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Asymptotic Behavior of Systems with Two-Input
Compensators

PEDRO M. G. FERREIRA

Abstract—This note completely solves the robust asymptotic tracking-
disturbance rejection problem for feedback systems with two-input, one-
output plant and compensator,

l. INTRODUCTION

Consider the following general two-input, one-output plamt and
compensator of Fig. 1.
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The plant to be controlled, P{s), is a proper transfer function matrix;
ris) is a g-valued vector representing the Laplace transform of a signal o
be asympaotically tracked ar the plant’s oup. wis), wis), and v(s) are
Laplace ransforms of signals 1o be asymptotically rejected at the plant’s
output. The dimensions of these vectors are g, m, and n, respectively.
The four rational vectors are assumed to be proper.

The classes of exogenous signals are assumed 1o be known, i.e.. we
know the denominator of each entry of ris), wis), wis), and vis). The
least common denominators of these entries will be denoted by o, (5],
o, l5), ads5), and als), respectively.

All factorizations in this note are over the ring of proper stable rational
functions, denoted by 8, a Euclidean domain. As a consequence, a,, o,
o, and o, are stable and proper rational functions, in fact, biproper. It is
clear that r, w, u, and v can be expressed in the following way:

r=D-'r,, w=0:'w,, u=0-", v=D0"",, where D, D, D,,

D, € M(S), i.e., they are proper and stable rational matrices. In fact,
they arc biproper, o, Wi, Us, and W, are proper and stable rational
vectors, i.¢., also belong 1o M(S) and are relaed 1o the (arbitrary) initial
condinons of the exogenous signals.

D,, D, D,, and D, mav be assumed diagonal matrices for all practical
purposes. It is clear that e, o, o, and o, are the largest invariam factors
of D,, D, D, and D,, respectively.

Ler P = D-'[N,|N] be a left coprime (l.c.) factorization of the
transfer function matrix between y and [, ). Let © = D[N, |N.2] be
a b.e. fuctorization of the transfer function matrix between x and [L]. Tt is
well known [1]. [3] that loop stability implies (D, N) l.c. as well as !-’jf_.
N.3) Le. Define the right coprime (r.c.) factorizations ND~' = D-'N
and N.,D-' = ﬁf"a‘;’rg. It is supposed that the plant can have us
parameters perurbed, i.e., N +— N* D + D* etc.. the perturbations
being defined as in [2].

It is well known that when the loop is stable, the above factorizations
can be chosen such that

b. R.||p -Na| |1 0 1
-N O N D | o ]|’ ”

M(N*, D*) := R N*+D.D*, (2)

Define:

It is clear from (1) that if the loop is stable, then M{N, D) = .

Our problem can be formulated this way: given P and the classes of
exogenous signals, find the conditions for solvability and solve for C such
that loop is stable, r is asymptotically tracked, and w, u, and v are
asympictically rejected, even if P is subject to arbitrary but *‘small*’
perwrbations. (The meaning of *'small’” perwrbations is given in [2].)

The asymptotic tracking/disturbance rejection problem has been often
studicd in the past 15 years. Referring 1o some of the most important
papers in the past few years, [4] studied the problem with two-output
planis. This same problem was studied by [5] and [6] in a more general
context, namely, that of synthesizing a transfer function through feedback
compensation. Reference [6] studies the problem in both transfer function
and state-space settings and achieves a deep understanding of the structure
in terms of signal flow, Most recently [7] introduced the concept of
“conainment’” 10 determine the achievable transfer functions in a
feedback loop. while in [1] this same problem is solved using the
factorization approach.

Papers | 1] and [4]-[7) handle the two-output plamt problem, while the
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present note tackles the one-output plant problem, which is simpler. On
the other hand, the present note addresses the robusiness issue more
explicitly than those papers.

The solution of the two-inpul compensator, one-oulput plant robust
asymptotic tracking problem 15 given in [2]. while the asymptotic
rejection of v, w, and & in Fig. | wras out to be a one-input compensator,
one-ouiput plant problem.

However, [2] does not prove the conditions for the solvability of the
above tracking problem. This will be done here. Besides, to the author’s
knowledge, the solution of the asympotic rejection of the three
disturbances is not available in the literature in the present setup. It will be
given here for the sake of completeness, in the vein of [2].

Il. THE TRACKING PROBLEM

Vidyasagar |2, pp. 304 if.] proved with skill and mathematical rigor,
assuming 4 = m and disjointness of the zeros of N from those of e, that
C robustly solves the asymptotic tracking {with loop stability) problem if
and only if:

i) AF(NE, D) s unimodular ¥(N*, D*) in some

ncighbarhood of (N, D}, (3)
i) a7 1D, € M(S), (4)
i) N* IM(N*, D) (Na=Na)D;' € M(S). (5)

Moreover, if N is square, iii) is equivalent 1o
i) (N = N ) D € M(S). (6)

Remark: The disjointness of the zeros of N from those of o, as well as
condition 1) above were omitted in the formulation of the theorem by [2].
They were used, however, in the proof of the theorem.

