
A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

124

7 LogTell-R Architecture

7.1.Chapter Preface

The main goal of this article is to provide an overview of the LogTell-R system,

the considerations taken into account when developing it, and the responsibilities

of its different modules. Along with the description of the system components,

three usage scenarios are described to highlight some of the system’s main

features from a user point of view.

This text was initially written to appear as a standalone technical report and,

later, as part of a paper on LogTell-R’s extensions to fully implement player

mode interaction. It remained an unpublished manuscript prior to this thesis.

7.2.Introduction

A software architecture should lend itself to incremental implementation via the

creation of a "skeletal" system in which the communication paths can be

exercised, but which at first has minimal functionality [Bass et al. 2003]. This

skeletal system can then be used to develop the system gradually.

The high-level architecture of LogTell-R attempts to provide a good

separation of concerns between the modules involved in the problem of story

craft [Karlsson et al. 2009b], while keeping in mind the possible addition, in the

near future, of player interaction during dramatization. We believe that this

ultimate goal should be attainable, since it is within the reach of the extended

conceptual model (and in view of the facilities implemented to support it), with

minor changes to the system.

The process of developing this infrastructure was guided by four overarching

considerations:

- Separation of concerns between the different sub-problems of story craft;

- Maximum opportunities for interaction as player, with minimal changes to

the author-mode architecture;

- Software maintainability and scalability to address future needs; and

- Authorability with respect to content.

7.3.Architecture Overview

The four major modules of LogTell-R are: Knowledge Base Editor, Context

Control Module (CCM), Plot Manager (PM), and Drama Manager (DM).

Basically their responsibilities are divided as following: our proof-of-concept

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

125

editor allows the creation of pieces of data to be stored in the knowledge base

(KB) repository; CCM controls access to the KB and to the plot model; PM deals

with plot-level decisions; and DM deals with the narration of stories and the

presentation decisions (story-level and text-level).

Although many works that mix storytelling and game features sometimes

refer to plot managers as drama managers [Roberts and Isbell 2007], we chose to

preserve the distinction between the two, following the breakdown of the story

craft problem into its more manageable sub-parts presented in [Karlsson et al.

2009b].

We also pay attention, wherever possible, to issues related to the development

of tools for non-technical users. Content, in particular, is a key point in movies

and games � and so it is in any Interactive Storytelling application. However, we

do not claim that our tools have reached a satisfactory degree of usability as of

yet.

By refactoring the system to better separate concerns between the different

modules, adding a bi-directional communication channel between the Drama

Manager and the Plot Manager, and trying to apply simple integration patterns,

we achieve a more flexible architecture which, with few extensions, can support

both author and player interaction.

Figure 7.1: LogTell-R architecture overview and user roles.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

126

The use of LogTell-R is basically divided in two stages:

• Creation/manipulation of the story space context (conceptual model and

additional data); and

• Usage of Plot Manager over the defined context to create stories,

interactively.

The Plot Manager is intended for use directly through its user interface (UI) in

author mode or programmatically by Drama Manager in player mode. A

diagram of the architecture is shown in Figure 7.1. The hashed areas under

Drama Manager are not currently fully implemented.

7.3.1.Knowledge Base Editor

The knowledge base comprises all the available knowledge data, not necessarily

stored in the same place or available to every program module. Ideally, any sort

of manipulation of the knowledge base should be properly assisted by authoring

tools, in order to help prospective authors in creating the system story space with

as little effort as possible. This is important to make the underlying complexity of

the knowledge base transparent to authors, especially if complex logic models or

specialized programming languages are utilized.

For our current prototype, we created a proof-of-concept editor to be used

when performing some tasks over the KB. The main goal of this editor is to allow

an author to experiment with the conceptual model and to construct a hierarchy

of typical plans.

The creation of the hierarchy makes use of PMA [Karlsson et al. 2009a],

supported by a simple planner to check pre- and post- conditions of operations,

and some template-based facilities to express plot events in textual format. This

allows one to more easily try and experiment with different chains of events,

before generating the hierarchy of typical plans that will later be used during the

composition and adaptation of plots.

The user can at any time visualize the created hierarchy. The user interface of

the editor shows the list of plot events in the dynamic scheme, a list of PMA

operations, and the describing PMA formula defined so far.

Moreover, when an algebra operation is performed, the editor may query the

user for metadata, in order, for example, to give a name to a new complex

operation resulting from the union of two alternatives, or to indicate what fact,

relationship or attribute will determine the removal of a sequence of events via

the difference operation.

