Análise de Desempenho dos Gráficos EWMA para o Controle Estatístico da Dispersão

Neste capítulo são obtidos os projetos ótimos e as medidas de desempenho dos gráficos de controle de grupos de EWMA projetados contra aumentos na dispersão (especificamente serão obtidos os projetos ótimos do GCG de EWMA de MR das diferenças, para o controle de observações individuais, e o GCG de EWMA de $\ln(S^2)$, para o controle de dados subgrupados).

O desempenho dos GCG de EWMA projetados para o controle da dispersão é comparado ao desempenho dos gráficos de controle de EWMA projetados para o controle da média (especificamente será estudada a eficiência do GC de EWMA de R_t , do GC de MEWMA de S^2 e do GCG de EWMA DNB contra aumentos na dispersão).

É importante ressaltar que, os gráficos de controle de EWMA, analisados no Capítulo 6, são dedicados ao controle da média e os seus projetos ótimos já foram obtidos e analisados contra as alterações para as quais foram projetados. Não há sentido em buscar novamente os projetos ótimos de tais gráficos contra aumentos na dispersão, pois eles não são destinados a sinalizar tais aumentos, sendo a prioridade otimizá-los para alterações na média. Portanto, serão utilizados os mesmos projetos já encontrados.

O desempenho conjunto dos pares de gráficos (um para a média e outro, para a dispersão) também será analisado.

Cabe lembrar que, tal como realizado durante todas as análises da tese, considera-se que a alteração na dispersão ocorre somente em um canal do processo.

O capítulo está organizado da seguinte forma: a Seção 7.1 define a medida de desempenho utilizada; a Seção 7.2 descreve o procedimento de simulação adotado; a Seção 7.3 trata a obtenção dos projetos ótimos; os resultados de desempenho individual são apresentados na Seção 7.4 e os de desempenho conjunto na Seção 7.5.

Medidas de desempenho

Para avaliar o desempenho dos gráficos de controle EWMA serão obtidos os valores ótimos de NMA₁ de cada um dos gráficos de controle.

As medidas de desempenho serão obtidas somente para o regime de probabilidades de *steady-state* (onde o monitoramento é iniciado com o processo em controle e a alteração ocorre algum momento aleatório depois do início), pelas razões já expostas.

No entanto, para fornecer uma idéia quantitativa da diferença entre o desempenho de *zero-state* e *steady-state*, algumas medidas de *zero-state* também serão obtidas e comparadas às medidas de *steady-state*.

7.2 Procedimentos de Simulação

O método de Simulação de Monte Carlo é o empregado para obter as medidas de desempenho dos gráficos de controle de EWMA que são aqui analisados, tal como foi realizado nos capítulos anteriores e em todos os trabalhos da área de CEP multicanal, pelos motivos já comentados. O algoritmo da simulação dos esquemas aqui a serem analisados está programado em Matlab, versão 6.5.

Vale lembrar que, em todos os capítulos desta tese, a precisão das medidas de desempenho é obtida considerando 10.000 corridas de simulações (com cada corrida contendo 10.000 amostras). Com esse número de corridas, garante-se um erro-padrão de $\pm 1\%$ para o NMA₀ e erros bem menores para os valores de NMA₁ (tão menores quanto menor o NMA₁).

Como anteriormente realizado, para evitar uma explosão combinatória de casos e tabelas, apenas seis quantidades distintas de canais serão analisadas: 2, 3, 5, 10, 15 e 20 canais. Os valores de NMA₀ avaliados serão de 100, 200 e 370,4 amostras. O mesmo NMA₀ é estabelecido para todos os gráficos de controle como critério de comparação entre os valores de NMA₁. Os tamanhos de amostras utilizados para cada canal serão de uma e quatro unidades.

As análises propostas neste capítulo serão exclusivamente no contexto de alteração na dispersão de apenas um canal do processo. As alterações na dispersão consideradas na análise serão: 1,0 (valor um pouco menor que o NMA₀ prédeterminado, de *zero-state*), 1,5, 2,0, 2,5, 3,0, 4,0, 5,0 e 6,0.

7.2.1 Período de Aquecimento da Estatística EWMA

Como já dito, o regime de probabilidades escolhido para obter as medidas de desempenho é o de *steady-state* (o processo é iniciado em controle). Na obtenção de tais medidas devem ser considerados períodos de aquecimento (*Warm-Ups*) individuais para cada uma das estatísticas EWMA dos gráficos de controle analisados (especificamente são calculadas as estatísticas EWMA de R_t , MEWMA de S^2 , EWMA DNB e, dependendo do tamanho de amostra adotado: EWMA MR DNB ou EWMA $ln(S^2)$).

