
3
Newtonian incompressible flow

In this chapter, we derive the variational formulation of the Navier–

Stokes equations (see section 3.1) and we also describe a fully implicit and

fully coupled formulation to solve these equations using the finite element

method and implicit time integrators (see section 3.2). We developed a C++

code using this approach; our implementation will be described on chapter 6.

The implementation is validated using the problem of a lid–driven cavity flow

(see section 3.3). Despite this being a widely studied problem in computational

fluid dynamics, it makes up the basic theoretical and computational framework

that we use in the next chapters.

3.1
Variational formulation

The basic idea in any numerical method for a differential equation is to

discretize the continuous problem to obtain a discrete problem described by a

system of algebraic equations with a finite number of unknowns, which can be

solved numerically. The classical numerical method to solve partial differential

equations is the finite difference method in which the discrete problem is

obtained approximating derivatives by difference quotients involving the values

of the unknown at certain, finite number, points.

The discretization process using the finite element method is completely

different. In the finite element method the given differential equation is written

as an equivalent variational problem. In our case, the differential equations are

the Navier–Stokes equations for Newtonian incompressible fluids stated in the

previous chapter (see equations 2-1 and 2-2).

Before writing the variational formulation of the Navier–Stokes equa-

tions, we must be careful with the regularity properties of its solution in order

to assure the mathematical consistency of the formulation. Let us say that

the velocity and pressure fields, �uf and pf , are the solution of the variational

problem in a given fluid domain Ωf . We shall assume that they belong to the

following function space:
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Cf := Vf × Pf := {(�uf , pf) | �uf ∈ Vf and pf ∈ Pf} (3-1)

were Vf and Pf are defined as:

Vf := {�uf ∈ H
1(Ωf) | �uf |∂Ωf

= �u∂Ωf
}

Pf := {pf ∈ H
0(Ωf)}

and H
k(Ωf) is the Sobolev space:

H
k(Ωf) = {w|w ∈ L2(Ωf),

∂w

∂x
∈ L2(Ωf); . . . ;

∂kw

∂x
∈ L2(Ωf)}

The definition of the Sobolev space says that if a function w belongs to

H
k(Ωf) then w and all its derivatives up to some order k have a finite L2(Ωf)

norm. Observe that the solution space 3-1, is an infinite dimensional space.

The velocity and pressure solutions are required to have different regu-

larity properties and 3-1 says that the velocity field must respect a prescribed

Dirichlet condition �u∂Ωf
on the domain’s boundary ∂Ωf . To ensure the solution

unicity, we may also require the pressure scalar field to respect a prescribed

constraint on Ωf .

Now, let �φ ∈ Vf be an arbitrarily chosen function. We can write the

variational formulation of the momentum conservation equation 2-1 as:∫
Ωf

(
ρf

D�uf

Dt
−∇ · σf − �g

)
· �φ dΩf = 0 (3-2)

We rewrite the previous equation using the following tensorial identity:

σf : ∇�φ = ∇ · (σf · �φ)− (∇ · σf) · �φ, (3-3)

were the tensorial operation written on the left side of the previous equality

3-3 is defined as follows:

A : B =
d∑

i=1

d∑
j=1

aijbij

where d is the dimension of the simulation domain, in our case d = 2. Observe

that the operation results on a scalar value. The variational formulation of the

momentum equation now becomes:∫
Ωf

(
ρf

D�uf

Dt
− �g

)
· �φ dΩf +

∫
Ωf

σf : ∇�φ −∇ · (σf · �φ) dΩf = 0 (3-4)
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In order to obtain the final momentum equation of the variational

problem, we must use the divergence theorem on the last integral term in

the previous equation, which leads to:∫
Ωf

(
ρf

D�uf

Dt
− �g

)
· �φ dΩf +

∫
Ωf

σf : ∇�φ dΩf −
∫

∂Ωf

�f · �φ d∂Ωf = 0 (3-5)

where �f = �nf · σf represents a force acting on ∂Ωf and is closely related with

the physical behavior of the boundary conditions that we are interested to

impose on the flow simulation.

