Bibliography

[1] CURRY, H. An analysis of logical substitution. American Journal of Mathematics, (51):363-384, 1929.
[2] CURRY, H. The combinatory foundations of mathematical logic. Journal of Symbolic Logic, (7):49-64, 1942.
[3] CURRY, H.; FEYS, R. Combinatory Logic, volume 1. North-Holland Publishing Company, Amsterdam, 3rd edition, 1974.
[4] DOSEN, K. Identity of proofs based on normalization and generality. The Bulletin of Symbolic Logic, 9(4):477-503, December 2003.
[5] EKMAN, J. Normal Proofs in Set Theory. PhD thesis, University of Goteborg, 1994.
[6] HOWARD, W. A. The formulae-as-types notion of construction. In: TO H. B. CURRY: ESSAYS ON COMBINATORY LOGIC, LAMBDA CALCULUS AND FORMALISM, p. 479-490. Academic Press INC., 1980.
[7] LAMBEK, J. Deductive systems and categories. ii. standard constructions and closed categories. Category Theory Homology Theory Appl., Proc. Conf. Seattle Res. Center Battelle Mem. Inst. 1968, 1, 76-122 (1969).
[8] LAMBEK, J. Deductive systems and categories i.syntactic calculus and residuated categories. Theory of Computing Systems, 2(4):287-318, December 1968.
[9] LAMBEK, J. Deductive systems and categories. iii. cartesian closed categories, intuitionist propositional calculus, and combinatory logic. Toposes, algebraic Geometry and Logic, Dalhousie Univ. Halifax 1971, Lect. Notes Math. 274, 57-82 (1972)., 1972.
[10] LAMBEK, J.; SCOTT, P. J. Introduction to Higher Order Categorial Logic. Number 7 in Cambridge Studies in Advanced Mathematics. Cambridge, first edition, 1986.
[11] MANN, C. R. Connections between Proof Theory and Category Theory. PhD thesis, Oxford, 1973.
[12] MANN, C. R. The connection between equivalence of proofs and cartesian closed categories. Pro. London Math. Soc., 31(3):289-310, 1975.
[13] PEREIRA, L. C.; HAEUSLER, H. Structured reductions and the identity problem. In: UNILOG, 2007.
[14] PRAWITZ, D. Natural Deduction, A Proof-Theoretical Study. Dover, 1965.
[15] PRAWITZ, D. Ideas and results in proof theory. In: Fenstad, J., editor, PROC. 2ND SCANDINAVIAN LOGIC SYMPOSIUM, p. 237309. North-Holland, 1971.
[16] SCHÖNFINKEL, M. On the building blocks of mathematical logic. In: FROM FREGE TO GÖDEL : A SOURCE BOOK IN MATHEMATICAL LOGIC, 1879-1931, p. 355-366. Cambridge, Mass. : Harvard University Press, 1924.
[17] SEELY, R. Weak adjointness in proof theory. In: APPLICATIONS OF SHEAVES (PROC. RES. SYMPOS. APPL. SHEAF THEORY TO LOGIC, ALGEBRA AND ANAL., UNIV. DURHAM, DURHAM, 1977), number 753 in Lecture Notes in Math., p. 697-701. Springer, Berlin, 1979.
[18] SØRENSEN, M. H. B.; URZYCZYN, P. Lectures on the curryhoward isomorphism, 1998.
[19] WIDEBACK, F. Identity of Proofs. PhD thesis, Stockholm University, 2001.

A

Appendix

To say that the categories $\operatorname{Hom}_{C a t}(\perp, X)$ and 1, the terminal category, are equivalent is the same as to say that there exists an arrow from \perp to X and, for every pair of arrows $f, g: \perp \rightarrow X$, there exists a unique arrow from f to g which is an isomorphism.

