
2Natural Dedu
tion
2.1Ba
kground and terminologyNatural Dedu
tion is a logi
al system designed by Gentzen and Ja�skowskiin the early 30's on an attempt to 
reate a dedu
tive system more 
ompatiblewith mathemati
al reasoning. It is also natural in the sense that it allowsus to write dedu
tions in a more straightfoward way. We are interested inthe fragment {∧,∨,→,⊥} of intuitionisti
 logi
. We 
all these logi
al symbols
onjun
tion, disjun
tion, impli
ation and falsum respe
tively.The properties of ea
h logi
al operator are given by an elimination andan introdu
tion rule and there is a rule for ⊥. They are as follows:(∧-int) A B

A ∧ B (∧-el) A ∧ B
A

A ∧ B
B(→-int) [A]...

B
A → B

(→-el) A → B A
B

(∨-int) A
A ∨ B

B
A ∨ B (∨-el)

A ∨ B

[A℄...
C

[B℄...
C

C(⊥i) ⊥
AIn ⊥i we require A to be di�erent from ⊥ and we put formulas betweenbra
kets when they are dis
harged (see the de�nition below) and sometimeswe indi
ate with a number the appli
ation where it o

urs.We 
an de�ne negation as a parti
ular 
ase of impli
ation, i.e., ¬A 
anbe de�ned as A → ⊥ and, putting B = ⊥ in →-int and →-el, we obtain ¬-int
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2-
ategory and Proof Theory 11and ¬-el, respe
tively:(¬-int) [A]...
⊥
¬A

(¬-el) A ¬A
⊥We say that a formula A is atomi
 if A has neither of the forms B ∧ C,

B∨C nor B → C. If A has any of these forms, then B and C are subformulas of
A and so are any subformula of B and C and the operator between B and C is
alledmain 
onne
tive. The major premiss is the premiss of an elimination rulethat has the main 
onne
tive that is to be eliminated. Every premiss that isnot a major premiss is a minor premiss. A thread is a sequen
e A1, A2, . . . , Anof formulas where A1 is an hypothesis, An is the 
on
lusion and Ai, i 6= n,stands immediately above Ai+1. Let τ be a thread that begins with a formula
A. Then A may be dis
harged at B when B is the �rst formula o

urren
e in
τ that:1. is a premiss of the appli
ation that has A → B as 
onsequen
e. Forexample,

[A]1 D

A ∧ D (1)
A → A ∧ D2. is either the minor premiss on the left or the minor premiss on the righton an appli
ation of ∨-el that has either A ∨ D or D ∨ A (for some D)respe
tively as the major premiss. For example,

A ∨ D

[A]1 D (a)
A ∧ D

A [D]1 (a)
A ∧ D (1)

A ∧ D (b)
A

(2-1)An assumption that was dis
harged is 
alled 
losed, otherwise it is 
alledopen. A bran
h in a dedu
tion is a sequen
e A1, A2, . . . , An of formulas su
hthat A1 is an assumption not dis
harged by ∨-el, Ai+1 o

urs immediatelybelow Ai and An is either the �rst o

urren
e in the thread that is a minorpremiss of →-el or the 
on
lusion of the derivation and a main bran
h of aderivation is a bran
h that is also a thread. A path is like a bran
h but theformula that su

eeds the major premiss of an ∨-el rule is one of the hypothesisdis
harged by the appli
ation of this rule (14).
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2-
ategory and Proof Theory 12When, in a derivation, an introdu
tion rule α is followed by an eliminationrule β, the 
onne
tive that was introdu
ed by α is immediately eliminated by
β, i.e., there was no ne
essity of introdu
ing it in the �rst pla
e. Instead ofgoing straight to its goal - the 
on
lusion - the derivation made a detour. Aformula that is both the 
on
lusion of an introdu
tion rule and a major premissis 
alled maximum formula. A derivation without maximum formulas is saidto be normal.In order to �nd a normal derivation, Prawitz introdu
ed the notion ofredu
tion. If a derivation Ψ is a
hieved from a derivation Π by a sequen
e ofthe following steps, then we say that Π redu
es to Ψ (denoted Π � Ψ).(∧) Π1

A

Π2

B
A ∧ B

A
Π3

�

Π1

A
Π3

and Π1

A

Π2

B
A ∧ B

B
Π3

�

Π2

B
Π3(→) Π1

A

[A]

