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Natural Deduction

2.1
Background and terminology

Natural Deduction is a logical system designed by Gentzen and Jaskowski
in the early 30’s on an attempt to create a deductive system more compatible
with mathematical reasoning. It is also natural in the sense that it allows
us to write deductions in a more straightfoward way. We are interested in
the fragment {A,V,—, L} of intuitionistic logic. We call these logical symbols
conjunction, disjunction, implication and falsum respectively.

The properties of each logical operator are given by an elimination and

an introduction rule and there is a rule for L. They are as follows:

. A B AAB AAB
(A-int) “ANB (A-el) A B
[A]
(—-int) z (et A2E A
B
A— B
(A [B]
A B
V-int RVE-E RVE -3 V-el : :
(v-nt) 1V B AV DB Ve Ve o e
C
4 L
(L) L

In 1; we require A to be different from L and we put formulas between
brackets when they are discharged (see the definition below) and sometimes
we indicate with a number the application where it occurs.

We can define negation as a particular case of implication, i.e., =A can

be defined as A — L and, putting B = | in —-int and —-el, we obtain —-int
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and —-el, respectively:
4]

(—-int) : (—-el) 1
L
-A
We say that a formula A is atomic if A has neither of the forms B A C,
BVC nor B — C.If A has any of these forms, then B and C are subformulas of
A and so are any subformula of B and C' and the operator between B and C'is
called main connective. The major premiss is the premiss of an elimination rule
that has the main connective that is to be eliminated. Every premiss that is
not a major premiss is a minor premiss. A thread is a sequence Ay, As, ... A,
of formulas where A; is an hypothesis, A, is the conclusion and A;, i # n,
stands immediately above A; ;. Let 7 be a thread that begins with a formula
A. Then A may be discharged at B when B is the first formula occurrence in
7 that:

1. is a premiss of the application that has A — B as consequence. For

example,

A D
AAND

A AnD "

2. is either the minor premiss on the left or the minor premiss on the right
on an application of V-el that has either AV D or DV A (for some D)

respectively as the major premiss. For example,

A" D A [D}
AV D ArD @ AAND (1)(a) (2-1)
AND
A

An assumption that was discharged is called closed, otherwise it is called
open. A branch in a deduction is a sequence A;, As, ..., A, of formulas such
that A; is an assumption not discharged by V-el, A;i; occurs immediately
below A; and A,, is either the first occurrence in the thread that is a minor
premiss of —-el or the conclusion of the derivation and a main branch of a
derivation is a branch that is also a thread. A path is like a branch but the
formula that succeeds the major premiss of an V-el rule is one of the hypothesis

discharged by the application of this rule (14).

11
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When, in a derivation, an introduction rule « is followed by an elimination
rule 3, the connective that was introduced by « is immediately eliminated by
(3, i.e., there was no necessity of introducing it in the first place. Instead of
going straight to its goal - the conclusion - the derivation made a detour. A
formula that is both the conclusion of an introduction rule and a major premiss
is called mazimum formula. A derivation without maximum formulas is said
to be normal.

In order to find a normal derivation, Prawitz introduced the notion of
reduction. If a derivation ¥ is achieved from a derivation Il by a sequence of
the following steps, then we say that IT reduces to ¥ (denoted 11> ).

11, I, IT; 11,
A B 1L A B 11,
(A) AANB > A and  AAB > B
A H3 B H3
I, I,
[A4] I,
0o A
(=) 4 g I
5 B
1, I3
I, (Al [B] I 11, [A]  [B] I
A M, I [A] B M, I [B]
(V) AVB C C > II, and AVB C c > I3
C C C C
I, 11, 114 114

where 1_[[71 , F = A, B means that 1'}[71 replaced every occurrence of F

that was discharged in the original derivation by the rule in question. Given a
derivation II, we also define II > II as the identity reduction.

Prawitz showed (15) (p.256) that, for every derivation, there exists a
finite sequence of reductions leading to a normal derivation which is unique.
This result is known as Normalization Theorem.