Proof. Let us first prove the definition from the equivalence: Let $\mathbf{F}: \operatorname{Hom}_{\text {Cat }}(\perp, X) \rightarrow \mathbf{1}$ be the functor that takes every object (1-cell) $\perp \rightarrow X$ to the unique 1 -object $*$ and every morphism (2-cell) to the identity arrow $* \rightarrow *$ and let $\mathbf{G}: 1 \rightarrow \operatorname{Hom}_{\text {Cat }}(\perp, X)$ be the functor that takes the 1-object to an object of $\operatorname{Hom}_{C a t}(\perp, X)$, let us say h, and the identity arrow to $i d_{h}: h \rightarrow h$. We show that $i d_{H_{\text {om }}^{\text {Cat }}} \cong \mathbf{G} \circ \mathbf{F}$.
$\operatorname{Hom}_{C a t}(\perp, X)$ cannot be empty, otherwise there would not even exist a bijection between it and 1. Let $\tau: \operatorname{Hom}_{\text {Cat }}(\perp, X) \rightarrow \operatorname{Hom}_{C a t}(\perp, X)$ be a morphism that takes every object to h and every morphism to $i d_{h}$ and σ its inverse. Then

$$
\begin{align*}
& \perp \stackrel{f}{\|} X \underset{\Downarrow^{\alpha}}{\stackrel{\tau_{f}}{\underset{\sigma_{f}}{\longrightarrow}}} \perp \xrightarrow{h} X \tag{A-1}\\
& \perp \xrightarrow{g} X \underset{\sigma_{g}}{\stackrel{\tau_{g}}{\rightleftarrows}} \perp \stackrel{h}{\longrightarrow} X
\end{align*}
$$

Given a pair f, g of objects, there exists a morphism from f to g, viz., $\sigma_{g} \cdot i d_{h} \cdot \tau_{f}$. We show now that this morphismis unique: suppose that there exists two morphisms (α and β) from f to g. As the above diagram commutes for every arrow from f to g, we have $i d_{h} \circ \tau_{f}=\tau_{g} \circ \alpha$ and $i d_{h} \circ \tau_{f}=\tau_{g} \circ \beta$, i.e., $\tau_{g} \circ \alpha=\tau_{g} \circ \beta$ and, as τ_{g} is an isomorphism, $\alpha=\beta$.

Now we show the equivalence form the definition: As $\operatorname{Hom}_{C a t}(\perp, X)$ has at least one object, we can define functors \mathbf{F} and \mathbf{G} as in the first part of this proof. As there exists arrows between every pair of objects, we can define a diagram like (A-1) and the arrows being isomorphisms guarantee to us that
every arrow from f to g corresponds to a unique arrow from h to h and conversely.

B

Appendix

To say that the categories $\operatorname{Hom}_{\text {Cat }}(X, A \times B)$ and $\operatorname{Hom}_{\text {Cat }}(X, A) \otimes$ $\operatorname{Hom}_{C a t}(X, B)$ are equivalent is the same as to say that, for any $f: X \rightarrow A$ and $g: X \rightarrow B$, there exist $h: X \rightarrow A \times B$ and isomorphisms $\pi_{1} \circ h \cong f$ and $\pi_{1} \circ h \cong g$ such that, for all $k: X \rightarrow A \times B$ and 2-cells $\alpha: \pi_{1} \circ h \Rightarrow \pi_{1} \circ k$ and $\beta: \pi_{2} \circ h \Rightarrow \pi_{2} \circ k$, there exist a unique $\gamma: h \Rightarrow k$ such that $i d_{\pi_{1}} ; \gamma=\alpha$ and $i d_{\pi_{2}} ; \gamma=\beta$.

Proof. First, we prove that the definition of 2-product comes from the equivalence of the aforesaid categories:

As the categories are equivalent, there are functors $\mathbf{F}: \operatorname{Hom}_{C a t}(X, A \times$ $B) \quad \rightarrow \quad \operatorname{Hom}_{\text {Cat }}(X, A) \otimes \operatorname{Hom}_{\text {Cat }}(X, B)$ and $\mathrm{G}: \operatorname{Hom}_{\text {Cat }}(X, A) \otimes$ $\operatorname{Hom}_{C a t}(X, B) \rightarrow \operatorname{Hom}_{\text {Cat }}(X, A \times B)$ such that $i d_{\times} \cong \mathbf{G} \circ \mathbf{F}$ and $i d_{\otimes} \cong \mathbf{F} \circ \mathbf{G}$.

