6 Computing homologies

In this section we compute the homologies $H_*(\mathcal{T}_\Lambda; \mathbb{Z})$ and $H_*(\mathcal{O}_\Lambda; \mathbb{Z}/2\mathbb{Z})$ via height functions \tilde{h}_D and h_D , the Toda Flow and Morse Theory. The approach is similar for both cases. Choose a real, diagonal matrix D with diagonal entries in (strictly) decreasing order for which the associated height function $h(S) = \operatorname{tr}(DS)$ (either \tilde{h}_D or h_D) has distinct critical values $c_{\pi} = \operatorname{tr}(D\Lambda^{\pi})$ indexed by permutations $\pi \in S_n^{-1}$. In particular, c_e and c_{\max} are respectively (global) minimum and maximum of h, where e is the identity permutation and $\pi_{\max}(j) = n + 1 - j$ is the reversal permutation. Take $\epsilon > 0$ such that, for all $\pi_1 \neq \pi_2$, $|c_{\pi_1} - c_{\pi_2}| > 2\epsilon$. As usual, we compute the homology of the nested manifolds with boundary $M_{\pi}^{\pm} = h^{-1}((-\infty, c_{\pi} \pm \epsilon])$. Clearly, $M_e^- = \emptyset$ and $M = M_{\max}^+$ is either \mathcal{T}_{Λ} or \mathcal{O}_{Λ} . Also, for consecutive values $c_{\pi_1} < c_{\pi_2}$, the manifolds $M_{\pi_1}^+$ and $M_{\pi_2}^-$ are diffeomorphic (10). The homologies of M_{π}^- and M_{π}^+ are related by the long exact sequence (9) of the pair (M_{π}^+, M_{π}^-) :

Here $A = \mathbb{Z}$ (resp. $\mathbb{Z}/2\mathbb{Z}$) for $M = \mathcal{T}_{\Lambda}$ (resp. \mathcal{O}_{Λ}). If the critical point Λ^{π} has index i, M_{π}^{+} is homotopically equivalent to a space obtained from M_{π}^{-} by attaching an i-cell (10). This allows us to compute the relative homology of the pair $(M_{\pi}^{+}, M_{\pi}^{-})$:

$$H_k(M_\pi^+, M_\pi^-; A) \simeq H_k(\mathbb{B}^i, \mathbb{S}^{i-1}; A) \simeq \begin{cases} A & \text{if } k = i, \\ 0 & \text{if } k \neq i. \end{cases}$$

¹Notations and facts about permutations are given in Appendix 8.5

Lemma 20 Let i be the index of the critical point Λ^{π} . Then the connecting homomorphism $\partial: H_i(M_{\pi}^+, M_{\pi}^-; A) \to H_{i-1}(M_{\pi}^-; A)$ is zero.

Proof: We first recall the topological meaning of the connecting homomorphism ∂ . Start with an element a of $H_i(M_{\pi}^+, M_{\pi}^-; A)$: a representative of a is given by a linear combination \tilde{a} of i-simplices in M_{π}^+ with boundary contained in M_{π}^- . The boundary \tilde{b} of \tilde{a} (a linear combination of i-1 simplices, the faces) is clearly closed in $C_{i-1}(M_{\pi}^-)$ and therefore represents an element $b \in H_{i-1}(M_{\pi}^-; A)$: b is ∂a . In our context, we may take \tilde{a} to be the closure of $W_s(\Lambda^{\pi}) \setminus M_{\pi}^-$ and therefore \tilde{b} is the intersection of $W_s(\Lambda^{\pi})$ with the boundary of M_{π}^- .

In the case \mathcal{T}_{Λ} , Theorem 17 implies that the closure of $W_s(\Lambda^{\pi})$ is a compact orientable manifold N_{π} : \tilde{b} is the boundary of $N_{\pi} \cap M_{\pi}^-$ and therefore exact in $C_{i-1}(M_{\pi}^i)$. Thus, in this case, $\partial = 0$.

