t_L := td + tc$ $t_L = 120 \text{ mm}$

Cargas Adotadas:

Sobrecarga:

Área tributária: $A := s_p \cdot L_p \cdot 10^{-3}$ A = 20.24 m² Sobrecarga total por viga: PL := g \cdot A PL = 60.72 kN

Concreto fresco (considerando empoçamento de 3%):

$$\begin{split} & \text{taxa} \coloneqq 1.03 \\ & \text{wc} \coloneqq \gamma_{\text{C}} \cdot t_{\text{L}} \cdot 10^{-3} & \text{wc} \equiv 3 & \text{kN/m2} \\ & \text{w} \coloneqq \text{wc} \cdot \text{taxa} \cdot \text{s}_{p} & \text{w} \equiv 7.107 & \text{kN/m} \\ & \text{pp} \coloneqq 0.6 & \text{kN/m} & \text{peso próprio da viga} \\ & \text{pperfis} \coloneqq 2.9 \cdot 2 & \text{pperfis} \equiv 5.8 & \text{kN} & \text{peso dos perfis que aplicam a carga} \\ & \text{arm} \coloneqq 1.86 & \text{kN} & \text{armaduras da laje} \\ & \text{conec} \coloneqq 0.12 & \text{kN} & \text{os seis conectores T-perfobond} \\ & \text{p} \coloneqq \text{pperfis} + \text{arm} + \text{conec} & \text{p} \equiv 7.78 & \text{kN} \\ & \text{p}_{\text{l}} \coloneqq \frac{p}{\text{L}_{\text{p}} \cdot 10^{-3}} & \text{p}_{\text{l}} = 0.884 & \text{kN/m} \end{split}$$

$$Pc_1 := (w + pp + p_1)$$
 $Pc_1 = 8.591 \text{ kN/m}$ $Pc := Pc_1 \cdot L_p \cdot 10^{-3}$ $Pc = 75.602 \text{ kN}$

Revestimento

 $Pod := wod \cdot A$ Pod = 22.264 kN

Divisórias

 $Pp := wp \cdot A$ Pp = 36.432 kN

Momento devido ao peso próprio:

$$Mpp := \frac{Pc_1 \cdot \left(\frac{L_p}{1000}\right)^2}{8} \qquad Mpp = 83.162 \qquad kNm$$

Momento devido CP e CA:

q := g + wod + wp + wi q = 7.4 kN/m2 $ql := q \cdot b1$ ql = 17.02 kN/m

$$Mql := \frac{ql \cdot \left(\frac{L_p}{1000}\right)^2}{8} \qquad Mql = 164.754 \qquad kNm$$

Momento de projeto: Mt := Mpp + Mql Mt = 247.915

Cortante:

$$Vf := (Pc_1 + ql) \cdot \frac{\frac{L_p}{1000}}{2}$$
 $Vf = 112.689$ kN

Dados do Perfil Adotado: W410x60

Perfil

d := 407 mm $t_{w} := 7.7 \text{ mm}$ Mesa Superior: Mesa Inferior: $b_s := 178 \text{ mm} \quad t_s := 12.8 \text{ mm}$ b_i := 178 mm $t_i := 12.8$ mm h = 381.4mm $As = 7.494 \times 10^3 \text{ mm}^2$ Peso próprio do perfil: gp = 0.588 kN/m $lx = 2.127 \times 10^8$ mm⁴ Ws = 1.045×10^6 mm³ CG = 203.5 mm $Wi = 1.045 \times 10^6 \text{ mm}^3$ $Iy = 1.205 \times 10^7 \text{ mm}^4$ $Wy = 1.353 \times 10^5 \text{ mm}^3$ $Cw = 4.381 \times 10^{11} \text{ mm}^6$ $J = 3.089 \times 10^5 \text{ mm}^4$ $Zx = 1.178 \times 10^6 \text{ mm}^3$ Verificação da Classe do perfil: Alma $Classe := if \left[\frac{h}{t_W} \le 72 \cdot \sqrt{\frac{235}{Fy}}, "Classe 1", if \left[\left(\frac{h}{t_W} \le 83 \cdot \sqrt{\frac{235}{Fy}} \right), "Classe 2", if \left(\frac{h}{t_W} \le 124 \cdot \sqrt{\frac{235}{Fy}}, "Classe 3", "?" \right) \right] \right]$ Classe = "Classe 1" Mesa $\text{Classe} := \text{if} \left[\frac{b_{S}}{2 \cdot t_{S}} \leq 9 \cdot \sqrt{\frac{235}{Fy}}, \text{"Classe 1"}, \text{if} \left[\left(\frac{b_{S}}{2 \cdot t_{S}} \leq 10 \cdot \sqrt{\frac{235}{Fy}} \right), \text{"Classe 2"}, \text{if} \left(\frac{b_{S}}{2 \cdot t_{S}} \leq 14 \cdot \sqrt{\frac{235}{Fy}}, \text{"Classe 3"}, \text{"?"} \right) \right] \right]$ Classe = "Classe 1"

kNm

Cálculo do Momento resistente da Viga, Mr:

$$Mr := Zx \cdot Fy \cdot \frac{10^{-6}}{\gamma_{m0}} \qquad Mr = 406.468 \qquad kNm$$