The editor also allows editing operations in the dynamic schema of the

conceptual model, primarily in regard to their pre- and post- conditions (in turn,

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

127

based on the static schema), but also with respect to composition relations

between operations.

In the case of the special operations that represent motifs, the editor also asks

the user to associate the motif operation with Lua scripts, to be used in

controlling the behaviour of each character involved in its dramatization.

Finally, the editor translates the edited context data into a XML representation

and creates the necessary Prolog files.

7.3.2.Prolog Module

The Prolog Module is exclusively accessed by the Plot Manager, given that no

other module in the system should make direct use of the Interactive Plot

Generator (IPG).

The Prolog module encapsulates IPG instances and translates the Prolog

clauses into a more abstract Plot Model, which is used by the higher-level system

elements. In this way we avoid passing Prolog clauses around and concentrate

the effort of parsing responses from the Prolog engine in only one place.

One additional benefit is that, if the specific Prolog implementation is

changed, maintenance impacts are restricted to the Prolog Module. To enhance

this loose coupling, all communications between the Prolog Module and the Plot

Manager happen via a message passing system (to be described later).

Handling the abstract Plot Model is a responsibility of CCM, as other modules

may also need access to it. Another responsibility of the Prolog Module is

handling the plan recognition routines. In doing so, it behaves in the same way as

when dealing with plan generation.

It is interesting to note that, while recent efforts exist [Ramírez and Geffner

2009] to narrow the gap between plan recognition and planning � treating plan-

recognition as a planning problem �, work in plan-recognition proceeds using

mostly handcrafted libraries or algorithms that are not directly related to

planning (significant examples can be seen in [Kautz and Allen, 1986; Lesh and

Etzioni, 1995; Avrahami-Zilberbrand and Kaminka, 2005]). Our approach, as

available in IPG, is also based on plan libraries (specifically [Kautz 1991]).

7.3.3.Context Control Module (CCM)

The CCM implements a repository-style facility [Garlan and Shaw 1994], with

two kinds of components: a central data repository, and a collection of

independent components to operate on this data store.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

128

CCM encapsulates the KB and is responsible for providing defined interfaces

to access its data. Among other items, it keeps the Plot Model, an abstraction

from our lower level representation of plots in Prolog.

As IPG needs a Prolog representation of the genre context during runtime,

Plot Manager (PM) queries CCM for it, which in turn and passes the context back

to the Prolog Module. Because of this duplication, in order to maintain

consistency between IPG’s and CCM’s views of the storyworld, every time IPG

performs a planning step the CCM is notified (by PM) about the changes

affecting the current facts. Similarly, if some event happens in the storyworld and

IPG is not aware of it, the CCM will send the relevant information to be asserted

into the Prolog Module.

We decided to cleanly separate plot model and controller logic for the sake of

increased maintainability. As the Plot Manager is the only module that accesses

IPG, being therefore the module directly in charge of building the plots, the

controller logic is its responsibility. Since other modules need to query the Plot

Model to perform their tasks, the plot model stays under CCM’s responsibility.

Finally, CCM only deals with assets (models, textures, scene definitions) on

the same level as LOGTELL’s original Drama Manager, described in [Pozzer

2005]. Consequently, the interface for accessing this information needs to be

changed in order to comply with the requirements of the new graphics engine

(Unity 3D [Unity]).

7.3.4.Plot Manager

The Plot Manager (PM) can be seen as a tool for the creation of stories at the

fabula level, and must guarantee that stories satisfy some specified constraints,

such as those related to the conventions of a given genre. In LogTell-R, the same

as in LOGTELL, the craft of plots is still pursued in a stepwise fashion.

It is important to note that the description of a storyline at the fabula level is

always expected to look much simpler than at the story/text level. This is what

justifies the use of a planning system, duly programmed to avoid any

unnecessary overloading, to be judiciously intercalated with the author’s direct

participation.

Author interaction happens through the Plot Manager’s user interface, and the

overall plot composition process takes the form of successive cycles of goal-

inference, planning, plan recognition, and user intervention. In addition, in order

to allow the Drama Manager (DM) to also send commands to PM, we provide

means of programmatically controlling plot generation. As a consequence, we

designed LogTell-R’s Plot Manager to operate in two ways: via a Graphical User

Interface (GUI) or as an “automatic” process. Both implementations extend an

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

129

abstract Plot Manager interface and use the same Plot Controller to manipulate

the Plot Model.