The variational form of the continuity equation 2-2 is derived analogously

now using an arbitrarily chosen element χ ∈ Pf :∫
Ωf

(∇ · �uf)χ dΩf = 0 (3-6)

The variational problem equivalent to the differential formulation of the

Navier–Stokes equations is finally stated as: find �uf ∈ Vf and pf ∈ Pf such

that ∀�φ ∈ Vf and ∀χ ∈ Pf ,∫
Ωf

(
ρf

D�uf

Dt
− �g

)
· �φ dΩf+

∫
Ωf

σf : ∇�φ dΩf −
∫

∂Ωf

�f · �φ d∂Ωf = 0 in Ωf

∫
Ωf

(∇ · �uf)χ dΩf= 0 in Ωf

(3-7)

3.2
Fully coupled and implicit discretization

The idea to obtain a problem that can be solved numerically using the

finite element method is to replace the infinite dimensional solution space Cf

by a subspace Cf ⊂ Cf , of finite dimension.

The choice of the finite dimensional space Cf is essentially the choice of

the finite element discretization and is influenced by the variational formula-

tion, regularity properties of the exact solution, accuracy requirements, etc. It

is well known that variational formulations associated with constraints (as the

incompressible Navier–Stokes equations) may lead to severe numerical prob-

lems and to ensure the existence and uniqueness of the approximated solution

in the subspace Cf , we must verify the Babuska–Brezzi condition (1, 2, 3). Let

us define the following finite dimensional space:

Cf := {(�uf , pf) | �uf ∈ Vf and pf ∈ Pf} (3-8)

were Vf and Pf are defined as:
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Vf := {�uf ∈ P4(Λf)× P4(Λf) | �uf |∂Ω= �u∂Ω}

Pf := {pf ∈ P2(Λf)}

P4(Λf) and P2(Λf) are spaces of piecewise polynomials in two variables with

maximal degree 4 and 2 defined over some discretization Λf of the domain Ωf .

More precisely, we use biquadratic and/or quadratic spaces to approximate the

velocity field, and bilinear and/or linear spaces for pressure approximation.

We can use the finite dimensional solution space Cf to rewrite the

infinite dimensional variational problem 3-7 as the following finite dimensional

problem: find �uf ∈ Vf and pf ∈ Ph such that ∀�φ ∈ P4(Λf) and ∀χ ∈ P2(Λf),∑
τ∈Λf

∫
τ

(
ρf

D�uf

Dt
− �g

)
· �φ dτ+

∑
τ∈Λf

∫
τ

σf : ∇�φ dτ −
∑

ε∈∂Λf

∫
ε

�f · �φ dε = 0

∑
τ∈Λf

∫
τ

(∇ · �uf)χ dτ= 0

(3-9)
This problem is equivalent to a large nonlinear system of algebraic

equations, and the hope is that a solution (�uf , pf) ∈ Cf is a sufficiently good

approximation for the solution of the original differential problem.

In practice, the spatial discretization process is based on building the

partition Λf of the given fluid’s domain Ωf into a finite number of sub–domains,

and consider a set of basis functions of the finite solution space. The sub–

domains are in fact triangles and/or quadrangles and, as we said before, they

are called elements. The set of basis functions is build as follows: suppose that

for the given finite dimensional space, there is a finite set of points which

uniquely determines any function in the space by its values at these points.

The set of functions in the space that take on a nonzero value (more precisely

one) at exactly one of the points form a basis for the finite solution space,

called the nodal or Lagrange basis. Figure 3.1 shows the Lagrange basis for a

piecewise linear space of functions defined over the interval [0,1], discretized

with 5 one–dimensional elements.