Π2

B
A → B
B
Π3

�

Π1

[A]

Π2

B
Π3(∨) Π1

A
A ∨ B

[A℄
Π2

C

[B℄
Π3

C
C
Π4

�

Π1

[A]

Π2

C
Π4

and Π1

B
A ∨ B

[A℄
Π2

C

[B℄
Π3

C
C
Π4

�

Π1

[B]

Π3

C
Π4where Π1

[F ]
, F = A, B means that Π1

F
repla
ed every o

urren
e of Fthat was dis
harged in the original derivation by the rule in question. Given aderivation Π, we also de�ne Π � Π as the identity redu
tion.Prawitz showed (15) (p.256) that, for every derivation, there exists a�nite sequen
e of redu
tions leading to a normal derivation whi
h is unique.This result is known as Normalization Theorem.Given redu
tions α and β, the sequen
es 〈α, β〉 and 〈β, α〉 are di�erentsequen
e of redu
tions and, given redu
tions α1 and α2, if α1 : Π1 � Π2 and

α2 : Π1 � Π′

2, then there exist β1 : Π2 � Π3 and β2 : Π′

2 � Π3 su
h that both
〈α1, β1〉 and 〈α2, β2〉 go from Π1 to Π3. This property is known as the Chur
h-Rosser property.We do not �nd, in a bran
h of a normal derivation, an introdu
tionrule followed by an elimination rule for, if otherwise, it would have maximumformulas and therefore it would not be normal. Thus, we may say that the
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2-
ategory and Proof Theory 13general stru
ture of a bran
h of a normal derivation has the shape of anhourglass, with all the elimination rules (if any) on its top and the introdu
tionrules (if any) on its bottom. To the formula that is in between we 
allminimumformula, it is the 
on
lusion of an elimination and the premiss of either anintrodu
tion rule or the ⊥i and it is both subformula of an hypothesis and ofthe end-formula of the bran
h.The above redu
tions are not enough to bring any derivation to its normalform. In a normal derivation, the paths must also have all the elimination rulespre
eding the introdu
tion rules. In the two paths of (2-1), we have introdu
tionrules (a) pre
eding an elimination rule (b). Moreover, su

essive appli
ations of
∨-elimination rules form a sequen
e of formula o

urren
es of the same shapeand we would like to eliminate su
h a sequen
e. To deal with situations likethis, and with the intention of proving normalization for intuitionisti
 logi
,Prawitz introdu
ed the permutation redu
tion:

Π1

A ∨ B

Π2

C

Π3

C
C Π4

D

�
Π1

A ∨ B

Π2

C Π4

D

Π3

C Π4

D
Dwhere the lowest o

urren
e of C is a major premiss, there is at leastone o

urren
e of C in the sequen
e that is the 
on
lusion of an in-trodu
tion rule and Π4 may be empty. Hen
e, (2-1) 
an be redu
ed to

A ∨ B

[A] D

A ∧ D
A

A [D]

A ∧ D
A

A

and then to A ∨ B [A] A

A
by ∧-redu
tions.There exists a 
ertain symmetry between elimination and introdu
tionrules whi
h is stated by the inversion prin
iple (14). We quote Prawitz (15)(p.246): the 
on
lusion obtained by an elimination does not state any-thing more than what must have already been obtained if the majorpremiss of the elimination was inferred by an introdu
tion.This prin
iple guarantees that the semanti
 of a derivation does not
hanges with its redu
tion.Another important prin
iple, the subformula prin
iple, states that everyformula in a normal derivation is either a subformula of the 
on
lusion or asubformula of an hypothesis. This prin
iple is quite intuitive and guarantees
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2-
ategory and Proof Theory 14that no formula and no operator di�erent from the expe
ted o

ur in thenormal derivation.The derivation ⊥
A ∧ B

A
is normal a

ording to our de�nition, i.e, there isno formula that is the 
on
lusion of an introdu
tion rule and a major premiss.However, A ∧ B is of a higher degree than the surrounding formulas and it isneither a subformula of⊥ nor a subformula of A. Therefore, in order to preservethe inversion prin
iple, we also say that a formula that is the 
on
lusion of ⊥iand a major premiss is a maximum formula. Thus, in a normal derivation,every rule that o

urs below ⊥i is of introdu
tion.To bring derivations with at least one o

urren
e of ⊥i to its normalform, we 
annot use any of the previous redu
tions, so we add the followingone, where E is an elimination rule and B 6= ⊥:(⊥-red) Π1