Given reductions « and f3, the sequences («, 3) and (3, «) are different
sequence of reductions and, given reductions oy and o, if ay: II; > Iy and
ag: 11y > TIf, then there exist f;: Iy > I3 and (y: II, > II3 such that both
(v, B1) and {aw, (B2) go from I1; to II3. This property is known as the Church-
Rosser property.

We do not find, in a branch of a normal derivation, an introduction
rule followed by an elimination rule for, if otherwise, it would have maximum

formulas and therefore it would not be normal. Thus, we may say that the

12
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general structure of a branch of a normal derivation has the shape of an
hourglass, with all the elimination rules (if any) on its top and the introduction
rules (if any) on its bottom. To the formula that is in between we call minimum
formula, it is the conclusion of an elimination and the premiss of either an
introduction rule or the L; and it is both subformula of an hypothesis and of
the end-formula of the branch.

The above reductions are not enough to bring any derivation to its normal
form. In a normal derivation, the paths must also have all the elimination rules
preceding the introduction rules. In the two paths of (2-1), we have introduction
rules (a) preceding an elimination rule (b). Moreover, successive applications of
V-elimination rules form a sequence of formula occurrences of the same shape
and we would like to eliminate such a sequence. To deal with situations like
this, and with the intention of proving normalization for intuitionistic logic,

Prawitz introduced the permutation reduction:

I I Il I, B
AVB _C__C . L ¢ n, ¢ I
C I, ~ AVB D D
D D

where the lowest occurrence of C' is a major premiss, there is at least
one occurrence of C' in the sequence that is the conclusion of an in-

troduction rule and II; may be empty. Hence, (2-1) can be reduced to
4 D A D]
AND AAD  and then to AVEB A A by A-
AV B A A A

reductions.

There exists a certain symmetry between elimination and introduction
rules which is stated by the inversion principle (14). We quote Prawitz (15)
(p.246):

the conclusion obtained by an elimination does not state any-
thing more than what must have already been obtained if the major

premiss of the elimination was inferred by an introduction.

This principle guarantees that the semantic of a derivation does not
changes with its reduction.

Another important principle, the subformula principle, states that every
formula in a normal derivation is either a subformula of the conclusion or a

subformula of an hypothesis. This principle is quite intuitive and guarantees

13
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that no formula and no operator different from the expected occur in the

normal derivation.

The derivation A A B is normal according to our definition, i.e, there is

no formula that is the conclusion of an introduction rule and a major premiss.
However, A A B is of a higher degree than the surrounding formulas and it is
neither a subformula of 1 nor a subformula of A. Therefore, in order to preserve
the inversion principle, we also say that a formula that is the conclusion of L;
and a major premiss is a maximum formula. Thus, in a normal derivation,
every rule that occurs below _L; is of introduction.

To bring derivations with at least one occurrence of 1; to its normal
form, we cannot use any of the previous reductions, so we add the following

one, where F is an elimination rule and B # 1:

(L-red) >

1T

L
(") B

1L

|- 2

11,
This reduction is defined as follows:

I
IT
N 1

If E = A-el, then A; A Ay >
A;
I,
mo A B
L I, I3 n
If £ =V-el, then AV B C c > o

11, 1
If E =—-el, then A A—B > —

To categorically represent the system here presented, we need some more
reductions (the reason is shown in later chapters). To begin with, as from L we
can derive any formula, we can expand (L-red) to when E is an introduction
rule with the restriction that, if it is an —-int, it does not discharge any formula

of the derivation:

11, 11
1 I, 5[_1 I, 1 1;[_1
If & = A-int, then ~ A4 B > —— —and A ‘B >
“ANB ANB ANB ANB
H3 H3

I3

14
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R
If E=v-int, then 4 > —= _and g > —L
avp AP ave AP
11, 2 11, 2
IT, I,
L N
If £ =—-int, then B >
— A— B
A— B m
I1, 2
With the introduction of these expansions we loose the unicity of normal
L
S S A B A
form derivations. For example, the derivation 1V B 1V B 1V B
AV B
L
can be reduced either to A by the application of V-reduction or to
AV B
ﬁ by L-reduction applied twice. To deal with this issue we state that an

L -reduction can only be applied whenever V, A and —-reduction cannot be
applied.