Let us denote by (�φi, χj) an element in the Lagrange basis of the

finite solution space, where �φi ∈ P4(Λf) × P4(Λf) and χj ∈ P2(Λf) with

i ∈ (1 . . . #P4(Λf) × P4(Λf)) and j ∈ (1 . . . #P2(Λf)), where #V is the

dimension of the vector space V . Using the Lagrange basis, the velocity and

pressure solution can be written as:

�uf =
∑

i

ui
�φi and pf =

∑
j

pjχj

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 29

Figure 3.1: Lagrange basis for a piecewise linear space of functions defined over
the interval [0,1], discretized by 5 elements.

Moreover, we observe that in the discrete problem 3-9, the elements �φ

and χ were arbitrarily chosen. In particular, they can be any element in the

Lagrange basis of the solution space. This choice leads to a system of non–

linear time–variable differential equations, whose solution gives the coefficients

ui of the velocity and pj of the pressure approximations written in the Lagrange

basis (�φi, χj). Using the Lagrange basis, the stress tensor definition and writing

explicitly the derivative operators, we can rewrite 3-9 in Cartesian coordinates:

∑
τ∈Λf

∫
τ

ρf
∂ux

∂t
φi + ρf

[
ux ∂ux

∂x
+ uy ∂ux

∂y

]
φi − gxφi +

[
−pf + 2μf

∂ux

∂x

]
∂φi

∂x
+

+ μf

[
∂ux

∂y
+

∂uy

∂x

]
∂φi

∂y
dτ −

∑
ε∈∂Λf

∫
ε

fxφi dε = 0

∑
τ∈Λf

∫
τ

ρf
∂uy

∂t
φi + ρf

[
ux ∂uy

∂x
+ uy ∂uy

∂y

]
φi − gyφi +

[
−pf + 2μf

∂uy

∂y

]
∂φi

∂y
+

+ μf

[
∂ux

∂y
+

∂uy

∂x

]
∂φi

∂x
dτ −

∑
ε∈∂Λf

∫
ε

f yφi dε = 0

∑
τ∈Λf

∫
τ

(
∂ux

∂x
+

∂uy

∂y
)χdτ = 0

(3-10)
where the first two equations are the coordinate functions of the momentum

conservation equation, and the last equation is the continuity equation. We

use the notation �v = (vx, vy) for the coordinate functions of a vector field �v.

In our finite elements C++ code, we use biquadratic quadrangular

elements and/or quadratic triangular elements to approximate the velocity

field, and bilinear quadrangular elements and linear triangular elements for the

pressure approximation. This choice allow us to use tri–quad meshes without

losing the solution’s regularity in edges shared by triangles and quadrangles

(see figure 3.2). Moreover, previous works (2, 1, 3) proves that the chosen

elements satisfy the Babuska–Brezzi condition.
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Figure 3.2: Mesh with quadrangles and triangles: we use elements that ensure
the solution’s continuity at the edges shared by triangles and quadrangles. The
dark nodes are used for the pressure’s approximation, and the dark and light
nodes are used to build the velocity’s solution space.

We use an implicit Euler method to perform the time integration that

appears on the momentum coordinate function equations in 3-10. We use an

implicit integrator since, in many cases, the problems arising from incompress-

ible Newtonian flow applications are stiff and the use of an explicit method

requires impractically small time steps to keep the error in the result bounded.

For such problems, to achieve a given accuracy, it takes much less computa-

tional time to use an implicit method with larger time steps. We denote the

time step by δt.

While explicit time integration methods compute the physical unknowns

at a later time using the solution obtained at the current time, an implicit

method finds it by solving an equation involving both the current solution and

the later time unknowns. If s(t) is the current solution and s(t+1) is the physical

unknowns at the later time, then for implicit Euler method:

∂s

∂t
= f(t, s) ⇒ s(t+1) − s(t)

δt
= f(t, s(t+1)) ⇒ s(t) = s(t+1) − f(t, s(t+1))δt

which clearly indicates that we must solve a system of equations to obtain the

physical values at the later time s(t+1).