From Morse theory, $H_*(\mathcal{O}_{\Lambda}; \mathbb{Z}/2\mathbb{Z})$ is spanned by the stable manifolds $W_s(\pi)$ associated to the critical points Λ^{π} of the Toda flow. The closures of $W_s(\pi)$ are *not* manifolds with boundary, but they are still homotopic to polyhedra.

The Bruhat ordering $\tilde{\pi} \leq \pi$ is equivalent to the inclusion $W_s(\tilde{\pi}) \subset \overline{W_s}(\pi)$. Also, by Proposition 19, if $W_s(\tilde{\pi}) \subset \overline{W_s}(\pi)$ and the dimensions of $W_s(\tilde{\pi})$ and $W_s(\pi)$ differ by one then $\tilde{\pi}$ is an immediate predecessor of π . Said differently, in order to study the connecting homomorphism $\partial: H_k(M_{\pi}^+, M_{\pi}^-) \to H_{k-1}(M_{\pi}^-)$ it suffices to study $W_s(\pi)$ in a neighborhood of each $W_s(\tilde{\pi})$, $\tilde{\pi}$ an immediate predecessor of π .

We show the triviality of the connecting homomorphism ∂ in a sufficiently rich example. Let $\tilde{\pi}$ and π be given by

The fact that the interior of the rectangle with underlined vertices contains no nonzero entries indicates that $\tilde{\pi}$ is an immediate predecessor of π . The set $\mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$ is an open neighborhood of $W_s(\tilde{\pi})$: we shall study the sets $W_s(\tilde{\pi})$ and $W_s(\pi) \cap \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$.

For $S = Q^T \Lambda Q \in \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$, write $Q = P_{\tilde{\pi}} L_{\tilde{\pi}} U_{\tilde{\pi}}$; conversely, given

let $Q = \mathbf{Q}(\tilde{L})$ and $S = Q^T \Lambda Q$ thus defining a diffeomorphism ξ from $\mathbb{R}^{n(n-1)/2}$ to $\mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$. Recall that $S = Q^T \Lambda Q$ belongs to $W_s(\tilde{\pi})$ (resp. $W_s(\pi)$) if and only if $\mathcal{B}_{SW}(Q) = \mathcal{B}_{SW}(P_{\tilde{\pi}}L_{\tilde{\pi}}) = P_{\tilde{\pi}}$ (resp. $\mathcal{B}_{SW}(Q) = \mathcal{B}_{SW}(P_{\tilde{\pi}}L_{\tilde{\pi}}) = P_{\pi}$). Thus, $W_s^{\tilde{\pi}}$ is the image under ξ of the subspace

$$\tilde{L} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & 1 \\ x_{21} & x_{22} & \underline{\mathbf{1}} & & & & \\ 1 & & & & & & \\ 0 & 1 & & & & & \\ 0 & 0 & 0 & 0 & x_{55} & x_{56} & 1 \\ 0 & 0 & 0 & 0 & x_{65} & x_{66} & 0 & 1 \\ 0 & 0 & 0 & 0 & x_{75} & \underline{\mathbf{1}} & & \\ 0 & 0 & 0 & 0 & 1 & & \end{pmatrix},$$

where x_{ij} is arbitrary if its row (resp. column) contains a 1 to its right (resp. below), or, equivalently, if $(j, \tilde{\pi}^{-1}(i))$ is an inversion of $\tilde{\pi}$. Similarly, $W_s^{\pi} \cap \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$ is the image under ξ of

$$\tilde{L} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & 1 \\ x_{21} & x_{22} & \underline{\mathbf{1}} \\ 1 & & & & \\ 0 & 1 & & & \\ 0 & 0 & x_{73}x_{56} & 0 & x_{55} & x_{56} & 1 \\ 0 & 0 & x_{73}x_{66} & 0 & x_{65} & x_{66} & 0 & 1 \\ 0 & 0 & \underline{x_{73}} & 0 & x_{75} & \underline{\mathbf{1}} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad x_{73} \neq 0.$$