Then we introduce expansions, which have been envisaged by Prawitz
(15) to make all minimum formulas atomic. As is the case with reduction,
expansion steps form a sequence of derivations and we use the same notation,
viz. I > U, to signify that II expands to ¥ (> can also mean a combination
of reductions and expansions). We believe that the use of the same notation
does not create confusion and it is interesting for practical reasons. We call rez
either a sequence of reductions, a sequence of expansions or a combination of

them. Let C be a minimum formula.

IT, 11,
11, ANB AAB
fC=AANB,then AAB > A B
I, ANB
113
11
11, [A]! A— B
IfC=A— B,then A B > B
1T, A— B
1L,
I, mo A (B
If C=AV B, then AVB > AVB __AVE __AVD
1 AV B
2 Hg

With the introduction of expansions we introduce the posibility of

creating infinite rex sequences. For example, a sequence that begins with the


DBD
PUC-Rio - Certificação Digital Nº 0711267/CA


PUC-Rio - Certificacéo Digital N° 0711267/CA

2-category and Proof Theory

IT; I,
AANB ANB
derivation A B can be as lenghty as we want by successives
ANB

A
applications of A-reduction followed by A-expansion, i.e.,

15 11, 15 I,
AANB AAB 11 AANB AAB 11,
A B > AAB > A B > AAB ---
ANB A ANB A
A A

Note that, in this case, both the application of the reduction followed by
the application of the expansion and the application of the expansion followed
by the application of the reduction yelds the same result as the application of
the identity reduction.

We also allow the permutation reduction to work the other way around,

ie.,
Iy I3 IT, I, I
1 C 11, C Iy AV B C C
AV B D D C I,
D D

Finally, we add expansions to derivations with at least one application
of J_Z'Z

|- =

(L-exp)

= o=
@

H/
which can be expanded so that r is either an introduction or an elimination
rule:

If r is an introduction rule and

IT IT
b0
B=ANC, then s> A C
: ANC
IT I
II
| s
B=A—C,then 750> _C
oG A—-C

H/
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I II II
1 L L
B=AVC, then 7> A or _C
, AvC AvC
1 i i

If r is an elimination rule, then

IT IT
E 1 1
(N) > AAB or BAA | for any A;
b B B
Ir Ir
IT II
b1
(—) 7> A él—>B,foranyA;
I I
IT IT
I L L L
(\/)%D AvC BB B | for any A and C
I T

We say that two derivations II and ¥ are equivalent if either 11 > ¥ or
W > II. With Normalization Theorem, it is easy to prove that there is not a
proof (a derivation where every hypothesis is closed) of L:

Suppose that there exists a proof of L. Then, there exists a normal proof
of L which is the minimum formula of the main branch. As L is not inferred
by an introduction rule, the only rules in the main branch of the proof are rules
of elimination, which do not discharge premisses. Therefore, 1 is subformula
of an hypothesis that was not discharged.

We now enounce three properties which our deductive system agrees with.
All reduction systems for normalizing natural deduction derivations agree with
the properties below. Property (0) means that rex is transitive and properties
(1) and (2) mean that we can either reduce a derivation and then apply
substitution or apply substitution and then reduce the resulting derivation.
Let > be a reduction, an expansion or a combination of both. Then, we have
that:

0) If I > T and T’ > 11", then II > I1”;
1) If II(X) > IV(X), then for all &, I[(X) & IT'();

2) If £ > 5 then I1(X) > [1(X)

17
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where II(X) means that X is an hypothesis of II and II(X) is the result
of substituting every occurrence of the formula X by a derivation ¥ whose
conclusion is X.

As mathematicians often deal with different proofs for a same theorem,
it is natural to try to answer when two proofs (or derivations, as is our case)
are equal. We now state a conjecture formulated by Prawitz (15) that we
are going to call Prawitz’s Conjecture. It is also known as Identity (19) and
Normalization (4) Conjecture.