⊥
A (E)
B
Π2

�

Π1

⊥
B
Π2This redu
tion is de�ned as follows:If E = ∧-el, then Π1

⊥
A1 ∧ A2

Ai

Π2

�

Π1

⊥
Ai

Π2

, i = 1, 2

If E = ∨-el, then Π1

⊥
A ∨ B

[A℄
Π2

C

[B℄
Π3

C
C
Π4

�

Π1

⊥
C
Π4If E =→-el, then Π1

A

Π2

⊥
A → B
B
Π2

�

Π2

⊥
B
Π3To 
ategori
ally represent the system here presented, we need some moreredu
tions (the reason is shown in later 
hapters). To begin with, as from ⊥ we
an derive any formula, we 
an expand (⊥-red) to when E is an introdu
tionrule with the restri
tion that, if it is an→-int, it does not dis
harge any formulaof the derivation:If E = ∧-int, then Π1

⊥
A

Π2

B
A ∧ B

Π3

�

Π1

⊥
A ∧ B

Π3

and Π2

A

Π1

⊥
B

A ∧ B
Π3

�

Π1

⊥
A ∧ B

Π3
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2-
ategory and Proof Theory 15If E = ∨-int, then Π1

⊥
A

A ∨ B
Π2

�

Π1

⊥
A ∨ B

Π2

and Π1

⊥
B

A ∨ B
Π2

�

Π1

⊥
A ∨ B

Π2If E =→-int, then Π1

⊥
B

A → B
Π2

�

Π1

⊥
A → B

Π2With the introdu
tion of these expansions we loose the uni
ity of normalform derivations. For example, the derivation ⊥
A

A ∨ B
B

A ∨ B
A

A ∨ B
A ∨ B
an be redu
ed either to ⊥

A
A ∨ B

by the appli
ation of ∨-redu
tion or to
⊥

A ∨ B
by ⊥-redu
tion applied twi
e. To deal with this issue we state that an

⊥-redu
tion 
an only be applied whenever ∨, ∧ and →-redu
tion 
annot beapplied.Then we introdu
e expansions, whi
h have been envisaged by Prawitz(15) to make all minimum formulas atomi
. As is the 
ase with redu
tion,expansion steps form a sequen
e of derivations and we use the same notation,viz. Π � Ψ, to signify that Π expands to Ψ (� 
an also mean a 
ombinationof redu
tions and expansions). We believe that the use of the same notationdoes not 
reate 
onfusion and it is interesting for pra
ti
al reasons. We 
all rexeither a sequen
e of redu
tions, a sequen
e of expansions or a 
ombination ofthem. Let C be a minimum formula.If C = A ∧ B, then Π1

A ∧ B
Π3

�

Π1

A ∧ B
A

Π1

A ∧ B
B

A ∧ B
Π3If C = A → B, then Π1

A → B
Π2

�

[A]1
Π1

A → B

B (1)
A → B

Π2If C = A ∨ B, then Π1

A ∨ B
Π2

�

Π1

A ∨ B

[A℄
A ∨ B

[B℄
A ∨ B

A ∨ B
Π2With the introdu
tion of expansions we introdu
e the posibility of
reating in�nite rex sequen
es. For example, a sequen
e that begins with the
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2-
ategory and Proof Theory 16derivation Π1

A ∧ B
A

Π2

A ∧ B
B

A ∧ B
A


an be as lenghty as we want by su

essivesappli
ations of ∧-redu
tion followed by ∧-expansion, i.e.,
Π1

A ∧ B
A

Π2

A ∧ B
B

A ∧ B
A

�

Π1

A ∧ B
A

�

Π1

A ∧ B
A

Π2

A ∧ B
B

A ∧ B
A

�

Π1

A ∧ B
A

. . .Note that, in this 
ase, both the appli
ation of the redu
tion followed bythe appli
ation of the expansion and the appli
ation of the expansion followedby the appli
ation of the redu
tion yelds the same result as the appli
ation ofthe identity redu
tion.We also allow the permutation redu
tion to work the other way around,i.e.,
Π1