The main contribution of this paper 15 as follows,

Lemea 1; The robust asymptotic racking problem is solvable if and
only if ¢ < m and the zeros of N are disjoint from those of a,.

Proaf:

{Only If): First notice that N, and D3, have o be r.c. If this were not
the case. some mode of r would be cancelied by N, and so could not
appear atl y. since a stable loop does not generate any unstable mode. (A
formal proof of the right coprimeness of N, and D, 1s given in [2].) As a
consequence, if some nontrivial factor divides every element of D, or in
other words, if no invariant factor of D, is 1, we have ¢ £ m, since Ny is
am X g malrix.

However, if the smallest invariant factor of [, is 1, 3 different proof
has to be given. It is easy o check that

y= N M(N*, D%)]"'N,r.
Hence, for the nominal plam,
vy NN, r.

Consider now the particular situation when all, but the first, components
of r are zero. Let r, denote the first componentof . Let o7, i € g, denote
the ith row of N, and let /A, denote the first column of N. One obtains

T
Y= "l fiyFys
ng
Now asymptotic tracking implies
Hrﬁm = 4y (7
F nThn=p, fm2 3, g (B)

where p,, | € g, are proper and-stable rational functions. Now suppose
that ¢ > mi. Let @ € 5 be such that

mal +@nl+- -+ amnl, =0, (9

ma
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We may assume ny, -0, 0l , lincarly independent. If this were not the
case, we would perurh sliphtly at the outset one of these rows, Hence, a,
# 0. We may assume also (perturbing slightly N at the outset, if
necessary) that @,ry & S, since r; & 5. From (7) through (%)

aln+p)tmpst o Al P =0

which leads 1o a contradiction, since

el

Y, ap €S

=1

establishing the necessity of g < .

With g < m slightly perturb N at the outset, if necessary, so that e,/
and N are l.c. Then [2] proves the necessity of (4). But loop-stability
implies noncancellation of unstable modes. Hence, (4) implies the left
coprimeness of o, and N for the nominal plant also, or equivalently, the
disjointness of the zeros of N from those of «,.

(f): If the conditions of the lemma are satisficd, there exists N, -
which swabilizes o« 'ND-'. Let D 'N, be a l.c. factorization of
NexD e~ Let a":"“ = N - 00, with Q € M(S), arbitrary
otherwise. Then D '[N, i Ns| solves the problem, according to (3)-
(5), concluding the proof of the lemma.

Remark: If m = g, a closed form of C can be ohigined, using (6): see
the last section of this note where the general problem is handled.

I, DISTURBANCE REJIECTION
A. Asympratic Refection of w

The conditions of solvability are well known in this case: g < m and
zeros of N disjoint from thase of c,.. If these conditions are satisfied, it is
well known that the class of compensators D -'N_, which solve the
problem is given by { Ciae_':C) stabilizes o 'ND -1},

The proof of this result closely follows that of the tracking problem
with a one-input compensator. and a rigorous proof of this last problem

can be found in [2] and [8].

B. Asympiotic Rejection of u

This problem is less discussed in the literature and, in fact, a complete
solution of it is wissing (1o the knowledge of the author) so it will be given
here.

Lemma 2: The robust problem of asymptotically rejecting u with loop
stability has a solution if and only if O, and 3 are r.c., whatever the
relationship may be between m and . If that condition is satisfied, the
class of all compensators which solve the problem is given by [ €, 5,:C,
stabilizes D,ND 1},

Proof: It is casy o s2e that

y=N*[M(N*, D*)- "N, 0 'u,.

Since u, € M(5) is arbitrary, robust asymptotic rejection of o is
equivalent to

N*M(N*, D] 'N.D' € M(S) v(N=, D¥)

in some neighborhood of (N, D).  (10)
(Oaly if): The above implics, in view of (1) and (2),
NN D:' € M(5). {10a)

First suppose g = m.

Perrb A slightly at the outset, if necessary. so that its zeros are
disjoint from those of B,. Let A and B be Le. such that A-'B =
NeaD 2\ Hence, NA 1B € MIS). But N and A are r.c. because its zeros
are disjoint. As a consequence, A is unimodular, and hence N, D1 €
M5}, This and loop stability imply right coprimeness of £3, and 0.