Conjecture: Two derivations represent the same proof (derivation) if,
and only if, they are equivalent.

Such a conjecture is plausible due to the inversion principle and, although

not proved, is very important in Proof Theory.

2.2
Structural reductions

In contrast to local reductions, that deal with introduction and elimina-
tion of logical operators, structural reductions work on a global level, i.e., as
the name indicates it, on the structure of the derivation. We show two struc-
tural reductions, the first one due to Jan Ekman (5) and the second one due

to Pereira and Haeusler (13).

2.2.1
Ekman’s reduction

In (5), Ekman worked with a system N of Natural Deduction for naive
set theory which comprises the symbols {=, €&, 1, D, &,V,V,3} and their
corresponding introduction and elimination rules. He claimed that the rule
used to eliminate equality in this system could hide a reduction and he
used a derivation that represents the Russel Paradox to give an example
of a derivation that does not have a normal form in N but has a normal
derivation in another system. This another system may be the system P
of propositional logic which comprises the symbols {1, D, &,V} and their
corresponding introduction and elimination rules. It also has A < B defined
as (AD B)A(BDA).

With this analysis Ekman reached the following reduction schema where

18
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D is any derivation of —P:

P&-P D
P < P -PDP _'PD D
P> -P P -P

-P

He generalises this reduction to the following one:

1L A— B A I3 (2-2)
B— A B A
A

Note that the derivation of the left hand side is normal according to Prawitz’s
definition but, intuitively, there is too much information in it, for Il3 is already
a derivation of the conclusion A.

Immediately after this reduction, Ekman defined, as follows, a more

general reduction:

r
A g I
11, A
A

where I" and I are sets of hypothesis and IV C I'. We use > and E-reduction
to differentiate Ekman’s from Prawitz’s reductions. IV may have less formulas
than T" because, if there exists a derivation of A from I, then there exists
a derivation of A from I' but I cannot have a formula that is not in I', for

the addition of new hypothesis changes the semantic of the derivation. For

[A]
A
example, 4 ,/4\13 i i\;l%/ B r “Av B because the hypothesis o the
AV B

derivation of the right side is not an hypothesis of the original derivation.

2.2.2
PH’s reduction

Pereira and Haeusler defined the following reduction on an attempt to
approximate Proof Theory to the categorical semantic (to be discussed in
section 3.3.2):

IT;

I1
L L pn o
A A— B a B

B

19
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we call this reduction PH'’s reduction. We believe that they have reached this
reduction by considering what would be missed in (2-2) if the minor premiss of
the last rule applied on the derivation of the left hand side had been inferred
by L.

With this reduction, we can prove that, if there exist derivations from C'
to L, these derivations are equivalent to each other: let 1I; and II; be two such

derivations. Then

C C
1L 11,
1 1 (2-3)
A A— B
B
C C

H1 H2

reduces to according to PH’s reduction and to according to L-

B
reduction so, according to Prawitz’s Conjecture, these derivations are equiva-
lent to (2-3) and, therefore, equivalent to each other and then IT; and TI, are

equivalent derivations.

2.3
Curry-Howard Isomorphism

This section gives a general idea of the history of the Curry-Howard
Isomorphism, that is, which path was made to reach its enunciation. We
discuss it in more detail in next chapter where we relate typed A-calculus
with Cartesian Closed Category.

There are such basic notions in logic that one take them for granted, as
the process of substitution (3). The idea of combinatory logic is the analysis
of an adequate foundation for those basic theories. It all seems to have began
with an article (16) written by Schonfinkel, where he introduces what is now
called combinators. Those combinators allow functions and functions values
to appear as argument. Schonfinkel introduced the combinators I, C, T, Z
and S that represent identity, constancy, interchange, composition and fusion

functions respectively (as he called them) defined by the equations
lr = x;
Cry = x;

Tory = ¢yz;

20


DBD
PUC-Rio - Certificação Digital Nº 0711267/CA


PUC-Rio - Certificacéo Digital N° 0711267/CA

2-category and Proof Theory

Zoxr = ¢(x7);

Soxa = () (xx)-

where juxtaposition is used to indicate application, and he then showed
that I, 7" and Z can be written in function of S and C only (I = SCC,
T =8(ZZS)(CC)and Z = S(CS)C) and that those combinators can be used
to represent any combination of variables.