In our approach, we wrote the system of equations given by the vari-

ational formulation of the Navier–Stokes equations 3-9 and by the system

obtained from the implicit Euler time integration into a single fully coupled

system of non–linear equations, and we solved it using Newton’s method. New-

ton’s method is an extremely powerful and fast iterative technique since it has

in general quadratic convergence, i.e., the error is essentially squared at each

iteration. The method’s algorithm requires the construction of the Jacobian

matrix J and the residue vector �r associated to the nonlinear–system at each

iteration of the procedure. The residue and Jacobian computations are detailed

in the Appendix A. Newton’s method is computed using the procedure:
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Algorithm 1 Newton’s method iterative procedure

s(t+1) ← (x1, x2, x3, . . . , xk) // Initial guess.
while |s(t+1) − s(t)| < ε do

J(δs(t+1)) = −�r(s(t))
s(t+1) = s(t) + δs(t+1)

end while

Observe that algorithm 1 requires an initial guess to start the iterative

procedure. If the given initial value is too far from the desired solution,

Newton’s method may fail to converge. For this reason, Newton’s method is

often referred to as a local technique. There are several techniques that help

the determination of good initial guesses. In our software, the initial guess at

each time step is computed as a linear extrapolation of the solution obtained

by two previous time steps.

Finally, to solve each iteration of Newton’s method we use the IML++

library (10) that provides sparse matrix representation together with iterative

methods to solve efficiently linear systems.

3.3
Code validation

The lid–driven cavity flow is probably one of the most studied problems

in the field of computational fluid dynamics. The simplicity of the geometry

of the cavity flow makes the problem easy to code and to apply boundary

conditions. Although the problem looks simple in many ways, the flow in a

cavity is complex with counter rotating vortices appearing at the corners of

the cavity.

For the reasons described above, the driven cavity flow is a benchmark

problem for numerical methods in terms of accuracy, efficiency and so on. In

the literature it is possible to find numerous studies on the driven cavity flow

(11, 12, 13, 16, 36, 37) that guided us during the validation our code.

We divided our tests in two groups. The first group of tests aims to

evaluate the software robustness with respect to the mesh resolution and

fluids properties in steady simulations. The second group aims to analyze the

robustness of the unsteady solutions in relation to the time discretization. The

basic setup for a lid–driven cavity flow is shown on figure 3.3. For all results

we plot the velocity profiles in the vertical line that pass through the center

of the domain and render the velocity solution. Velocity vectors with size near

to zero are painted in blue, and the ones with norm near to the lid’s velocity

are colored in red.
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Figure 3.3: Lid–driven cavity flow setup: the cavity is a closed box with no–slip
boundary condition in the fixed walls and a moving lid with constant horizontal
velocity. In our test L = 1 cm and the lid velocity 1 cm

ds
.

The flow characteristics in the lid–driven cavity flow problem is usually

described in terms of the dimensionless Reynolds number. It gives a measure

of the ratio of inertial forces to viscous forces and consequently quantifies

the relative importance of these two types of forces for given flow conditions.

In that way, the Reynolds number is an important parameter that describes

whether flow conditions lead to laminar or turbulent flow. The Reynolds

number in the cavity flow problem is calculated using the following expression:

Re =
Lulρ

μ

where ul is the lid velocity and L is the characteristic length that describes

the domain geometry and is a matter of convention. Usually, it is chosen as

the length of the object that the flow is going through or around. In the cavity

flow problem, it is chosen as the length of the cavity.

Steady tests: Figures 3.4, 3.5 and 3.6 show results obtained by steady lid–

driven cavity flow simulations obtained using our software. We tested the

robustness of our implementation in relation to the discretization of the cavity

domain Ω. We ran this validation test for setups with different Reynolds

numbers. In the first one, the Reynolds number was 10 (see Figure 3.4), in

the second the Reynolds was set 100 (see Figure 3.5) and in the third the
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Figure 3.4: Lid–driven cavity flow validation: steady case with Reynolds
number 10 and three different meshes with 225, 400 and 625 elements.