In autonomous mode the process of composition continues by inferring new

goals from the situations generated in the first stage, when notified by the DM.

Another LOGTELL-related work [Camanho et al. 2009] has also pursued similar

efforts with a continuous narration flow that uses multiple instances of IPG.

Further implementation is necessary in our system to deal with more than one

instance of IPG.

One limitation of the autonomous mode is that the event to be used next in the

plot is randomly selected from among the available alternatives. This selection

could certainly be improved by the use of adequate heuristics to evaluate the

“interestingness” of using each event.

When using Plot Manager via its GUI, an author is allowed to also resort to

plan-recognition during plot composition and adaptation (this feature is

described in more detail in [Karlsson et al. 2006a, Karlsson et al. 2010a]).

Also, the GUI allows the insertion of special operations representing motifs in

the plot to introduce shifts in the story context. PM loads the list of available

motifs from the CCM and shows it to the author. When the author selects the

motif to be inserted, a new item corresponding to it is loaded into the dynamic

schema used by IPG. As an enhancement to the current implementation, it

should be possible to annotate those special items with additional information, to

signalize to IPG how they should be treated, distinctively from the regular

operations.

In general, a Plot Manager might also have the ability to set restrictions that

prepare for the narration. However, the final presentation order and timing of

the events should be stipulated by the story narrator (as long as it does not

violate any of the constraints imposed in the course of plot generation).

7.3.5.Message-passing Bus

As a mechanism to increase flexibility and avoid tightly coupled system

elements, we make use of a message passing bus to integrate different services.

Event-based mechanisms such as this allow implicit invocation; one system

element does not need to know about the internals of another. Any new element

being integrated into a system can easily be introduced, simply by registering for

the documented events generated by that system.

A second benefit is that implicit invocation eases system evolution [Sullivan

and Notkin 1990], which is one of the goals of our architecture.

To implement this mechanism, two elements were added to our system: an

event queue and a simple event processing engine. This same mechanism

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

130

implementation has been applied between AI middleware and 3D engine in

[Karlsson 2005].

7.3.6.Drama Manager

Basically the Drama Manager is the module responsible for the dramatization of

a plot. In the original LOGTELL prototype it was responsible for dramatizing

plot events and synchronizing characters’ actions and the graphical

representation. In doing so, the Drama Manager (DM) included an agent model

implemented by hard-coded state machines. DM features also included a set of

camera-placement techniques and an in-house built graphics engine.

One of our goals here was to decouple the Drama Manager sub-components

to ease maintenance and to facilitate the addition of new features to enrich plot

dramatization.

As the Drama Manager is responsible for story visualization, it should focus

on story-level decisions, leaving media-specific decisions or low-level concerns to

sub-modules.

We break down DM into three auxiliary sub-modules and one external

element:

- Story Director;

- Game Master;

- AI middleware; and

- Graphics engine (external).

The Drama Manager is then responsible for dealing with how to transform plot

(at Bal’s fabula level) into narration (Bal’s story level) and for coordinating AI,

graphics, storyworld management, camera placement, etc.

As described in [Karlsson et al. 2009b], it is also part of the role of the story

narrator to define the degree of freedom that the player will have when

interacting with the story. When dealing with audience interaction, for instance,

it is important to establish that any change to the plot is performed by the Plot

Manager. If any unplanned change happens, DM must interact with PM. This

way, the DM can be seen as a mediator between the plot generation engine and

the audience, which allows for great flexibility in handling different approaches

for audience interactivity.

The Story Director deals primarily with conventions of exhibition media. The

Game Master deals with storyworld management. In order to make it more

flexible, lower-level character behaviours are moved to a separate AI

middleware under its control. The graphics engine handles physics and visuals

(effects, particle systems, etc.), and possibly the player user-interface.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

131

It is only natural to use conventions from cinema (pacing, establishing shots,

etc.) in dramatizing a plot in a 3D world, especially for a passive audience.

Our current proposal for this area could also be integrated with the

cinematography director in [Lima et al. 2009]; whose responsibilities are divided

into Scriptwriter, Scenographer, Director, and Cameraman. The scriptwriter in

our system is the Drama Manager itself, dealing with how to present a story; and

the scenographer is the Game Master, as it is the module responsible for

instantiating agents and managing the Storyworld and its entities. The Story

Director can centralize the cinematography knowledge and is responsible for

deciding how to best present story events (scenes). We can use the idea of a

coordinating Cameraman, who instantiates different cameras and waits for

director’s input.