A ∨ B

Π2

C Π4

D

Π3

C Π4

D
D

�

Π1

A ∨ B

Π2

C

Π3

C
C Π4

DFinally, we add expansions to derivations with at least one appli
ationof ⊥i: (⊥-exp) Π
⊥
B
Π′

�

Π
⊥
A r
B
Π′whi
h 
an be expanded so that r is either an introdu
tion or an eliminationrule:If r is an introdu
tion rule and

B = A ∧ C, then Π
⊥

A ∧ C
Π′

�

Π
⊥
A

Π
⊥
C

A ∧ C
Π′

B = A → C, then Π
⊥

A → C
Π′

�

Π
⊥
C

A → C
Π′
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2-
ategory and Proof Theory 17
B = A ∨ C, then Π

⊥
A ∨ C

Π′

�

Π
⊥
A

A ∨ C
Π′

or Π
⊥
C

A ∨ C
Π′If r is an elimination rule, then(∧) Π

⊥
B
Π′

�

Π
⊥

A ∧ B
B
Π′

or Π
⊥

B ∧ A
B
Π′

, for any A;
(→) Π

⊥
B
Π′

�

Π
⊥
A

Π
⊥

A → B
B
Π′

, for any A;
(∨) Π

⊥
B
Π′

�

⊥
A ∨ C

Π
⊥
B

Π
⊥
B

B
Π′

, for any A and CWe say that two derivations Π and Ψ are equivalent if either Π � Ψ or
Ψ � Π. With Normalization Theorem, it is easy to prove that there is not aproof (a derivation where every hypothesis is 
losed) of ⊥:Suppose that there exists a proof of ⊥. Then, there exists a normal proofof ⊥ whi
h is the minimum formula of the main bran
h. As ⊥ is not inferredby an introdu
tion rule, the only rules in the main bran
h of the proof are rulesof elimination, whi
h do not dis
harge premisses. Therefore, ⊥ is subformulaof an hypothesis that was not dis
harged.We now enoun
e three properties whi
h our dedu
tive system agrees with.All redu
tion systems for normalizing natural dedu
tion derivations agree withthe properties below. Property (0) means that rex is transitive and properties(1) and (2) mean that we 
an either redu
e a derivation and then applysubstitution or apply substitution and then redu
e the resulting derivation.Let � be a redu
tion, an expansion or a 
ombination of both. Then, we havethat:0) If Π � Π′ and Π′

� Π′′, then Π � Π′′;1) If Π(X) � Π′(X), then for all Σ, Π(Σ) � Π′(Σ);2) If Σ � Σ′ then Π(Σ) � Π(Σ′)
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2-
ategory and Proof Theory 18where Π(X) means that X is an hypothesis of Π and Π(Σ) is the resultof substituting every o

urren
e of the formula X by a derivation Σ whose
on
lusion is X.As mathemati
ians often deal with di�erent proofs for a same theorem,it is natural to try to answer when two proofs (or derivations, as is our 
ase)are equal. We now state a 
onje
ture formulated by Prawitz (15) that weare going to 
all Prawitz's Conje
ture. It is also known as Identity (19) andNormalization (4) Conje
ture.Conje
ture: Two derivations represent the same proof (derivation) if,and only if, they are equivalent.Su
h a 
onje
ture is plausible due to the inversion prin
iple and, althoughnot proved, is very important in Proof Theory.2.2Stru
tural redu
tionsIn 
ontrast to lo
al redu
tions, that deal with introdu
tion and elimina-tion of logi
al operators, stru
tural redu
tions work on a global level, i.e., asthe name indi
ates it, on the stru
ture of the derivation. We show two stru
-tural redu
tions, the �rst one due to Jan Ekman (5) and the se
ond one dueto Pereira and Haeusler (13).2.2.1Ekman's redu
tionIn (5), Ekman worked with a system N of Natural Dedu
tion for naïveset theory whi
h 
omprises the symbols {=,∈,⊥,⊃, &, ∀,∨, ∃} and their
orresponding introdu
tion and elimination rules. He 
laimed that the ruleused to eliminate equality in this system 
ould hide a redu
tion and heused a derivation that represents the Russel Paradox to give an exampleof a derivation that does not have a normal form in N but has a normalderivation in another system. This another system may be the system Pof propositional logi
 whi
h 
omprises the symbols {⊥,⊃, &,∨} and their
orresponding introdu
tion and elimination rules. It also has A ⇔ B de�nedas (A ⊃ B) ∧ (B ⊃ A).With this analysis Ekman rea
hed the following redu
tion s
hema where
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2-
ategory and Proof Theory 19
D is any derivation of ¬P :