Para análise do desempenho conjunto será considerado um mesmo período de aquecimento para cada par de estatísticas utilizadas no controle do processo (as estatísticas são iniciadas considerando o mesmo tempo de aquecimento e as mesmas amostras geradas aleatoriamente).

Da mesma forma que a realizada anteriormente, no período de aquecimento são utilizadas 50 amostras, necessárias para que o peso residual das observações iniciais seja praticamente dissipado, quando o processo ainda está em controle O número de corridas adotado é suficiente para desprezar o efeito da primeira observação $((1 - \lambda)^{50} Z_o)$ sobre o valor das estatísticas EWMA.

Na análise de desempenho individual, cada estatística de controle possui um período de aquecimento independente das demais (utilizam amostras diferentes para evitar o aumento desnecessário do tempo de simulação e de busca dos valores ótimos). Se ocorrer algum sinal de descontrole durante as 50 amostras, a estatística EWMA do gráfico que sinalizou descontrole é reinicializada e a contagem de amostras para o período de aquecimento se reinicia.

Os passos executados para o período de aquecimento de cada gráfico de controle de EWMA são semelhantes aos utilizados no Capítulo 6. A representação esquemática desse algoritmo pode ser observada na Figura 7.1.

Figura 7.1 – Algoritmo utilizado na simulação para o período de aquecimento individual da estatística EWMA

O período de aquecimento só é finalizado (os valores iniciais das estatísticas EWMA para a fase fora de controle são obtidos) quando nenhum sinal ocorrer durante as 50 amostras (o processo estiver ainda em controle).

Na análise de desempenho conjunto, cada par de gráficos de controle (um dedicado ao controle da média e outro dedicado ao controle da dispersão) possui o mesmo período de aquecimento, utilizando-se do mesmo número aleatório para o cálculo das duas estatísticas de controle.

Se ocorrer um sinal de descontrole em algum dos gráficos utilizados durante as 50 amostras, as duas estatísticas são reinicializadas e o período de aquecimento retorna à primeira corrida para o par de gráficos que apresentou o sinal (a ocorrência de sinalização em um par não interfere no tempo do período de aquecimento dos outros pares).

O período de aquecimento conjunto das estatísticas só é finalizado quando nenhum sinal ocorrer nos dois gráficos de controle durante as 50 amostras (o processo estiver ainda em controle).

Figura 7.2 – Algoritmo utilizado na simulação para o período de aquecimento conjunto da estatística EWMA

7.2.2

Segunda Parte da Corrida: Cálculo do NMA1

Terminando o período de aquecimento, é realizada uma alteração na dispersão ($\gamma > 1$) em apenas um canal ($x_{ij} = x_{ij}\gamma$, $\forall i = 1, 2, \dots, c$ e j = 1, 2, 3, 4 no caso de amostras de tamanho 4, e j = 1 no caso de observações individuais). Sem

perda de generalidade, o canal afetado é o primeiro deles (o qual corresponde ao primeiro valor aleatório gerado).

Numa mesma simulação são obtidas todas as medidas de desempenho, considerando os aumentos de 1,0; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0 e 6,0 na dispersão do canal afetado, para todos os gráficos de controle analisados. Tais medidas serão calculadas a partir de uma mesma amostra gerada aleatoriamente. Com isso pretende-se minimizar o efeito das flutuações aleatórias (erro experimental) sobre as comparações de desempenho.

É importante lembrar que o algoritmo do período de aquecimento e o algoritmo de obtenção dos NMA₁`s fazem parte da mesma corrida, sendo que a simulação retorna ao primeiro algoritmo sempre que a estatística EWMA for reinicializada após a ocorrência de um sinal no gráfico de controle.

Em cada instante de amostragem, são executados os seguintes passos para o cálculo do NMA₁ individual (após obter os valores iniciais das estatísticas EWMA):

1°) Geração de *n* números aleatórios independentes e normalmente distribuídos com média igual a zero ($\mu_0 = 0$) e variância igual a um ($\sigma_0^2 = 1$) para cada um dos canais;

2°) A causa especial é simulada no canal afetado (o primeiro deles, sem perda de generalidade) multiplicando por $\gamma > 1$ os valores desse canal, correspondendo ao aumento do seu desvio-padrão para $\gamma \sigma_{0}$. Os outros canais permanecem com a dispersão constante (σ_{0});

3°) As estatísticas EWMA dos gráficos de controle são calculadas, considerando como valor inicial (Z_0) o valor da estatística obtido no final do período de aquecimento;

4°) Comparam-se as estatísticas aos seus respectivos limites de controle, estabelecidos com base no NMA₀ pré-determinado;

5°) Se alguma estatística ultrapassar o seu respectivo limite de controle, o número da ordem da amostra em que aconteceu a sinalização é registrada no vetor de valores de *RL* (vetor de comprimento de corridas) correspondente ao gráfico de controle que sinalizou, então, a estatística EWMA correspondente é reinicializada e a simulação retorna ao período de aquecimento no próximo instante de amostragem. Caso não seja detectada nenhuma alteração na média do processo,

retorna-se ao 1º passo, gerando (extraindo) novas amostras até que seja detectada a alteração na média do canal do processo.