Specific motifs can also act as dramatization tools, to solve the problem of how

to narrate specific events. One example is life token, where an object aspect

changes appearance, thus solving the problem of how the hero could learn that

the princess was in distress.

As briefly mentioned, the Game Master is responsible for controlling certain

aspects of the storyworld, relieving the load usually imposed on the Drama

Manager. Consequently it also coordinates with the AI and graphics engines.

As stated by Cook [2009] when talking about tabletop RPGs, the GM works

with players to create the story, adding random encounters, creating and

controlling minor characters (extras) in the story – even animals and monsters –

and generally behaving as improvisational actor. The GM can also take care of

the game/world internal mechanics, dealing with rules, combat outcomes,

results of actions, etc.

The PM can totally ignore these extras, since only as groups they have some

influence over the plot conduction.

The degree of autonomy granted to extras leaves them free to perform certain

actions, such as walking in the game world pursuing their own business. When

required to participate in some plot event, which has always a higher priority,

the Game Master (through, for example, an auxiliary AI middleware) makes

them interrupt momentarily whatever they were doing.

One such AI middleware that fits our architecture is MIAGI [Karlsson 2005]. It

offers a series of facilities (such as an agent model; different options for character

behaviour implementations: simple goal-planning, FSMs, and fuzzy rules;

scripting in Lua; layered character movement features) that can be used to

control low-level behaviours of the main characters and to give more life to the

environment by providing autonomous supporting characters.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

132

MIAGI’s agent model includes a plug-in mechanism for easily integrating new

ways to implement character behaviours. The plug-in structure allows one to

easily replace implementation of any behaviour component or to add alternative

implementations.

Another advantage of using a middleware component is to help alleviate part

of the burden within the production pipeline. Middleware provides a baseline of

tools that support the growing complexities of development [Meloni 2009], thus

allowing resources to be focused on content quality.

The proposed architecture also allows extending the GM module to assume

some additional responsibilities in future versions, such as:

- Act as a semi-autonomous mediator between players and the Drama

Manager, in the role of a tabletop RPG-inspired agent, solving some

interaction issues via heuristics [Laws 2001]. Ongoing efforts to quantify

and categorize these repertoires of “rules” could be very useful in further

pursuing this direction;

- Respond to events happening in the environment (via triggers associated

with certain actions or areas in the game world); and

- Use plan-recognition against plan libraries to try and predict the goals

being pursued by players and try to adapt to them. While usually a non-

trivial problem in general, plan-recognition is particularly interesting in a

system that uses a plot model. The dramatic structure of a plot greatly

simplifies the problem of determining a user/player’s plan and if it might

interfere with some plot event.

7.4.System Usage Scenarios

In order to briefly illustrate the use of LogTell-R core functionalities in author

mode, we shall describe here its three main usage scenarios:

1- Interacting with LogTell-R’s Plot Manager UI using its plan

generation/recognition facilities as support in creating a plot;

2- Interacting with LogTell-R’s Plot Manager UI inserting motifs at the

appropriate point in a plot being created; and

3- Using the knowledge base editor to create the hierarchy of typical plans to

be used as support when authoring plots.

Even though the knowledge base editor is only a proof-of-concept

implementation and its UI needs a thorough redesign, its implementation helps

envision the usage of PMA [Karlsson et al. 2009a] in LogTell-R and brought

valuable insight into the requirements for such editing tools.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

133

In all three scenarios presented here we make use of the same conceptual

model specification of a Swords & Dragons genre. A description of the logic

context for this model can be found in [Karlsson et al. 2006a] and [Karlsson and

Furtado 2010a].

An example plot, as generated by LogTell-R over this genre, tells the classical

happy-ending story: "Marian, the princess, dismisses some of her guards, causing

the protection of her castle to be reduced. Draco, the dragon, regards that as an

opportunity to kidnap her. Draco then goes to Marian's Castle, attacks the castle

and kidnaps Marian. As a noble knight, Brian feels compelled to save her. But,

before that, he needs to ask for Turjan's magic to increase his strength. He then

goes to Draco's Castle, attacks the castle and fights Draco. He kills Draco and

frees Marian, who starts loving her saviour. Motivated by their mutual affection,

Brian and Marian go to the church and marry each other. And they live happily

ever after."

7.4.1.Using Plan Generation / Recognition

One possible way to start composing this plot is to ask the planning system to

start generating a plot from the initial state of the world. According to the goal-

inference rules in the behavioural schema of the conceptual model, this would

possibly cause the princess to dismiss the guards, reducing the protection of the

castle. Draco will then attack the weakened castle and Brian will ask the magician

for strength (as shown in the plot generated so far in Figure 7.2).