P ⇔ ¬P
P ⊃ ¬P

P ⇔ ¬P
¬P ⊃ P

D
¬P

P
¬P

�
D
¬PHe generalises this redu
tion to the following one:

Π1

B → A

Π2

A → B

Π3

A
B

A

�E
Π3

A
(2-2)Note that the derivation of the left hand side is normal a

ording to Prawitz'sde�nition but, intuitively, there is too mu
h information in it, for Π3 is alreadya derivation of the 
on
lusion A.Immediately after this redu
tion, Ekman de�ned, as follows, a moregeneral redu
tion:

Γ
Π1

A
Π2

A

�E

Γ′

Π1

Awhere Γ and Γ′ are sets of hypothesis and Γ′ ⊆ Γ. We use �E and E-redu
tionto di�erentiate Ekman's from Prawitz's redu
tions. Γ′ may have less formulasthan Γ be
ause, if there exists a derivation of A from Γ′, then there existsa derivation of A from Γ but Γ′ 
annot have a formula that is not in Γ, forthe addition of new hypothesis 
hanges the semanti
 of the derivation. Forexample, A ∧ B
A

[A]

A ∨ B
A → A ∨ B

A ∨ B

⋫E

A
A ∨ B be
ause the hypothesis o thederivation of the right side is not an hypothesis of the original derivation.2.2.2PH's redu
tionPereira and Haeusler de�ned the following redu
tion on an attempt toapproximate Proof Theory to the 
ategori
al semanti
 (to be dis
ussed inse
tion 3.3.2):

Π1

⊥
A

Π2

A → B
B

�P−H

Π1

⊥
B
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2-
ategory and Proof Theory 20we 
all this redu
tion PH's redu
tion. We believe that they have rea
hed thisredu
tion by 
onsidering what would be missed in (2-2) if the minor premiss ofthe last rule applied on the derivation of the left hand side had been inferredby ⊥i.With this redu
tion, we 
an prove that, if there exist derivations from Cto ⊥, these derivations are equivalent to ea
h other: let Π1 and Π2 be two su
hderivations. Then
C
Π1

⊥
A

C
Π2

⊥
A → B
B

(2-3)
redu
es to C

Π1

⊥
B

a

ording to PH's redu
tion and to C
Π2

⊥
B

a

ording to ⊥-redu
tion so, a

ording to Prawitz's Conje
ture, these derivations are equiva-lent to (2-3) and, therefore, equivalent to ea
h other and then Π1 and Π2 areequivalent derivations.2.3Curry-Howard IsomorphismThis se
tion gives a general idea of the history of the Curry-HowardIsomorphism, that is, whi
h path was made to rea
h its enun
iation. Wedis
uss it in more detail in next 
hapter where we relate typed λ-
al
uluswith Cartesian Closed Category.There are su
h basi
 notions in logi
 that one take them for granted, asthe pro
ess of substitution (3). The idea of 
ombinatory logi
 is the analysisof an adequate foundation for those basi
 theories. It all seems to have beganwith an arti
le (16) written by S
hön�nkel, where he introdu
es what is now
alled 
ombinators. Those 
ombinators allow fun
tions and fun
tions valuesto appear as argument. S
hön�nkel introdu
ed the 
ombinators I, C, T , Zand S that represent identity, 
onstan
y, inter
hange, 
omposition and fusionfun
tions respe
tively (as he 
alled them) de�ned by the equations
Ix = x;
Cxy = x;
Tφxy = φyx;
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2-
ategory and Proof Theory 21
Zφχx = φ(χx);
Sφχx = (φx)(χx).where juxtaposition is used to indi
ate appli
ation, and he then showedthat I, T and Z 
an be written in fun
tion of S and C only (I = SCC,