Depois de terem sido simulados 10.000 sinais de descontrole no processo, calculam-se os valores de NMA₁ dos gráficos de controle para cada uma das alterações na dispersão consideradas. A representação esquemática desse algoritmo pode ser observada na Figura 7.3

Figura 7.3 – Algoritmo utilizado na simulação para obtenção das medidas de desempenho individual

Figura 7.4 – Algoritmo utilizado na simulação para obtenção das medidas de desempenho conjunto

7.3 Obtenção dos Projetos Ótimos

7.3.1

Curvas de isoNMA₀

Algumas relações entre os parâmetros λ (constante de amortecimento) e *K* (fator de abertura dos limites de controle) de cada um dos esquemas EWMA aqui apresentados são estudadas para facilitar o processo de obtenção dos projetos ótimos. As relações aparecerão nas curvas de isoNMA₀ (curvas de mesmo desempenho quando o processo encontra-se em controle, isto é, quando o processo é isento de causas especiais de variação).

Para cada um dos casos analisados, os valores de NMA₀ são obtidos em função do número de canais que compõem o processo, c, e do número de amostras extraídas de cada canal, n.

No capítulo 6 foi observado que as curvas de isoNMA₀ dos gráficos de controle de EWMA projetados para o monitoramento da média apresentam comportamento bem similar às curvas apresentadas por Crowder (1989), que estudou as relações desses mesmos parâmetros para o gráfico de controle de EWMA univariado.

As relações entre o parâmetros K e a constante de amortecimento λ do GCG de EWMA da amplitude móvel (MR) das diferenças em relação ao nívelbase (DNB) são exibidas nas figuras 7.5 e 7.6 e do GCG de EWMA de ln(S²) são exibidas nas figuras 7.7 e 7.8.

As curvas de isoNMA₀ dos gráficos de controle de EWMA projetados contra alterações na média já foram avaliadas no Capítulo 6.

Figura 7.5 – Curvas de valores de NMA₀ para GCG EWMA MR DNB (3 canais)

Figura 7.6 – Curvas de valores de NMA₀ para GCG EWMA MR DNB (20 canais)

Figura 7.7 – Curvas de valores de NMA₀ para GCG EWMA $ln(S^2)$ (3 canais, n=4)

Figura 7.8 – Curvas de valores de NMA₀ para GCG EWMA ln(S²) (20 canais, n=4)

Para não sobrecarregar o leitor com muitos gráficos desnecessários, são mostrados apenas dois casos de cada um dos gráficos de controle de EWMA projetados para o controle da dispersão. Nesta seção são mostradas as curvas de isoNMA₀ para os processos compostos por 3 e 20 canais. Todos os pontos (λ ,K) usados para traçar as curvas, inclusive as que aqui não estão representadas graficamente (2, 5, 10 ou 15 canais), estão tabeladas no Apêndice B.

A exposição de um número maior de gráficos torna-se desnecessária, sabendo que curvas de isoNMA₀ (NMA₀ de 100, 200 e 370,4 amostras) distam entre si de forma igual, com o mesmo comportamento.

Pode ser observado nas figuras 7.5 e 7.6 que, as curvas de isoNMA₀ do GCG de EWMA MR DNB não apresentam o mesmo padrão das curvas apresentadas por Crowder (1989), para o caso dos gráficos de EWMA de $X \text{ ou } \overline{X}$. As curvas do GCG de EWMA MR DNB apresentam valores maiores de K para os lambdas médios (0,3 a 0,6) e a partir de 0,6 os valores de K decrescem em função do aumento de λ . Contudo, este comportamento é semelhante ao das curvas de isoNMA₀ do gráfico de controle de EWMA de R estudado por Castagliola (2005).

Castagliola (2005) mostrou dois exemplos de curvas de isoNMA₀ do gráfico de controle de EWMA de R para vários tamanhos de amostras (3, 5, 7 e 9). A partir de um determinado valor de λ , os valores de *K* decrescem em função do aumento da constante de amortecimento, quando o tamanho de amostra é pequeno.

Para amostras maiores, o comportamento das curvas de isoNMA₀ se torna mais semelhante ao das curvas de isoNMA₀ de Crowder (1989), tal como pode ser observado nas figuras 7.7 e 7.8, onde são apresentadas as curvas de isoNMA₀ do GCG de EWMA de $ln(S^2)$.