The author of the story could go on using only the plan generation features of

the system (as in LOGTELL [Ciarlini et al. 2005]), but let’s assume that he is not

sure about how to proceed to create an interesting story.

Figure 7.2: Plot Manager showing selected events for plan recognition.

In LogTell-R the author can ask the system to use plan recognition against a

library of typical plots to suggest events to be included in the plot being

composed. The author can select events from the plot composed so far and ask

the system for “plot pieces” (or complex events) that include the selected events.

For example, the author selects the reduce_protection and attack events (shown in

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

134

orange in Figure 7.2) and issues the recognize command by clicking on the

appropriate button in Plot Manager’s UI.

Plot Manager will then show the Hierarchy of Typical Plans in a separate

window with the higher-level event containing the selected events marked in red

and the remaining component events in orange. In our example, the system will

identify that the selected events can be part of the higher-level abduct event,

marked in red (which in turn is an event of the type do_villainy, also in red) and

that the kidnap event, marked in orange, is the missing event to complete the

abduct event. This result can be seen in Figure 7.3; blue edges denote part_of

relations and red edges denote is_a relations among events in the hierarchy.

Figure 7.3: Plan hierarchy window in LogTell-R with highlighted events.

After deciding that this is the plot piece he wants, the author can click OK and

the system will include the events marked in orange into the plot. In our

example, the kidnap event will be added to the plot. The author can go on making

alternate use of plan generation, plan recognition, and manual interference steps

in composing the plot until its happy ending.

7.4.2.Using Motifs

In order to illustrate LogTell-R’s support for antithetic relations, let’s branch from

the previously described story when Brian attacks the dragon castle.

In our first example the knight attacks the dragon’s castle and kills the dragon.

The story author could decide, instead, that Brian should not go alone and that

his helper – Hoel - is the one that manages to kill the dragon and free the princess

(as shown in Figure 7.4).

As we know from the genre conceptual model, if the victim of the kidnapping

is freed, she’ll fall in love with her savior. Thus if Hoel frees Marian, she’ll fall in

love for him, not for Brian.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

135

Figure 7.4: Example generated story where two knights help save the princess.

But Brian is the main character in the story so far. If the story author wants

him to be part of the happy ending with Marian, we need some means to

reconcile their amorous attachments.

For such cases, involving the addition of events that would not normally

follow from the preceding ones, LogTell-R allows the selection of a motif (from a

pre-defined set) to be inserted into the appropriate spot, thus making the

sequence possible. In the described case, the love_potion motif could be used to

make one character fall in love for the other.

The author can then use the Insert Motif command (through the dialog

shown in Figure 7.5) to strongly interfere with the plot, inserting the special event

where needed.

Figure7.5: “Insert Motif” dialog.

After inserting a motif, the author asks the system to validate the insertion

(continue command) and goes on with the creation of the plot via plan

generation/recognition.

In our example, after Hoel frees the princess, Brian gives her a potion that

makes her fall in love for him. Due to their new mutual affection, Brian and

Marian go to the church and get married. This sequence of events is shown in

Figures 7.6 and 7.7.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

136

Figure 7.6: Example story with the insertion of a special event (motif).

Figure 7.7: Example story containing motif.

7.4.3.Creating the Hierarchy of Typical Plans

While the knowledge base editor allows editing the schemas and operations in

the conceptual model of the genre, its main use case is allowing the creation and

exploration of the story space encompassed/defined by the genre.

LogTell-R’s approach is that the conceptual model of a genre represents the

story space, and that a hierarchy of typical plots within that genre definition

helps visualize the structure of the possible stories.

A proof-of-concept editor was developed so that the “story space author” can

more easily experiment with different ways to chain the events in the model, and

use this knowledge to revise the specification so as to improve the system’s story

space. During this exploration, the hierarchy of typical plans is built.

The core of the editing tool makes use of Plot Manipulation Algebra (PMA)

[Karlsson et al. 2009a]. By applying the algebra operations to the set of events in

the conceptual model, the user can play with the story space and check what

kinds of stories are being generated.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

137

The editor main UI is divided into four areas (as shown in Figure 7.8). The

topmost area contains a toolbar with a button for each PMA operation. The

centre-left area shows the available events in the conceptual model (both simple

and complex events). The centre-right area shows the algebra expression

currently under scrutiny. The bottom part of the screen shows the results of

evaluating the expression in the context of the conceptual specification of genre.