Without knowing this work, Curry had started to work in this same
subject (2). He worked with B, C, W and I before he knew of Schonfinkel’s
paper. B, C' and K represent Schonfinkel’s T', Z and C!, respectively and W
is called duplicator and is defined by W fx = fzx, that can also be written in
function of S and K (as SS(SK)).

To prove that any combination of variables can be written uniquely by
means of S and K, Curry (1) used the fact that, two combinations of S and
K “whose application of a series zgx 2 ... yields the same transformation, are
equal” (p.383) (e.g., SK and K(SKK) determine the same result).

In (2), Curry shows that those combinators can be written in a no-
tation due to Church: the A-calculus. He defines Ax.M as that function
whose value, for any argument a, is the result of substituting a for x
in M (3). For multiple arguments, we write Azixs...xz,.M to designate
(Ax1(Azy ... (Azp_o(Axy_1(Ax,.M))) .. .)) and the application is indicated by
juxtaposition with association to the left.

In this case, we have that:
S = \ryz.az(yz)
K =\xy.x
B = Axyz.x(yz)
C = \zyz.azy
W = Azvy.zyy

Kleene and Rosser, in 1935, showed that there was an inconsistency in
Church’s and Curry’s system, they realized the importance of introducing type
in their theory. Type symbols are introduced recursively: there exists primitive

types and, if @ and [ are types, then af is a type.

"We will adopt Curry’s notation from now on

21
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In (3), Curry and Feys pointed out that the types of S and K (viz.
(o = (B—=7) = (o= ) = (a«— 7)) and @ — (8 — «) respectively) are
precisely the axioms of intuitionistic implicational logic and what they called
Rule P, i.e., the rule that derives 8 from af and «, can be viewed as the rule
of modus ponens.

The type of a combinator (i.e., the type of a A-term) can be found
according to the rules (18)

1 Dhe:obEM: T ) I'-M:0—171 I'EN:o
Dxerhorr TE M o0=7 I'-MN:T1

3

where o and 7 are types, x is a variable and M and N are terms.
Thus, the type of S can be found in the following way where, to save

space, we write o instead of @ — [ and I instead of = : a(37), v : af3, z : a:

(1) (1) () J—
I'Fz:a(fy) Fl—z:a(g) F'ty:af Fl—z:a(S)
I'Faxz: By Fl—yz:ﬁ(g)
I'Fzz(yz) v
z:a(By),y:ab b Azxz(yz) : ay
x:a(fy)F Ayzaz(yz) - af(ay)

FAzyz.az(yz) : (a(67))(af(ay))

Compare this derivation with the proof of (« — (f — 7)) — (o —

)

(2)

(2)

(2)

fB) — (o — 7)) in intuitionistic implicational calculus:

a—=B—=" [of [a—=p7 [
B — B
”}/ 1
o — 7y

(@—=0) = (a—=1)
(@—= (B —=7) = ((a=08)—=(a—=7))

3

In (6), Howard stated a correspondence between positive implicational
propositional logic (P(D)) and the combinators, and he introduced what is

now known as the Curry-Howard Isomorphism:

Given any derivation of T' — [ in P(D) we can find a

construction of T' — 3 and conversely.

where a construction of (a term of type) I' — 3 is “(...) a term F” of type 3
such that for every free variable X® occurring in F” there is a corresponding
occurrence of o in I'”. The correspondence also preserves reductions, that is
to say, if a derivation II reduces to II', then we can find a construction of II

that reduces to a construction of IT" and conversely. Nowadays we have others
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correspondences between Proof Theory and Combinatorial Logic, eg., minimal
propositional logic corresponds to simply typed A-calculus, first-order logic
corresponds to dependent types, second-order logic corresponds to polymorphic
types, etc (18). Howard has also stated a correspondence between a typed A-

calculus and Heyting Arithmetic.
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