7
 Tightness and Tautness

A linear height function is the signed distance of points in a manifold $M^{n} \subset \mathbb{R}^{m}$ to a hyperplane in \mathbb{R}^{m}. An immersion $f: M^{n} \rightarrow \mathbb{R}^{m}$ is tight if every non-degenerate linear height function has precisely the minimum possible number of critical points on $\mathrm{M}(1)$. More precisely, by making use of the Morse inequalities (10), the number of critical points of index k has to be equal to the dimension of $H_{k}(M ; \mathbb{R})$.

A distance function is the square of the Euclidean distance between points in $M^{n} \subset \mathbb{R}^{m}$ and a given point $p \in \mathbb{R}^{m}$. An immersion $f: M^{n} \rightarrow \mathbb{R}^{m}$ is taut if every non-degenerate distance function has precisely the minimum possible number of critical points on M (2).

It turns out that, in an isospectral scenario, the two concepts are equivalent.

Proposition 22 If M is an isospectral manifold, tightness and tautness are equivalent properties.

Proof: We compare the height and distance functions $h_{N}: S \rightarrow\langle S, N\rangle$ and $L_{N}: S \rightarrow\|S-N\|^{2}$. Since $L_{N}(S)=\langle S-N, S-N\rangle=\langle S, S\rangle-2\langle S, N\rangle+\langle N, N\rangle$, and $\langle S, S\rangle$ is constant throughout M,

$$
D L_{N}(S)=-2 D h_{N}(S) .
$$

Thus the critical sets of h_{N} and L_{N} are equal.

A subset M of \mathbb{R}^{n} has the two-piece property (TPP) if, for every hyperplane \mathcal{P} in \mathbb{R}^{n}, the complement $M \backslash \mathcal{P}$ contains at most two connected components. As shown in (2), an equivalent formulation of the TPP for a compact connected smoothly immersed manifold M is the following: every non-degenerate linear height function on M has precisely one local minimum and one local maximum. Said differently, for such functions, a local extremum is necessarily global.

Proposition 23 In a compact, connected, oriented manifold, tightness implies TPP.

Proof: The hypotheses imply that $H_{0} \simeq \mathbb{Z} \simeq H_{n}$. The Morse inequalities (10) and tightness are sufficient to conclude that an arbitrary non-degenerate linear height function has exactly one local maximum and one local minimum.

Proposition 24 The natural immersion of \mathcal{O}_{Λ} into \mathcal{S}_{n} satisfies tightness, tautness and the TPP.

Proof: We compute the critical set \mathcal{C}_{N} of a height function $h_{N}(S)=\operatorname{tr} N S$. Diagonalize $N=Q^{T} D Q$, with Q orthogonal and D a diagonal matrix with entries in descending order. Let $h_{D}(S)=\operatorname{tr} D S$ with critical set \mathcal{C}_{D}. Clearly the map $M \rightarrow Q M Q^{T}$ is a bijection from \mathcal{C}_{N} to \mathcal{C}_{D} respecting indices.

From Corollary 13, h_{D} is a Morse function when the diagonal entries of D are distinct and, moreover, the number of critical points of index k is $m(k)$. From the Morse inequalities applied to homology coefficients in the field $\mathbb{Z} / 2 \mathbb{Z}$, the number of critical points of index k of a Morse function are bounded below by the $\mathbb{Z} / 2 \mathbb{Z}$-Betti numbers, which are also given by $m(k)$, by Theorem 21 . Equality of both numbers implies tightness. When the entries of D are not distinct, a simple computation shows that h_{D} is not a morse function.

Tautness and TPP follow from the propositions above.

Figure 7.1: A 3d rendition of \mathcal{T}_{Λ} for $\Lambda=\operatorname{diag}(4,5,7)$

Proposition 25 The natural immersion of \mathcal{T}_{Λ} into $\mathcal{T}_{n} \cap \mathcal{S}_{n}$ is not tight. Still, the height function h_{D}, for $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1}>\ldots>d_{n}$ is perfect, in the sense that it has the minimal number of critical points of each index.

Proof: We consider the 3×3 case. Within the 9 -dimensional vector space of 3×3 matrices endowed with the usual inner product $\langle A, B\rangle=\operatorname{tr} A^{T} B$, consider the 5 -dimensional subspace \mathcal{V} of real, symmetric, tridiagonal matrices.

Set $\Lambda=\operatorname{diag}(7,5,4)$: the manifold \mathcal{T}_{Λ} lies in the 4 -dimensional subspace \mathcal{V}_{16} of matrices with trace equal to 16 . Since the sum of squares of entries of matrices in \mathcal{T}_{Λ} is $7^{2}+5^{2}+4^{2}, \mathcal{T}_{\Lambda}$ actually lies in a 3 -sphere of radius $3 \sqrt{10}$. The stereographic projection now takes this sphere to standard \mathbb{R}^{3} (with a point at infinity) and \mathcal{T}_{Λ} may be represented as in figure (7).

Clearly, there are (generic) 2-planes tangent to the bitorus at more than one point. Pulling back such planes by the stereographic projection, one finds 2 -spheres in \mathcal{V} which are sections of 4 -spheres, which in turn can be interpreted as levels of a distance function with two local maxima in \mathcal{T}_{Λ}.

To show that h_{D} is perfect under the hypothesis above for D, proceed as in the proposition above: the number of critical points of index k equals the k-th Betti number.

The picture appears in (8), as an application of triangular coordinates, used to provide charts on \mathcal{I}_{Λ}. The gaps indicate the position of matrices which are not unreduced.

There is an interesting connection between the above proposition and some problems in numerical spectral theory: height/distance functions have unique local extrema. In a sense, such problems behave as well as optimization problems under convexity hypothesis - a steepest descent/ascent method always leads to the solution.

Say, for example, that one searches for a matrix $S \in \mathcal{S}_{n}$ with fixed given spectrum and smallest $(1, n)$ - coordinate. It is not hard to see that this is equivalent to searching for a matrix in \mathcal{O}_{Λ} which minimizes the height function to the hyperplane of matrices perpendicular to $E_{1, n}+E_{n, 1}$ ($E_{i, j}$ is the matrix whose only nonzero entry, equal to one, is in position $(i, j))$. This height function turns out not to be Morse, but its set of minima is connected (not necessarily a singleton! Indeed, it is not a single matrix in this case) and may be reached by a steepest descent type of algorithm.

Another natural question is the following. Given two matrices $S, S^{\prime} \in \mathcal{O}_{\Lambda}$ with corner entries $S_{1, n}, S_{1, n}^{\prime} \leq C$, is there a path joining them in \mathcal{O}_{Λ} so that the corner entries are always bounded by C ? The answer is yes, as implied by the TPP.