These results are show both in Prolog notation and as plain text to facilitate user

understanding of the possible stories being generated.

The interaction with the prototype hinges on how the PMA expression is

manipulated. Starting from the empty plot [], the user can apply algebra

operations to it (possibly involving events in the model). At any moment, the

user can query the system for the possible outcomes of the plot-expression.

Here we shall briefly sketch how the creation of the hierarchy can happen in

the editor. A 'partial' account of the construction of the structure shown in Figure

7.3 will serve as example in a series of steps.

1- As mentioned, the expression initially represents the empty plot – []

2- User adds an abduction to the plot space by applying the product

operation:

a. user clicks on the expression node for [];

b. user clicks on the product button in the toolbar;

c. then he clicks on the button for the abduct operation in the left

pane;

d. as the product of the empty plot with an event is the event itself,

the resulting expression is: abduct

3- To produce a sequence where abduction is followed by liberation:

a. user clicks on the node for abduct in the expression (in this case,

the whole expression);

b. user clicks on the product button in the toolbar;

c. he then clicks on the button for the liberate operation in the left

pane;

d. the resulting expression is: (abduct * liberate)

4- As liberate and execute correspond to the same paradigm after an

abduction, the user adds this generalization to the expression:

a. user clicks on the node for liberate in the expression;

b. user clicks on the union button in the toolbar;

c. user clicks on the button for the execute operation in the left pane;

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

138

d. the system asks the user to name this generalization (“retaliation”,

for example) and stores this information as metadata associated

with the expression;

e. the resulting expression becomes: (abduct * (liberate + execute))

5- The user can query the underlying system to check the possible stories

being generated by clicking on the Query button. Figure 7.8 shows the

process so far.

6- The process goes on until the user is satisfied with the story possibilities

defined by the PMA expression.

Figure 7.8: Knowledge Base Editor main UI view.

Figure 7.9: Typical plan hierarchy as seen during its construction in the editor.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

139

At any moment during the interaction with the plot expression, in the proof-

of-concept editor UI, the user can also visualize the resulting hierarchy of typical

plans by clicking on the View button. The hierarchy generated so far is then

shown in its own window, as shown in Figure 7.9.

7.5.Final Remarks

In LogTell-R we strived both to augment the expressiveness of the narrative

model underlying the system and to provide better tools to prospective authors

intent on creating and telling interactive stories. To accomplish these goals, we

focused on enhancing the flexibility of the story space spanned by the system,

primarily with regard to the addition of support for handling meronymic and

antithetic relations between events in the plot.

By refactoring the system to better separate concerns between its different

modules, while keeping authorability (with respect to content) in mind during

development and also maximizing opportunities for the implementation of

player interaction (with as minimal as possible changes to the author-mode

architecture), we achieve a more flexible architecture which can be used as a base

to further explore the storycraft problem [Karlsson et al. 2009b] and which also

makes it easier to compare different approaches to its sub-problems.

Having authorial tools in place to render the notational complexities of the

knowledge base transparent to authors is essential for any system that aims to

reach real world usage. The primarily objective of such tools is to reduce the

burden on authors using the system, but they should also guide them in the

creation of interesting stories. Creating an interactive environment that behaves

as expected can be a tiresome task, as it’s done now mostly by trial and error.

Accordingly, we developed a proof-of-concept editor of the knowledge base to

address some of these issues.

The main purpose of the editor is to help exploring the story space and to

construct the hierarchy of typical plans to be used during plot composition. The

knowledge base editor makes use of PMA (supported by a simpler planner to

check pre- and post- conditions of operations) to allow one to experiment with

different ways to chain the events in plots, and to use this knowledge to revise

the specification so as to improve the story space.

While our prototype tool to edit the knowledge base still leaves much to be

improved, we feel it brought important insight, and we now have a much better

grasp on the priorities for future work.

Although the process of plot composition and adaptation in LogTell-R could

surely be enriched far beyond what is currently supported, what we managed to

accomplish seems to provide a sound basis to treat, at least, genres that exhibit a

high degree of regularity.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

A Model and an Interactive System for Plot Composition and Adaptation, based on
Plan Recognition and Plan Generation

140

Lastly, much work remains to be done towards the complete implementation

of the player mode of interaction especially regarding the Story Director and

Game Master modules.

DBD
PUC-Rio - Certificação Digital Nº 0521489/CA