Suppose now @ < m. Then,

M(N, D*y=1+ D.(D*- D).
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[t can be shown |2, p. 307] that [M(N, D*)|-' = [ + 5.0, with ¢ €
it sufficiently small in absolute value and Q € M(S), otherwise
arbitrary. Then from (10),

NN.D;'+ eND.QNLD' € M(S) vQ € M(S)
which implies, in view of {10a),

NO.QN.0;' € M(S) v0Q € M(5). (1)

Now it is easy 1o see that the problem is solved with (N*, D*) and (.,
Ne2) if and only if it is solved with (N*, ¥-'D*) and (D.V, N..) vV
unimodular,

Mexi notice that

VAL \Na= V"0 'U- ' UR,

with UD. ¥ and UN,; L.e. ¥/, ¥ unimodulars.
Choose U/ and ¥ wnimodulars such that UD,V is in Smith form,
Redefine D*(new) = ¥ 'D*old); D.(new) = UD (old)V. Then

O, =:disgtd, dy, -+, d.); d-'d,, € 5.

Now m > q and lefi coprimeness of D, and N, imply d, = 1. Let ny, §
€ m, denote the ith column of N and let the jth row of N.» be denoted by
[y Aizy ===, gl Let @y, 0, § € m, denote the entries of  and let k be
any fixed integer | < & < m. Choose O such that Gie = L, g; = QO w(j,
FY # (1, k). Then il is easy to check thar

NDONs=n (e, Apss + o+, Ayl (12}

Letd,, i € g be the denominators of the entries of w, i.e.. 13, = diag (d,,
dy, * -, dy). It can be assumed that md b & M8, (I this were not the
case, N would be perfurbed at the outser.) From this, (11}, and (121 we
have gl "' E 8, i E g. Nowlet k = 1,2, -, m 1o get .-‘F;:ﬂ;‘ €
M(5). From this and loop stability one concludes the right coprimeness of

(1f): Let D 'Ney = B 'N:D,, with 58, stabilizing 5,55,
From (10) it is seen that this compensator robustly solves the problem.,

C. Aspmprotic Rejection af v

Like the preceding one., this problem has not had careful attention in the
linerawre. lis solution & structurally equal to the solution of the first
rejection problem, namely, ¢ £ m and zeros of N disjoint from those of
D, the compensator which solves the problem Cyee ', with C, stabilizing
a 'ND™!, The proof of this result is much simpler though. because o
prove the necessity of the conditions. it is enough to perturb N,, which is
outside the loop and, by the way, can have ““large™ (not only **small™")
perturbations. Indeed, y = D.N*D 'y, where N is the perturbed N,
Hence, DN?D' € MIS), and this implies D(N* - M) €
M(5). Therefore,

DNy -NJUU-'B;' V=" € M(5) wU, Vunimodulars.  (13)

Choose L and ¥ such tha ML/ is in the Smith form and choose N* such
that (N — N)U has ol its elements equal to zero, but the {g. mith one,
which is chosen equal w0 1. Then it can be checked that (13) implics that o,
has to be a factor of all d= entries of the last column of .. Next choose
NTsuch that (N} — NjJU has all its elements equal to zero, but the (g -
1, nlth one, which is chesen equal 1o 1, 1o conclude that o, has 1w divide
all the elements of the (g — L)th column of D,, and so on,

IV. CoMcLUusSIONS

The following theorem summarizes the results of this note. It has not
appeared elsewhere, 1o die knowledge of the author,

Theorem: The generd!problem studied in this note has a solution only
if

g = m,

b) zeros of N are disinmt from the zeros of D,, D, and 3,

¢) D, and £7 are r.c.

If the above conditionsare satisfied and il

d) zeros of D, are dispnnt from the zeros of 0,, D., and B, then the
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problem has a solution and the class of comgensators which solve it is
given by

Cs= ﬁ:llﬂ“ : N;:]. 5;"2;:‘;-;.&’;‘. with

1) D_'N.; a stabilizer of ND-!,

i) D, ' 'S € M(S),

) N¥ IM(N*, D¥)} (N; = N.)D; ' € 3(S) Y(N*, D¥) in some
neighborhood of (N, D),

iv) ﬁ"f;ﬁu’ € M(S).

To conclude this note it is well worth nowcing that if ¢ = m, onc
obtains a ¢nsp result: an **if and only if*" sekvability condition and the
class of compensators which solve the problem in a closed form.

Corollary: Let ¢ = m. The robust general problem has a solution if
and only if:

a) modes of ¥ disjoint from those of r, w, and v,

b) zeros of N disjoint from the modes of r, w, and v,

¢) D, and D, r.c.

If these conditions are satisfied, the class of compensators which solve
the problem is given by

C=(wava,) "D '[N:D,~Q,0, : N..D,), with Q, € M(S)

arbitrary otherwise, D 3'N,; is a stabilizer of D,ND ™ c,ctpcx,) .

The problem is solved if the loop stabilizer is perturbed also.

Proof: The proof is straightforward and is omitted in the interests of
brevity.

Remark: It is well known that a loop stabilizer has one degree of
freedom, i.e., D, and N, are affinite functions of an arbitrary Q, €
M(S). After solving the robust tracking and threefold disturbance
rejection problem, we are still left with a compensator with two free
parameters, namely Q; and ,, both belonging to M(S).
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