Let us define \mathbf{F} as the functor that takes h to $\left(\pi_{1} \circ h, \pi_{2} \circ h\right)$ and γ to $\left(i d_{\pi_{1}} ; \gamma, i d_{\pi_{2}} ; \gamma\right)$ for every object (1-cell) h and arrow (2-cell) γ of $\operatorname{Hom}_{C a t}(X, A \times B)$ and let us define \mathbf{G} as the functor that takes (f, g) to $\langle f, g\rangle$ and (α, β) to $\alpha \mid \beta$, for every object (f, g) and arrow (α, β) of $\operatorname{Hom}_{\text {Cat }}(X, A) \otimes \operatorname{Hom}_{\text {Cat }}(X, B)$.

Let f and g be objects such that $f \in \operatorname{Hom}_{\text {Cat }}(X, A)$ and $g \in$ $\operatorname{Hom}_{\text {Cat }}(X, B)$. Then, $\langle f, g\rangle \in \operatorname{Hom}_{\text {Cat }}(X, A \times B)$. Let us take $h=\langle f, g\rangle$. As $i d_{\otimes} \cong \mathbf{F} \circ \mathbf{G}$, then $i d(f, g)=(f, g) \cong F \circ \mathbf{G}(f, g)=\mathbf{F}(\langle f, g\rangle)=\left(\pi_{1} \circ h, \pi_{2} \circ h\right)$, i.e.,

$$
\begin{equation*}
f \cong \pi_{1} \circ h \quad(\mathrm{I}) \quad \text { and } \quad g \cong \pi_{2} \circ h \tag{II}
\end{equation*}
$$

Let k be an object of $\operatorname{Hom}_{\text {Cat }}(X, A \times B), \alpha$ be an arrow of $\operatorname{Hom}_{\text {Cat }}(X, A)$ such that $\alpha: \pi_{1} \circ h \Rightarrow \pi_{1} \circ k$ and β be an arrow of $\operatorname{Hom}_{\text {Cat }}(X, B)$ such that $\beta: \pi_{2} \circ h \Rightarrow \pi_{2} \circ k$.

As there is an arrow from f to $\pi_{1} \circ h\left(\right.$ from (I)) and $\alpha: \pi_{1} \circ h \Rightarrow \pi_{1} \circ k$, there is an arrow from f to $\pi_{1} \circ k$. As there is an arrow from g to $\pi_{2} \circ h$ (from (II)) and $\beta: \pi_{2} \circ h \Rightarrow \pi_{2} \circ k$, there is an arrow from g to $\pi_{2} \circ k$. Thus, $\langle f, g\rangle \Rightarrow\left\langle\pi_{1} \circ k, \pi_{2} \circ k\right\rangle \cong k$, i.e., $h \Rightarrow k$.

From the natural isomorphisms, we have that \mathbf{G} is left adjoint to \mathbf{F}. Then,

$$
\begin{aligned}
(\mathbf{G}(f, g), k) & \cong((f, g), \mathbf{F} k) \\
(\langle f, g\rangle, k) & \cong\left((f, g),\left(\pi_{1} \circ k, \pi_{2} \circ k\right)\right)
\end{aligned}
$$

Using (I) and (II), we have that

$$
(\langle f, g\rangle, k) \cong\left(\left(\pi_{1} \circ h, \pi_{2} \circ h\right),\left(\pi_{1} \circ k, \pi_{2} \circ k\right)\right)
$$

As for every arrow in $(\langle f, g\rangle, k)$ there is only one arrow in $\left(\left(\pi_{1} \circ h, \pi_{2} \circ\right.\right.$ $\left.h),\left(\pi_{1} \circ k, \pi_{2} \circ k\right)\right)$ and conversely, we have that γ is unique and, as both (α, β) and $\left(i d_{\pi_{1}} ; \gamma, i d_{\pi_{2}} ; \gamma\right)$ are arrows in $\left(\left(\pi_{1} \circ h, \pi_{2} \circ h\right),\left(\pi_{1} \circ k, \pi_{2} \circ k\right)\right)$, we have that $\alpha=i d_{\pi_{1}} ; \gamma$ and $\beta=i d_{\pi_{2}} ; \gamma$.