Resistência ao cortante:

kΝ

$$Vr := h \cdot t_{W} \cdot \left(\frac{Fy}{\sqrt{3}}\right) \cdot \frac{10^{-3}}{\gamma_{m0}} \qquad \qquad Vr = 584.965 \qquad \qquad kN$$

Cálculo do Momento resistente fatorado da seção composta, Mrc:

Espessura efetiva da laje (b1):

b1 := 2300 b1 =
$$2.3 \times 10^3$$
 mm

$$Fa := As \cdot \frac{Fy \cdot 10^{-3}}{\gamma_a} \qquad Fa = 2.585 \times 10^3 \quad kN$$
$$Fc := t_L \cdot b1 \cdot \left(0.85 \cdot \frac{fck}{\gamma c}\right) \cdot 10^{-3} \qquad Fc = 5.161 \times 10^3$$

Linha_neutra := if (Fa \leq Fc, "localizada no concreto", "localizada no aço")

Linha_neutra = "localizada no concreto"

Localização da Linha Neutra:

$$z := \frac{Fa}{b1 \cdot \left(0.85 \cdot \frac{fck}{\gamma c}\right) \cdot 10^{-3}} \qquad z = 60.109 \text{ mm}$$

Linha_neutra := if(z \leq t_L, "localizada no concreto" , "localizada no aço")

Linha_neutra = "localizada no concreto"

Momento resistente interação total:

$$Mrt := Fa \cdot \left(\frac{d}{2} + t_{L} - \frac{z}{2}\right) \cdot 10^{-3} \qquad Mrt = 758.64 \qquad kNm$$
$$M_{pIRd} := Mrt \qquad M_{pIRd} = 758.64 \qquad kNm$$

Resistência ao cortante do conector de cisalhamento (T-PERFOBOND), qr:

 $q_r \coloneqq 580 \cdot 0.8 \qquad kN \qquad q_r = 464 \quad kN$

$$C_{r'} := Fa$$

 \sim

Número de conectores:

$$n := \frac{c_{r'}}{q_r}$$
 $n = 5.572$ conectores para metade da viga
 $nt := 2 \cdot n$ $nt = 11.143$ $nf := 10$

Número mínimo de conectores por viga exigido (50%):

$$n_{s} := 2 \cdot \frac{50}{100} \cdot n$$
 $n_{s} = 5.572$

Adotando n = 6 conectores tem-se (Interação parcial):

$$n := 6$$
$$p := \frac{n}{nt} \qquad p = 0.538$$

$$Qr := n \cdot \frac{q_r}{2} \qquad Qr = 1.392 \times 10^3 \text{ kN}$$
$$xc := \frac{Qr}{b1 \cdot \left(0.85 \cdot \frac{fck}{\gamma c}\right) \cdot 10^{-3}} \qquad xc = 32.365 \text{ mm}$$

Fac := Fa - Qr Fac =
$$1.193 \times 10^3$$
 kN

Distância do topo da laje ao eixo da mesa do aço em compressão:

$$xa := t_{L} + \frac{Fac}{2 \cdot b_{s} \cdot \frac{Fy}{1000}}$$
 $xa = 129.716$ mm

Momento resistente fatorado interação parcial:

$$Mrc := \left[Fa \cdot \left(\frac{d}{2} + t_L - \frac{xc}{2} \right) - Fac \cdot \frac{\left(xa + t_L - xc\right)}{2} \right] \cdot 10^{-3} \qquad Mrc = 664.823 \text{ kNn}$$

 $\mathsf{MRd} := \mathsf{Mrc}$

Propriedades da viga composta

a) Momento de inércia da seção composta, I t:

$$Ec := 5600 \sqrt{fck} \qquad Ec = 2.627 \times 10^4 \qquad MPa$$
$$n := \frac{E}{Ec} \qquad n = 7.805$$

Concreto

$$\begin{array}{lll} \text{ \acute{A}rea transformada:} & \text{Ac} := \frac{\text{b1}}{n} \cdot \text{t}_{L} & \text{Ac} = 3.536 \times 10^4 \text{ mm}^2 \\ \text{Distância ao topo da laje:} & \text{yc} := \frac{\text{t}_{L}}{2} & \text{yc} = 60 & \text{mm} \\ & \text{Ayc} := \text{Ac} \cdot \text{yc} & \text{Ayc} = 2.122 \times 10^6 & \text{mm}^3 \\ & \text{Ayc} := \text{Ac} \cdot \text{yc}^2 & \text{Ayc} = 1.273 \times 10^8 & \text{mm}^4 \\ & \text{Iclocal} := \frac{\left(\frac{\text{b1}}{n} \cdot \text{t}_{L}^3\right)}{12} & \text{Iclocal} = 4.244 \times 10^7 & \text{mm}^4 \end{array}$$

