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A
Appendix

To say that the categories Homc, (L, X) and 1, the terminal category,
are equivalent is the same as to say that there exists an arrow from | to X
and, for every pair of arrows f,g: | — X, there exists a unique arrow from f

to g which is an isomorphism.

Proof. Let us first prove the definition from the equivalence: Let
F: Homca(L,X) — 1 be the functor that takes every object (1-cell)
1 — X to the unique 1-object * and every morphism (2-cell) to the identity
arrow * — * and let G: 1 — Homea (L, X) be the functor that takes the
1-object to an object of Homea: (L, X), let us say h, and the identity arrow
to idy: h — h. We show that idyom,,, = GoF.

Homeai(L, X) cannot be empty, otherwise there would not even exist
a bijection between it and 1. Let 7: Homea (L, X) — Homea (L, X) be a
morphism that takes every object to h and every morphism to id; and o its
inverse. Then

Tf

1L x 1My (A-1)

af
Ma UFG(a)idh
Tg

145 x. ~ 1 Mhx
Og

Given a pair f, g of objects, there exists a morphism from f to g, viz.,
0g - tdy, - Tf. We show now that this morphismis unique: suppose that there
exists two morphisms (o and ) from f to g. As the above diagram commutes
for every arrow from f to g, we have id, o7 = 7,0 and id, o Ty = 7503, i.e.,

Ty 0 =T, 0 [3 and, as 7, is an isomorphism, a = 3.

Now we show the equivalence form the definition: As Homcq:(L, X) has
at least one object, we can define functors F and G as in the first part of this
proof. As there exists arrows between every pair of objects, we can define a

diagram like (A-1) and the arrows being isomorphisms guarantee to us that
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every arrow from f to g corresponds to a unique arrow from h to h and

conversely.

0

67


DBD
PUC-Rio - Certificação Digital Nº 0711267/CA


PUC-Rio - Certificacéo Digital N° 0711267/CA

B
Appendix

To say that the categories Homca(X, A X B) and Homca (X, A) ®
Homca: (X, B) are equivalent is the same as to say that, for any f: X — A
and g: X — B, there exist h: X — A x B and isomorphisms 7 o h = f and
m 0 h = g such that, for all k: X — A x B and 2-cells a: 7y 0h = m 0k and
(: mg 0 h = my ok, there exist a unique v: h = k such that id,;y = « and

IidWQ;fy :/8'

Proof. First, we prove that the definition of 2-product comes from the equiv-
alence of the aforesaid categories:

As the categories are equivalent, there are functors F: Homcq (X, A X
B) —  Homcu(X,A) ® Homea(X,B) and G: Homeu(X,A) ®
Homeat (X, B) — Homea (X, A X B) such that idy = GoF and idg = FoG.

Let us define F as the functor that takes h to (m; o h,7y o h) and
v to (idg;7,idr,;7y) for every object (1-cell) h and arrow (2-cell) v of
Homeat(X, A x B) and let us define G as the functor that takes (f,g)
to (f,g9) and (o,() to a | 3, for every object (f,g) and arrow («, () of
Homeat (X, A) @ Homea (X, B).

Let f and g be objects such that f € Homcu(X,A) and g €
Homeat (X, B). Then, (f,g) € Homea (X, A X B). Let us take h = (f, g). As
idy = F oG, thenid(f,g) = (f.9) = FoG(f.9) =F((f,9)) = (moh,moh),
ie.,

f=moh (I) and g=meoh (II)

Let k be an object of Homca (X, AX B), a be an arrow of Homca (X, A)
such that o: m o h = 7 o k and [ be an arrow of Homcq:(X, B) such that
B:moh = myok.

As there is an arrow from f to m o h (from (I)) and a: m 0 h = m ok,
there is an arrow from f to 7 o k. As there is an arrow from ¢ to my o h

(from (II)) and (: m 0 h = my o k, there is an arrow from g to my o k. Thus,
(f,g) = (mok,mok) =k, ie., h= k.
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From the natural isomorphisms, we have that G is left adjoint to F.

Then,

(G(f,9),k) = ((f,9),Fk)
= ((f,9),(mok,m0ok))

—~

)

s}

~

N—
Il

Using (I) and (II), we have that
(Fra) ) = ((moh,moh), (m ok mok)

As for every arrow in ((f, g), k) there is only one arrow in ((m, o h,m 0
h),(m ok, m0k)) and conversely, we have that - is unique and, as both («, [3)
and (idy,;7,id,;7y) are arrows in ((m o h, meoh), (my 0k, m0k)), we have that

@ = idy;y and B = idxg,; .

Now we prove that the equivalence comes from the definition of 2-
product.

According to the definition of 2-product, we can define functors F
and G, such that G(f,g) = h, for every object (f,g) in Homca (X, A) ®
Homeat (X, B), and G(«, ) = v, for every arrow (a,3) in Homea (X, A) ®
Homeat (X, B) and F(h) = (id,, oh,id,,oh), for every hin Homecq. (X, Ax B),
and F(v) = (idx,;7,idr,; ), for every v € Homea (X, A x B).

Let us define 7: Homea: (X, A X B) — Homea(X, A X B) as the arrow
that takes h to (m o h,m 0 h) and 7y to id,, ;7 | ids,; ", for every object h and
arrow v of Homcai(X, A x B). It is easy to see that this arrow has an inverse
and that

h$<ﬂ'10h,’ﬂ'20h>

VH Uidﬂ Ylidrg 3y

]{;ﬁ-<7’(10k,ﬂ'20k>

commutes. So, there is a natural isomorphism id, = G o F.

Let us define 0: Homea (X, A) @ Homea (X, B) — Homea (X, A) ®
Homeq (X, B) as the arrow that takes (f, g) to (mo(f, g), mo(f,g)) and (o, )
to (idy,; (o | B),1dyy; (o | 3)), for every object f and arrow o of Homea: (X, A)
and every object g and arrow (3 of Homcq: (X, B). It is easy to see that this
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arrow has an inverse and that

(f,9) L% (71 0 h, 75 0 h)

(Oéﬂ)ﬂ U(idwl Ysidng3Y)
("9 )5 (mok,ma0k)

(f",9")

commutes. So, there is a natural isomorphism idg = F o G.
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