Indeed, for all such matrices \tilde{L} , we have $\mathcal{B}_{SW}(\tilde{L}) = P_{\pi}$, proving that the image is contained in $W_s^{\pi} \cap \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$. Conversely, given \tilde{L} with $\mathcal{B}_{SW}(\tilde{L}) = P_{\pi}$ (so that $\xi(\tilde{L}) \in W_s^{\pi}$), we must show that \tilde{L} has the form above. For instance,

 $(r_{SW}(\tilde{L}))_{41} = (r_{SW}(\tilde{L}))_{52} = (r_{SW}(\tilde{L}))_{84} = 0$ imply that $(\tilde{L})_{ij} = 0$ for entries 41, 51, 61, 71, 81, 52, 62, 72, 82, 83, 84. On the other hand, $(r_{SW}(\tilde{L}))_{73} = 1$ implies $(\tilde{L})_{73} = x_{73} \neq 0$. From $(r_{SW}(\tilde{L}))_{24} = 3$ and the fact that the first three entries of rows 2, 3, 4 are linearly independent it follows that $(\tilde{L})_{ij} = 0$ for entries 54, 64, 74. Finally, $(r_{SW}(\tilde{L}))_{56} = 2$ implies the indicated values at entries 53, 63.

In general, free entries for $\xi(\tilde{L}) \in W_s(\tilde{\pi})$ remain free for $\xi(\tilde{L}) \in W_s(\pi)$. Also, the south-west corner of the underlined rectangle becomes free and nonzero. Some entries which were zero for $\xi(\tilde{L}) \in W_s(\tilde{\pi})$ become smooth functions of the free entries.

Thus, the triple $W_s(\tilde{\pi}) \subset \overline{W_s}(\pi) \cap \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}} \subset \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$ is diffeomorphic to $\mathbb{R}^{i(\tilde{\pi})} \subset \mathbb{R}^{i(\pi)} \subset \mathbb{R}^{n(n-1)/2}$. Thus, Bruhat cells of codimension 1 always come up in pairs and since we are working with coefficients in $\mathbb{Z}/2\mathbb{Z}$, $\partial = 0$.

Theorem 21 Let m_k (resp. n_k) be the number of permutations $\pi \in S_n$ with k inversions (resp. descents). Then

$$H_k(\mathcal{O}_{\Lambda}; \mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})^{m_k}, \quad H_k(\mathcal{T}_{\Lambda}; \mathbb{Z}) = \mathbb{Z}^{n_k}.$$

Proof: Again, say Λ^{π} is a critical point of index *i*. Suppose first that $k, k+1 \neq i$: from the long exact sequence of the pair, we obtain

$$0 \longrightarrow H_k(M_{\pi}^-; A) \longrightarrow H_k(M_{\pi}^+; A) \longrightarrow 0$$
,

which implies that $H_k(M_{\pi}^-; A) \simeq H_k(M_{\pi}^+; A)$. Now, if k + 1 = i, from the triviality of ∂ proved in Lemma 20, the sequence

$$H_i(M_{\pi}^+, M_{\pi}^-; A) \simeq A \xrightarrow{\partial} H_{i-1}(M_{\pi}^-; A) \longrightarrow H_{i-1}(M_{\pi}^+; A) \longrightarrow 0.$$

yields $H_{i-1}(M_{\pi}^-; A) \simeq H_{i-1}(M_{\pi}^+; A)$. Finally, if k = i, again from Lemma 20, we obtain an exact sequence at the three intermediate stages,

$$0 \longrightarrow H_i(M_{\pi}^-; A) \longrightarrow H_i(M_{\pi}^+; A) \longrightarrow A \stackrel{\partial}{\longrightarrow} 0.$$

Since A is a free A-modulus, the sequence splits and

$$H_i(M_\pi^+; A) \simeq H_i(M_\pi^-; A) \oplus A.$$

Thus, a critical point of index i contributes (freely) with a generator of $H_i(M; A)$ and the theorem is proved.