Aço

$$\begin{array}{ll} \text{ \acute{A}rea transformada:} & \text{As} = 7.494 \times 10^3 \text{ mm}^2 \\ \text{ Distância ao topo da laje:} & \text{ys} := \text{d} + \text{t}_L - \frac{\text{d}}{2} & \text{ys} = 323.5 \text{ mm} \\ & \text{Ays} := \text{As} \cdot \text{ys} & \text{Ays} = 2.424 \times 10^6 \text{ mm}^3 \\ & \text{Ays'} := \text{As} \cdot \text{ys}^2 & \text{Ays} = 7.842 \times 10^8 \text{ mm}^4 \\ & \text{Ix} = 2.127 \times 10^8 \text{ mm}^4 \end{array}$$

Deflexões

a) Antes da pega do concreto

Deflexão da viga não escorada sobre a condição de carga do concreto fresco

Carga: $Pc_1 = 8.591 \qquad \frac{kN}{m}$

$$lx = 2.127 \times 10^8 mm^4$$

 $\Delta c := \frac{5 \cdot Pc_1 \cdot L_p^4}{384 \cdot E \cdot Ix} \qquad \Delta c = 15.386 \text{ mm}$

 $Limite_flecha := \frac{L_p}{300} \qquad Limite_flecha = 29.333 \qquad mm$

 $Contra_flecha := if(\Delta c \le Limite_flecha, "Não exigida! Ok!", "Exigida")$

Contra_flecha = "Não exigida! Ok!"

b) Depois da pega do concreto

Considera a sobrecarga.

Sobrecarga:

$$g := 3.0 \text{ kN/m2}$$

Carga Permanente:

Revestimento: wod := 1.1 kN/m2Divisórias: wp := 1.8 kN/m2Impermeabilização: wi := 1.5 kN/m2

$$\begin{split} q &:= g + wod + wp + wi \qquad q = 7.4 \quad kN/m2 \\ qI &:= q \cdot \frac{b1}{1000} \qquad \qquad qI = 17.02 \quad kN/m \end{split}$$

Supor que 50% da carga variável é de curta duração: $q_{CV} := 0.5 \cdot qI$ $q_{CV} = 8.51$ kN/m

$$le := \left[lx + 0.85 \cdot p^{0.25} \cdot (lt - lx) \right] \qquad le = 5.562 \times 10^8 \text{ mm}^4$$

$$\Delta cv := \frac{5 \cdot Pc_1 \cdot L_p^4}{384 \cdot E \cdot Ie} \qquad \Delta cv = 5.884 \text{ mm}$$

Supor que 50% da carga variável é de longa duração: $q_{LV} := 0.5 \cdot q_{LV} = 8.51 \text{ kN/m}$

$$\Delta Lv := 1.15 \cdot \frac{5 \cdot Pc_1 \cdot L_p^4}{384 \cdot E \cdot Ie} \qquad \Delta Lv = 6.766 \text{ mm}$$

c) Deflexão devido a retração

 $It=6.844\times 10^8 \ mm^4$

Deformação inicial $\epsilon := 0.0008$

$$\begin{split} \mathbf{e} &:= \mathbf{d} + \frac{^t \mathbf{L}}{2} - \frac{\mathbf{lt}}{\mathbf{St}} \qquad \mathbf{e} = 46.073 \quad \text{mm} \\ \Delta sh &:= \mathbf{e} \cdot \boldsymbol{\epsilon} \cdot \mathbf{t}_{\mathbf{L}} \cdot \mathbf{b} \mathbf{1} \cdot \frac{\left(\mathbf{L}_{\mathbf{p}} \cdot \mathbf{10}^{-3}\right)^2}{8 \cdot \mathbf{n} \cdot \mathbf{lt} \cdot \mathbf{10}^{-6}} \qquad \Delta sh = 18.434 \quad \text{mm} \end{split}$$

FLECHA TOTAL:

 $\Delta total := \Delta c + \Delta cv + \Delta Lv + \Delta sh \qquad \Delta total = 46.47 \quad mm$

Propriedades da seção mista

	y (seção transf.)		
Ec = 5600raizq(fck)	Ec = 26266,32826 MPa	26266,328	
a) Momento de inércia da seção n	nista Im:		
n = E / Ec	n = 7,8		
Área do concreto transformada:			
Ac' = (bc/n).hc	Ac' = $35363,4 \text{ mm}^2$]	
Centro de Gravidade da seção mi	ista:		
ym = [As.CG + Ac'.(d + tc - hc/2)]	/ (As + Ac')	ym =	420,3 mm
hc = tc			
Verificação do centróide:	LN no concreto - descon	tar parte tracionada	
Se ym > h - centróide na Laje de Se ym <= h - centróide no aço	concreto - descontar a parte tracionad	da	
Parte comprimida da Laje: hc1 =	d + tc - ym	hc1 =	106,7 mm
Área do concreto transformada:			
Ac' = (bc/n).hc1	Ac' = $31447,7 \text{ mm}^2$		
Centro de Gravidade da seção m	ista:		
ym = [As.CG + Ac'.(d + tc - hc1/2))] / (As + Ac')	ym =	420,95 mm

Processo Interativo:

Verificação do centróide:	LN no concreto - descontar parte tracionada							
Se ym > h - centróide na Laje de concreto - descontar a parte tracionada Se ym <= h - centróide no aço								
Parte comprimida da Laje: hc1 = d + tc - ym hc1 = 106,0 mm								
Área do concreto transformada:								
Ac' = (bc/n).hc1	Ac' = 31251,5	mm ²						
Centro de Gravidade da seção mis	ta:							
ym = [As.CG + Ac'.(d + tc - hc1/2)]	ym =	420,95 mm						
Terminar processo quando ym for	o mesmo:	Adotar ym						
Inércia do concreto:								
lcon = (bc/n).hc1 ³ / 12	Icon = 14643810,5	mm ⁴						
Momento de inércia da seção mista para a análise das deformações:								
$Im = Ix + As.(ym - CG)^2 + Icon + Ac$	Im =	675529477 mm ⁴						
Módulo de Resistência da seção mista:								
Wm = Im / ym	Wm = 1607303,791	mm ³						

Anexo C Verificação dos momentos e tensões

Neste anexo é apresentado o cálculo dos momentos em função dos carregamentos aplicados e a verificação das tensões no concreto e na viga de aço.

Projeto da Viga Mista Principal

Dados:

Fator de resistência do Concreto:	$\phi c := 1$	
Fator de resistência do Aço:	φ := 1	
Fator de resistência do conector de cisalhamento:	$\phi sc := 0.80$	
Limite de escoamento do Aço:	Fy := 345	MPa
Limite de resistência do Aço:	Fu := 450	MPa
Módulo de elasticidade do Aço:	E := 205000	MPa
Módulo de elasticidade transversal do Aço:	G := 77000	MPa

$$kPa := \frac{10kg}{m^2}$$
 $MPa := \frac{N}{mm^2}$

Cargas:

a) Sobrecarga:

g := 3.0 kPa (300 kg/m2)

b) Carga Permanente:

Materiais:

Perfil Soldado: ASTM A 572 Grau 50

Concreto:

 $fck:=22 \quad MPa \qquad \gamma_{\mbox{\scriptsize C}}:=2500 \quad kg/m^3 \qquad \gamma_{\mbox{\scriptsize C}}:=25 \quad kN/m^3$

Dados adotados no Projeto:

Espaçamento entre vigas principais: $s_p := 2.3 \text{ m}$ largura efetiva da laje: $b1 := s_p$ Comprimento da viga principal: $L_p := 8800 \text{ mm}$ Espessura da pré-laje: td := 0 mmEspessura do piso de concreto: tc := 120 mmEspessura total da laje: $t_L := td + tc$ $t_L = 120 \text{ mm}$

Cargas Adotadas:

Sobrecarga:

Área tributária: $A := s_p \cdot L_p \cdot 10^{-3}$ A = 20.24 m² Sobrecarga total por viga: PL := g \cdot A PL = 60.72 kN

Concreto fresco (considerando empoçamento de 3%):

taxa := 1.03 $wc := \gamma_c \cdot t_L \cdot 10^{-3}$ wc = 3kN/m2 $w := wc \cdot taxa \cdot s_p$ w = 7.107kN/m pp := 0.6 kN/m peso próprio da viga pperfis := $2.9 \cdot 2$ pperfis = 5.8 kN peso dos perfis que aplicam a carga kΝ armaduras da laje arm := 1.86 os seis conectores T-perfobond conec := 0.12 kN p := pperfis + arm + conec p = 7.78 kN $p_{I} := \frac{p}{p_{I}} = 0.884 \text{ kN/m}$

$$L_{p} \cdot 10^{-3}$$

$$Pc_1 := (w + pp + p_1)$$
 $Pc_1 = 8.591$ kN/m $Pc := Pc_1 \cdot L_p \cdot 10^{-3}$ $Pc = 75.602$ kN

Revestimento

Pod := wod A Pod = 22.264 kN

Divisórias

 $Pp := wp \cdot A$ Pp = 36.432 kN

Cargas ir	mpostas:
-----------	----------

Distância do apoio ao ponto de aplicação de carga:

dist := 2640 mm

C ₁ := 100	kN
C ₂ := 155	kN
C ₃ := 200	kN
C ₄ := 220	kN

Momento devido ao peso próprio:

$$Mpp := \frac{Pc_1 \cdot \left(\frac{L_p}{1000}\right)^2}{8} \qquad Mpp = 83.162 \qquad kNm$$

Momento devido a carga aplicada:

$(Pc_1) \cdot \left(\frac{L_p}{L_p} \right)^2$		
Mf := $\frac{(1)(1000)}{8}$	Mf = 83.162	kNm
$Mf1 := C_1 \cdot \frac{dist}{1000}$	Mf1 = 264	kNm
$Mf2 := C_2 \cdot \frac{dist}{1000}$	Mf2 = 409.2	kNm
dist		

Mf3 :=
$$C_3 \cdot \frac{\text{dist}}{1000}$$
 Mf3 = 528 kNm

Mf4 :=
$$C_4 \cdot \frac{\text{dist}}{1000}$$
 Mf4 = 580.8 kNm

Momento total:

Mt1 := Mpp + Mf1	Mt1 = 347.162	kNm
Mt2 := Mpp + Mf2	Mt2 = 492.362	kNm
Mt3 := Mpp + Mf3	Mt3 = 611.162	kNm
Mt4 := Mpp + Mf4	Mt4 = 663.962	kNm