Reynolds was 1000 (see Figure 3.6). In all this test cases, we performed the

simulation using quadrangular meshes with 225, 400 and 625 elements. The

results, for all mesh resolutions, are shown in each image reading the columns

from left (lowest resolution) to right (highest resolution).

It is important to observe that, in each image, the flow behavior is

virtually independent of the mesh resolution. The horizontal and vertical

velocities as function of y and x respectively are virtually the same for all

the meshes used. As expected, the vertical velocity profile, as function of x is

almost symmetric at low Reynolds number. The symmetry is lost as we increase

the Reynolds number value (as we can see in Figures 3.5 and 3.6). The flow

and the velocity profiles behavior agree with the results in the literature, as

can be seen in the work of (11).

Finally, we can see that regions near the upper left and bottom corners,

which are regions of counter rotating vortices, are easier observed as the

Reynolds number is increased. Moreover, the position of the center of the large
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Figure 3.5: Lid–driven cavity flow validation: steady case with Reynolds
number 100 and three meshes with 225, 400 and 625 elements.

vortex also depends on the Reynolds numbers. These patterns were already

expected and had good agreement with previous studies in lid–driven flows.

In order to numerically compare our results with previous works, the

velocity profiles obtained in Erturk et. al (2009) (11) in a lid–driven cavity

simulation using Reynolds 1000 is plotted on figure 3.6 (see the black curves

in each velocity profile).

Unsteady tests: Figures 3.7, 3.8 and 3.9 show results obtained by unsteady

lid–driven cavity flow simulations obtained using our software. We used

this test to evaluate the robustness of our software in relation to the time

discretization. We run this validation tests using a fixed mesh resolution

and Reynolds number set to 1000. We used a quadrangle mesh with 625

quadrangular elements. Figure 3.7 shows the results obtained using a time

step δt = 0.01, and Figure 3.8 shows the pictures obtained using the time step

δt = 0.001. The columns of unsteady results show the flow solution when the

time was 5, 15, 30 and 50 deciseconds.
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Figure 3.6: Lid–driven cavity flow validation: Steady case with Reynolds
number 1000 and three meshes with 225, 400 and 625 elements.

If we analyze the velocity profiles for the unsteady simulations (second

and third row of each figure), we see that they always converge to the steady

case when the simulations reach sufficiently high execution times. It can be

verified if we observe that the results showed on the last columns of Figures

3.7 and 3.8 reproduce exactly the same flow obtained by the steady cavity

problem with the same Reynolds numbers that are shown in Figure 3.6. If we

analyze the rendering of the velocity field we also can observe this convergence

behavior on the evolution of the fluid flow and the formation of the center and

the counter rotating vortices. Observe that the velocity final profiles obtained

by the unsteady simulation with Reynolds number set to 1000 are very close

to the ones by Erturk et. al (2009) (11).
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Figure 3.7: Lid–driven cavity flow validation: unsteady case with Reynolds
number 1000, mesh with 625 elements and time step 0.01. The columns shows
the simulation after 5, 15, 30 and 50 ds of simulated time.

Figure 3.9 shows the last validation of our software using the cavity test.

Our objective in this test was to show that the software is also robust when

using higher mesh resolutions and solving flows at Reynolds number larger than

1000. In this test case, the quadrangular mesh was built using 1600 elements,

and Reynolds number was set to 4000. It is important to mention that we are

still solving a laminar flow, even at high Reynolds number at which the flow

may already be turbulent as in the last example of figure 3.9.
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Figure 3.8: Lid–driven cavity flow validation: unsteady case with Reynolds
number 1000, mesh with 625 elements and time step 0.001. The columns shows
the simulation after 5, 15, 30 and 50 ds of simulated time.

Figure 3.9: Lid–driven cavity flow validation: unsteady case with Reynolds
number 4000, mesh with 1600 elements and time step 0.01. The columns shows
the simulation after 5, 15, 30 and 50 ds of simulated time.
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