Now we prove that the equivalence comes from the definition of 2 product.

According to the definition of 2-product, we can define functors \mathbf{F} and \mathbf{G}, such that $\mathbf{G}(f, g)=h$, for every object (f, g) in $\operatorname{Hom}_{\text {Cat }}(X, A) \otimes$ $\operatorname{Hom}_{C a t}(X, B)$, and $\mathbf{G}(\alpha, \beta)=\gamma$, for every arrow (α, β) in $\operatorname{Hom}_{\text {Cat }}(X, A) \otimes$ $\operatorname{Hom}_{C a t}(X, B)$ and $\mathbf{F}(h)=\left(i d_{\pi_{1}} \circ h, i d_{\pi_{2}} \circ h\right)$, for every h in $H o m_{C a t}(X, A \times B)$, and $\mathbf{F}(\gamma)=\left(i d_{\pi_{1}} ; \gamma, i d_{\pi_{2}} ; \gamma\right)$, for every $\gamma \in \operatorname{Hom}_{\text {Cat }}(X, A \times B)$.

Let us define $\tau: \operatorname{Hom}_{\text {Cat }}(X, A \times B) \rightarrow \operatorname{Hom}_{\text {Cat }}(X, A \times B)$ as the arrow that takes h to $\left\langle\pi_{1} \circ h, \pi_{2} \circ h\right\rangle$ and γ to $i d_{\pi_{1}} ; \gamma \mid i d_{\pi_{2}} ; \gamma$, for every object h and arrow γ of $\operatorname{Hom}_{\text {Cat }}(X, A \times B)$. It is easy to see that this arrow has an inverse and that

$$
\begin{aligned}
& h \xrightarrow{\tau_{h}}\left\langle\pi_{1} \circ h, \pi_{2} \circ h\right\rangle \\
& \gamma \| \| i d_{\pi_{1} ; \gamma \mid i d_{\pi_{2}} ; \gamma} \\
& \Downarrow \\
& k \xrightarrow[\tau_{k}]{ }\left\langle\pi_{1} \circ k, \pi_{2} \circ k\right\rangle
\end{aligned}
$$

commutes. So, there is a natural isomorphism $i d_{\times} \cong \mathbf{G} \circ \mathbf{F}$.
Let us define $\sigma: \operatorname{Hom}_{\text {Cat }}(X, A) \otimes \operatorname{Hom}_{\text {Cat }}(X, B) \rightarrow \operatorname{Hom}_{\text {Cat }}(X, A) \otimes$ $\operatorname{Hom}_{\text {Cat }}(X, B)$ as the arrow that takes (f, g) to $\left(\pi_{1} \circ\langle f, g\rangle, \pi_{1} \circ\langle f, g\rangle\right)$ and (α, β) to $\left(i d_{\pi_{1}} ;(\alpha \mid \beta), i d_{\pi_{2}} ;(\alpha \mid \beta)\right)$, for every object f and arrow α of $H o m_{C a t}(X, A)$ and every object g and arrow β of $\operatorname{Hom}_{\text {Cat }}(X, B)$. It is easy to see that this
arrow has an inverse and that

$$
\begin{aligned}
& \quad(f, g) \xrightarrow{\sigma_{(f, g)}}\left(\pi_{1} \circ h, \pi_{2} \circ h\right) \\
& (\alpha, \beta) \|\left(i d_{\left.\pi_{1} ; \gamma, i d_{\pi_{2}} ; \gamma\right)} \downarrow\right. \\
& \left(f^{\prime}, g^{\prime}\right)_{\sigma_{\left(f^{\prime}, g^{\prime}\right)}}\left(\pi_{1} \circ k, \pi_{2} \circ k\right)
\end{aligned}
$$

commutes. So, there is a natural isomorphism $i d_{\otimes} \cong \mathbf{F} \circ \mathbf{G}$.