Dados do Perfil Adotado W410x60:

Perfil

$\begin{array}{llllllllllllllllllllllllllllllllllll$	<mark>d := 407</mark> mm t _w	, := 7.7 mm				
$ b_{s} := 178 mm t_{s} := 12.8 mm b_{i} := 178 mm t_{i} := 12.8 mm$	Mesa Superior:		Mesa Inferio	r:		
$ h = 381.4 mm \\ As = 7.494 \times 10^3 mm^2 \\ CG = 203.5 mm \\ Wi = 1.045 \times 10^6 mm^3 \\ Cw = 4.381 \times 10^{11} mm^6 \\ J = 3.089 \times 10^5 mm^4 \\ Zx = 1.178 \times 10^6 mm^3 \\ J = 3.089 \times 10^5 mm^4 \\ Zx = 1.178 \times 10^6 mm^3 \\ J = 3.089 \times 10^5 mm^4 \\ J = 3.080 \times 10^5 mm^4 \\ J = 3.0$	b _s := 178 mm t _s := 12	2.8 mm	b _i := 178	mm	t _i := 12.8	mm
$As = 7.494 \times 10^3 \text{ mm}^2$ Peso próprio do perfil: $qp = 0.588 \text{ kN/m}$ $CG = 203.5 \text{ mm}$ $Ix = 2.127 \times 10^8 \text{ mm}^4$ $Ws = 1.045 \times 10^6 \text{ mm}^3$ $Wi = 1.045 \times 10^6 \text{ mm}^3$ $Iy = 1.205 \times 10^7 \text{ mm}^4$ $Wy = 1.353 \times 10^5 \text{ mm}^3$ $Cw = 4.381 \times 10^{11} \text{ mm}^6$ $J = 3.089 \times 10^5 \text{ mm}^4$ $Zx = 1.178 \times 10^6 \text{ mm}^3$	h = 381.4 mm					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$As = 7.494 \times 10^3 \text{ mm}^2$	Peso próprio	do perfil: q	p = 0.588	kN/m	
	CG = 203.5 mm	$Ix = 2.127 \times 1$	0 ⁸ mm ⁴	Ws = 1.	045×10^6	mm ³
$Cw = 4.381 \times 10^{11} \text{ mm}^6$ $J = 3.089 \times 10^5 \text{ mm}^4$ $Zx = 1.178 \times 10^6 \text{ mm}^3$	$\text{Wi}=1.045\times 10^6 \text{ mm}^3$	ly = 1.205 ×	10 ⁷ mm ⁴	Wy = 1.	353 × 10 ⁵	mm ³
	$Cw = 4.381 \times 10^{11} \text{ mm}^6$	J = 3.08	9 × 10 ⁵ mm	4 Zx = 1.	178 × 10 ⁶	mm ³

$$e1 := \frac{d}{2} + \left(tc - \frac{a1}{2}\right)$$
 $e1 = 303.5$ mm

Cálculo da força que atua nos conectores:

$$Mc := F \cdot e1 \qquad F1 := \frac{Mt1}{\frac{e1}{1000}} \qquad F1 = 1.144 \times 10^{3} \quad kN$$

$$F2 := \frac{Mt2}{\frac{e1}{1000}} \qquad F2 = 1.622 \times 10^{3} \quad kN$$

$$F3 := \frac{Mt3}{\frac{e1}{1000}} \qquad F3 = 2.014 \times 10^{3} \quad kN$$

$$F4 := \frac{Mt4}{\frac{e1}{1000}} \qquad F4 = 2.188 \times 10^{3} \quad kN$$

Cálculo da espessura sob compressão da laje:

$$a_{f1} := \frac{F1}{(0.85 \cdot \phi c \cdot b1 \cdot fck)} \qquad a_{f1} = 26.595$$
Valor de "e" corrigido: $e_{c1} := \frac{d}{2} + \left(tc - \frac{a_{f1}}{2}\right) \qquad e_{c1} = 310.202$

$$a_{f2} := \frac{F2}{(0.85 \cdot \phi c \cdot b1 \cdot fck)} \qquad a_{f2} = 37.719$$
Valor de "e" corrigido: $e_{c2} := \frac{d}{2} + \left(tc - \frac{a_{f2}}{2}\right) \qquad e_{c2} = 304.641$

$$a_{f3} := \frac{F3}{(0.85 \cdot \phi c \cdot b1 \cdot fck)} \qquad a_{f3} = 46.82$$

Valor de "e" corrigido: $e_{c3} := \frac{d}{2} + \left(tc - \frac{a_{f3}}{2}\right) \qquad e_{c3} = 300.09$

$$a_{f4} := \frac{F4}{(0.85 \cdot \phi c \cdot b1 \cdot fck)} \qquad a_{f4} = 50.865$$

Valor de "e" corrigido: $e_{c4} := \frac{d}{2} + \left(tc - \frac{a_{f4}}{2}\right) \qquad e_{c4} = 298.068$