T = S(ZZS)(CC) and Z = S(CS)C) and that those 
ombinators 
an be usedto represent any 
ombination of variables.Without knowing this work, Curry had started to work in this samesubje
t (2). He worked with B, C, W and I before he knew of S
hön�nkel'spaper. B, C and K represent S
hön�nkel's T , Z and C1, respe
tively and Wis 
alled dupli
ator and is de�ned by Wfx = fxx, that 
an also be written infun
tion of S and K (as SS(SK)).To prove that any 
ombination of variables 
an be written uniquely bymeans of S and K, Curry (1) used the fa
t that, two 
ombinations of S and
K �whose appli
ation of a series x0x1x2 . . . yields the same transformation, areequal� (p.383) (e.g., SK and K(SKK) determine the same result).In (2), Curry shows that those 
ombinators 
an be written in a no-tation due to Chur
h: the λ-
al
ulus. He de�nes λx.M as that fun
tionwhose value, for any argument a, is the result of substituting a for xin M (3). For multiple arguments, we write λx1x2 . . . xn.M to designate
(λx1(λx2 . . . (λxn−2(λxn−1(λxn.M))) . . .)) and the appli
ation is indi
ated byjuxtaposition with asso
iation to the left.In this 
ase, we have that:
S ≡ λxyz.xz(yz)

K ≡ λxy.x

B ≡ λxyz.x(yz)

C ≡ λxyz.xzy

W ≡ λxy.xyyKleene and Rosser, in 1935, showed that there was an in
onsisten
y inChur
h's and Curry's system, they realized the importan
e of introdu
ing typein their theory. Type symbols are introdu
ed re
ursively: there exists primitivetypes and, if α and β are types, then αβ is a type.1We will adopt Curry's notation from now on
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2-
ategory and Proof Theory 22In (3), Curry and Feys pointed out that the types of S and K (viz.
(α → (β → γ)) → ((α → β) → (α → γ)) and α → (β → α) respe
tively) arepre
isely the axioms of intuitionisti
 impli
ational logi
 and what they 
alledRule P, i.e., the rule that derives β from αβ and α, 
an be viewed as the ruleof modus ponens.The type of a 
ombinator (i.e., the type of a λ-term) 
an be founda

ording to the rules (18)1

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ 2

Γ ⊢ λx.M : σ → τ
Γ ⊢ M : σ → τ Γ ⊢ N : σ 3

Γ ⊢ MN : τwhere σ and τ are types, x is a variable and M and N are terms.Thus, the type of S 
an be found in the following way where, to savespa
e, we write αβ instead of α → β and Γ instead of x : α(βγ), y : αβ, z : α:(1)
Γ ⊢ x : α(βγ)

(1)
Γ ⊢ z : α (3)

Γ ⊢ xz : βγ

(1)
Γ ⊢ y : αβ

(1)
Γ ⊢ z : α (3)

Γ ⊢ yz : β (3)
Γ ⊢ xz(yz) : γ (2)

x : α(βγ), y : αβ ⊢ λz.xz(yz) : αγ (2)
x : α(βγ) ⊢ λyz.xz(yz) : αβ(αγ) (2)
⊢ λxyz.xz(yz) : (α(βγ))(αβ(αγ))Compare this derivation with the proof of (α → (β → γ)) → ((α →

β) → (α → γ)) in intuitionisti
 impli
ational 
al
ulus:
[α → (β → γ)]3 [α]1

β → γ

[α → β]2 [α]1

β
γ 1α → γ 2

(α → β) → (α → γ) 3
(α → (β → γ)) → ((α → β) → (α → γ))In (6), Howard stated a 
orresponden
e between positive impli
ationalpropositional logi
 (P (⊃)) and the 
ombinators, and he introdu
ed what isnow known as the Curry-Howard Isomorphism:Given any derivation of Γ → β in P (⊃) we 
an �nd a
onstru
tion of Γ → β and 
onversely.where a 
onstru
tion of (a term of type) Γ → β is �(. . .) a term F β of type βsu
h that for every free variable Xα o

urring in F β there is a 
orrespondingo

urren
e of α in Γ�. The 
orresponden
e also preserves redu
tions, that isto say, if a derivation Π redu
es to Π′, then we 
an �nd a 
onstru
tion of Πthat redu
es to a 
onstru
tion of Π′ and 
onversely. Nowadays we have others
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orresponden
es between Proof Theory and Combinatorial Logi
, eg., minimalpropositional logi
 
orresponds to simply typed λ-
al
ulus, �rst-order logi

orresponds to dependent types, se
ond-order logi
 
orresponds to polymorphi
types, et
 (18). Howard has also stated a 
orresponden
e between a typed λ-
al
ulus and Heyting Arithmeti
.
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