Força que atua em cada conector:

$$F_{f1} := \frac{\left(\frac{Mt1}{e_{c1} \cdot 10^{-3}}\right)}{3}$$
 $F_{f1} = 373.049$ kN

$$F_{f2} := \frac{\left(\frac{Mt2}{e_{c2} \cdot 10^{-3}}\right)}{3} \qquad F_{f2} = 538.735 \qquad kN$$

$$\mathsf{F}_{f3} \coloneqq \frac{\left(\frac{\mathsf{Mt3}}{\mathsf{e}_{\mathsf{c3}} \cdot 10^{-3}}\right)}{3} \qquad \mathsf{F}_{f3} = 678.865 \qquad \mathsf{kN}$$

$$F_{f4} := \frac{\left(\frac{Mt4}{e_{c4} \cdot 10^{-3}}\right)}{3} \qquad F_{f4} = 742.518 \qquad kN$$

Verificação no regime elástico:

Momento de inércia da seção composta, It:

$$I_{t} := \frac{1}{n} \cdot \left(\frac{b1 \cdot 1000 \cdot a_{ea}^{3}}{3}\right) + I_{x} + A_{s} \cdot \left(\frac{d}{2} + t_{c} - a_{ea}\right)^{2} \qquad \qquad I_{t} = 6.842 \times 10^{8} \qquad \text{mm}^{4}$$

Momento resistente elástico: Mre:

Interação total:

$$Mre := \frac{Fy \cdot I_t \cdot 10^{-6}}{\left(d + tc - a_{ea}\right)} \qquad \qquad Mre = 559.722 \qquad kNrr$$

Resistência ao cortante do conector de cisalhamento (T-PERFOBOND), qr:

$$q_r := 580.0.8$$
 kN $q_r = 464$ kN

$$C_{r'} := \phi \cdot As \cdot \frac{Fy}{1000}$$
 $C_{r'} = 2.585 \times 10^{3}$ kN

Número de conectores interação parcial:

$$\begin{split} n_{c} &\coloneqq \frac{C_{r'}}{2q_{r}} & n_{c} = 2.786 & \text{conectores para metade da viga} & n_{1} \coloneqq 3 \\ Sq_{r} &\coloneqq n_{1} \cdot q_{r} & Sq_{r} = 1.392 \times 10^{3} & \text{kN} \\ W_{a} &\coloneqq \frac{Ix}{\frac{d}{2}} & W_{a} = 1.045 \times 10^{6} & \text{mm3} \\ \end{split}$$

$$W_{tri} := \frac{I_t}{d + tc - a_{ea}} \qquad \qquad W_{tri} = 1.622 \times 10^6 \qquad \text{mm3}$$

$$W_{ef} := W_a + \sqrt{\frac{Sq_r}{C_{r'}}} (W_{tri} - W_a) \qquad \qquad W_{ef} = 1.469 \times 10^6 \qquad \text{mm3}$$

$$My := W_{ef} \cdot Fy \cdot 10^{-6}$$
 $My = 506.705$ kNm

Cálculo das tensões na sessão do concreto e do aço:

Concreto:

Aço:

$$\sigma_{c1} \coloneqq \frac{1}{n} \cdot \frac{Mt1 \cdot 10^{6} \cdot a_{ea}}{l_{t}} \qquad \qquad \sigma_{s1} \coloneqq \frac{Mt1}{l_{t}} \cdot 10^{6} \cdot (d + tc - a_{ea})$$

$$\sigma_{c1} = 6.846 \quad \text{MPa} \qquad \qquad \sigma_{s1} = 213.983 \quad \text{MPa}$$

$$\sigma_{c2} \coloneqq \frac{1}{n} \cdot \frac{Mt2 \cdot 10^{6} \cdot a_{ea}}{l_{t}} \qquad \qquad \sigma_{s2} \coloneqq \frac{Mt2}{l_{t}} \cdot 10^{6} \cdot (d + tc - a_{ea})$$

$$\sigma_{c2} = 9.71 \quad \text{MPa} \qquad \qquad \sigma_{s2} = 303.481 \quad \text{MPa}$$

$$\sigma_{c3} \coloneqq \frac{1}{n} \cdot \frac{Mt3 \cdot 10^6 \cdot a_{ea}}{l_t} \qquad \qquad \sigma_{s3} \coloneqq \frac{Mt3}{l_t} \cdot 10^6 \cdot (d + tc - a_{ea})$$
$$\sigma_{c3} = 12.052 \text{ MPa} \qquad \qquad \sigma_{s3} = 376.706 \text{ MPa}$$

$$\sigma_{c4} \coloneqq \frac{1}{n} \cdot \frac{Mt4 \cdot 10^{6} \cdot a_{ea}}{l_{t}} \qquad \qquad \sigma_{s4} \coloneqq \frac{Mt4}{l_{t}} \cdot 10^{6} \cdot (d + tc - a_{ea})$$

$$\sigma_{c4} = 13.094 \text{ MPa} \qquad \qquad \sigma_{s4} = 409.251 \text{ MPa}$$

Considerando Interação Parcial:

Aço:

$$\sigma_{s1} \coloneqq \frac{Mt1}{W_{ef}} \cdot 10^6$$
 $\sigma_{s1} = 236.372$
 MPa

 $\sigma_{s2} \coloneqq \frac{Mt2}{W_{ef}} \cdot 10^6$
 $\sigma_{s2} = 335.234$
 MPa

 $\sigma_{s3} \coloneqq \frac{Mt3}{W_{ef}} \cdot 10^6$
 $\sigma_{s3} = 416.122$
 MPa

$$\sigma_{s4} := \frac{Mt4}{W_{ef}} \cdot 10^6$$
 $\sigma_{s4} = 452.072$ MPa

Anexo D Comparação *push-out* e ensaio escala real

Neste anexo é apresentado a tabela dos valores das forças atuantes na viga de aço (R1 e R2) em função do ensaio em escala real, para comparar com o ensaio de *push-out*. As equações foram apresentadas no Capítulo 6.

O gráfico da Figura 1 apresenta a curva Força versus Deslizamento para o ensaio de *Push-out* e para o ensaio em escala real.

A diferença média entre o ensaio em escala real e o *push-out* foi calculado a partir do deslizamento de 0,1mm, que corresponde aos valores destacados na última coluna.

Análise Elástica do ensaio em escala real - inter. Parcial						Push	-out					
Momento	Fmedia	Desl.exp.	strain	strain	media	inf	R1 kN	R2 kN	Rt	F	Desliz	Es. Real/ Push-
kNm	(2P)kN	mm	34με	38 με	με	MPa	mesa	alma	kN	kN	mm	out
83,78	0,22	0,01	-1	0	-1	-0,10	-0,12	-0,14	-0,26	35,18	0,00	-0,01
83,92	0,27	0,01	-1	-1	-1	-0,21	-0,23	-0,28	-0,52	42,39	0,01	-0,01
83,56	0,14	0,01	25	27	26	5,33	6,07	7,33	13,40	52,27	0,01	0,26
87,96	1,80	0,01	121	128	125	25,52	29,08	35,08	64,15	62,13	0,01	1,03
90,07	2,60	0,01	132	139	136	27,78	31,64	38,18	69,82	73,02	0,01	0,96
91,63	3,19	0,01	139	146	143	29,21	33,28	40,15	73,43	87,72	0,01	0,84
99,18	6,05	0,01	168	178	173	35,47	40,40	48,74	89,15	118,38	0,01	0,75
110,62	10,39	0,03	209	222	216	44,18	50,33	60,72	111,05	123,85	0,01	0,90
123,55	15,29	0,05	253	269	261	53,51	60,95	73,54	134,49	142,24	0,01	0,95
134,49	19,43	0,06	289	307	298	61,09	69,59	83,97	153,56	152,22	0,01	1,01
136,58	20,22	0,06	296	315	306	62,63	71,35	86,08	157,42	161,74	0,02	0,97
149,30	25,04	0,07	336	359	348	71,24	81,15	97,91	179,07	165,76	0,02	1,08
151,18	25,75	0,07	342	365	354	72,47	82,55	99,60	182,16	171,38	0,02	1,06
162,01	29,85	0,08	374	399	387	79,23	90,26	108,90	199,16	176,94	0,03	1,13
176,78	35,45	0,09	419	447	433	88,77	101,12	122,00	223,12	181,47	0,04	1,23
189,40	40,23	0,11	456	487	472	96,66	110,11	132,85	242,96	186,20	0,04	1,30
204,45	45,93	0,12	499	533	516	105,78	120,50	145,39	265,89	191,96	0,05	1,39
215,87	50,25	0,13	532	570	551	112,96	128,68	155,25	283,93	196,18	0,05	1,45
228,40	55,00	0,15	568	609	589	120,64	137,44	165,82	303,25	201,57	0,06	1,50
240,25	59,49	0,16	602	645	624	127,82	145,61	175,68	321,29	205,69	0,07	1,56
256,05	65,47	0,17	648	695	672	137,66	156,82	189,20	346,02	211,29	0,08	1,64
269,89	70,72	0,18	687	737	712	145,96	166,28	200,61	366,89	215,48	0,08	1,70
281,90	75,27	0,19	719	773	746	152,93	174,22	210,19	384,41	220,23	0,09	1,75
294,21	79,93	0,20	754	811	783	160,41	182,74	220,48	403,22	225,80	0,10	1,79
307,53	84,97	0,20	790	851	821	168,20	191,62	231,19	422,80	230,04	0,11	1,84
308,30	85,26	0,21	793	853	823	168,72	192,20	231,89	424,09	236,95	0,12	1,79

	320,60	89,92	0,22	828	891	860	176,20	200,72	242,17	442,90	241,05	0,13	1,84
	333,14	94,67	0,23	867	931	899	184,30	209,95	253,30	463,25	246,18	0,14	1,88
_	345,81	99,47	0,25	941	1011	976	200,08	227,93	275,00	502,93	251,34	0,15	2,00
_	344,78	99,08	0,25	941	1010	976	199,98	227,81	274,86	502,67	256,50	0,16	1,96
_	339,93	97,25	0,25	932	1000	966	198,03	225,60	272,18	497,78	260,43	0,17	1,91
_	339,88	97,23	0,25	932	1000	966	198,03	225,60	272,18	497,78	260,45	0,17	1,91
_	345,64	99,41	0,26	903	980	942	193,01	219,87	265,28	485,15	261,51	0,17	1,86
_	347,32	100,05	0,26	909	986	948	194,24	221,28	266,97	488,25	262,50	0,17	1,86
_	348,80	100,61	0,26	913	990	952	195,06	222,21	268,10	490,31	265,51	0,18	1,85
_	362,38	105,75	0,28	966	1048	1007	206,44	235,17	283,73	518,91	267,20	0,18	1,94
_	371,20	109,09	0,28	1037	1103	1070	219,35	249,88	301,49	551,37	272,04	0,19	2,03
_	374,59	110,37	0,29	1055	1121	1088	223,04	254,09	306,56	560,64	276,33	0,20	2,03
_	384,67	114,19	0,31	1103	1166	1135	232,57	264,95	319,66	584,61	280,50	0,21	2,08
_	388,00	115,45	0,31	1121	1183	1152	236,16	269,03	324,59	593,62	287,03	0,22	2,07
_	399,17	119,68	0,33	1176	1238	1207	247,44	281,88	340,09	621,96	291,71	0,23	2,13
_	404,50	121,70	0,34	1209	1277	1243	254,82	290,29	350,23	640,52	296,87	0,25	2,16
_	413,15	124,98	0,36	1252	1333	1293	264,96	301,85	364,18	666,02	301,93	0,25	2,21
_	422,33	128,46	0,37	1280	1381	1331	272,75	310,72	374,88	685,60	306,41	0,27	2,24
_	424,37	129,23	0,38	1297	1399	1348	276,34	314,81	379,82	694,62	311,54	0,28	2,23
_	428,19	130,68	0,40	1318	1427	1373	281,36	320,53	386,72	707,25	316,39	0,29	2,24
_	426,10	129,89	0,42	1265	1435	1350	276,75	315,27	380,38	695,65	321,33	0,30	2,16
_	426,37	129,99	0,42	1264	1435	1350	276,65	315,16	380,24	695,39	326,56	0,32	2,13
_	426,16	129,91	0,42	1264	1435	1350	276,65	315,16	380,24	695,39	332,34	0,33	2,09
	435,29	133,37	0,43	1287	1463	1375	281,88	321,11	387,42	708,54	335,86	0,34	2,11
	433,61	132,73	0,42	1279	1457	1368	280,44	319,48	385,45	704,93	341,45	0,36	2,06
	441,55	135,74	0,43	1301	1483	1392	285,36	325,08	392,21	717,30	346,63	0,37	2,07
_	447,50	137,99	0,44	1268	1502	1385	283,93	323,45	390,24	713,69	350,68	0,39	2,04
_	452,96	140,06	0,45	1274	1517	1396	286,08	325,90	393,20	719,10	356,32	0,40	2,02
	469,69	146,40	0,49	1306	1576	1441	295,41	336,53	406,02	742,54	361,41	0,41	2,05
_	469,87	146,47	0,49	1305	1575	1440	295,20	336,29	405,74	742,03	367,22	0,42	2,02
_	473,79	147,95	0,49	1315	1587	1451	297,46	338,86	408,84	747,70	371,72	0,44	2,01
_	478,79	149,84	0,51	1304	1618	1461	299,51	341,20	411,65	752,85	376,13	0,45	2,00
_	477,57	149,38	0,51	1297	1616	1457	298,58	340,15	410,39	750,53	383,49	0,46	1,96
_	478,88	149,88	0,55	1276	1637	1457	298,58	340,15	410,39	750,53	386,93	0,47	1,94
_	479,28	150,03	0,56	1275	1640	1458	298,79	340,38	410,67	751,05	390,69	0,48	1,92
_	478,75	149,83	0,56	1274	1639	1457	298,58	340,15	410,39	750,53	392,79	0,49	1,91
_	480,38	150,45	0,56	1277	1644	1461	299,40	341,08	411,51	752,59	395,82	0,50	1,90
_	479,75	150,21	0,57	1275	1645	1460	299,30	340,96	411,37	752,34	401,42	0,52	1,87
_	478,84	149,86	0,57	1272	1643	1458	298,79	340,38	410,67	751,05	410,19	0,54	1,83
_	480,04	150,32	0,60	1274	1652	1463	299,92	341,66	412,22	753,88	414,98	0,57	1,82
-	480,38	150,45	0,60	1274	1654	1464	300,12	341,90	412,50	/54,40	421,56	0,59	1,79
_	480,10	150,34	0,60	1274	1655	1465	300,22	342,01	412,64	754,65	427,88	0,62	1,76
_	484,68	152,08	0,61	1286	1670	1478	302,99	345,17	416,44	761,61	430,89	0,64	1,77
_	491,62	154,70	0,61	1305	1691	1498	307,09	349,84	422,08	771,92	440,10	0,67	1,75
_	485,57	152,41	0,74	1280	16/3	14//	302,68	344,82	416,02	760,84	445,18	0,71	1,/1
_	484,96	152,18	0,75	12/6	16/2	14/4	302,17	344,23	415,32	759,55	451,86	0,74	1,68
	484.03	151.83	0.76	1235	1669	1452	297.66	339.09	409.12	748.21	456.68	0.76	1.64

Figura 1 – Escala real versus push-out