7.3.2 Projetos ótimos

Após terem sido levantadas as curvas de isoNMA₀ dos gráficos de controle de EWMA considerados, o procedimento de otimização está reduzido simplesmente a uma busca unidimensional dos projetos ótimos, i.e., reduzido a uma busca linear do valor de λ (estabelecendo *K* em função de λ) que fornece o menor valor de NMA₁, para uma determinada alteração na dispersão ($\gamma > 1$).

Os parâmetros ótimos dos projetos estatísticos dos gráficos de controle de EWMA em análise são obtidos achando a solução ótima do seguinte problema de otimização:

Min NMA₁ (
$$\gamma$$
, θ)
sujeito a
NMA($\gamma = 1, \theta$) = NMA₀

onde:

 γ representa a alteração na dispersão do processo, tal que $\sigma_1 = \gamma \sigma_0$ para $\gamma > 1$;

 θ representa o conjunto de parâmetros do gráfico de controle (n, c, K, λ) , dos quais apenas λ e *K* são variáveis de decisão, sendo *K*, porém, como dito acima, determinado univocamente em função de λ ; e o NMA₁ considerado é o NMA₁ de *steady-state*.

O método de busca adotado para obter os projetos ótimos foi o da Seção Áurea (*Golden Section Search*), introduzido por Kiefer (1973). Tal algoritmo está programado em Matlab, versão 6.5. A metodologia adotada por tal método de otimização já foi descrita no Capítulo 6, quando foi tratada a obtenção dos projetos ótimos dos gráficos de controle de EWMA para o controle da média.

Para facilitar o entendimento do que está sendo exposto, cabe lembrar que adotou-se uma largura de 0,005 para o último intervalo (obtido pelo método da Seção Áurea) e o valor de λ utilizado, para obtenção dos resultados, é o ponto médio desse intervalo (destacado em vermelho). Os projetos ótimos do GCG de EWMA de MR de DNB estão na Tabela 7.1 e os do GCG de EWMA de ln(S²) estão na Tabela 7.2.

Foram obtidos projetos ótimos para alterações de magnitude γ igual a 1,5, 2,0 e 3,0 na dispersão das componentes individuais de variação do processo, pois são as alterações para as quais o gráfico de controle de EWMA é mais vantajoso que o de Shewhart. Para $\gamma >3,0$ não há necessidade de utilizar um esquema de controle EWMA, pois, conforme já analisado no Capítulo 4, para tais alterações os gráficos de controle de Shewhart já conseguem desempenho melhor.

Os projetos ótimos listados estão acompanhados pelos valores de NMA₁ mínimo obtido e de SDRL. Nota-se que, o valor de SDRL é sempre menor que o de NMA₁ (na maioria dos casos o SDRL é a metade do NMA₁ obtido), o que indica que os resultados da simulação foram obtidos com boa precisão (erropadrão menor que 1% do NMA₁).

Nas tabelas 7.1 e 7.2, é possível observar que os valores de λ são bem altos para alterações de magnitude igual a 3,0 (e para alguns casos de alterações de magnitude igual a 2,0). Com a adoção de tais valores, os limites de controle dos gráficos de EWMA tornam-se muito próximos aos limites de controle dos gráficos de Shewhart.

_			(λ*,K _{zmr})	(λ*,K _{zmr})	λ*		DDDI
С	NIVIA ₀	γ*	início faixa	final faixa	médio	NIVIA ₁	DPRL
		1,5	(0,9399; 2,9441)	(0,9448; 2,9409)	0,942	25,8	24,4
	100,0	2,0	(0,9399; 2,9441)	(0,9448; 2,9409)	0,942	11,8	10,5
		3,0	(0,9399; 2,9441)	(0,9448; 2,9409)	0,942	5,4	4,1
		1,5	(0,9560; 3,3396)	(0,9609; 3,3352)	0,959	39,9	38,4
2	200,0	2,0	(0,9560; 3,3396)	(0,9609; 3,3352)	0,959	15,9	14,5
		3,0	(0,9560; 3,3396)	(0,9609; 3,3352)	0,959	6,5	5,1
		1,5	(0,0180; 2,4931)	(0,0230; 2,6506)	0,021	44,0	32,8
	370,4	2,0	(0,1836; 3,8156)	(0,1885; 3,8290)	0,186	19,9	16,2
		3,0	(0,7632; 3,8718)	(0,7682;3,8668)	0,766	7,5	6,0
		1,5	(0,0521; 2,8636)	(0,0571; 2,9183)	0,055	24,9	19,2
	100,0	2,0	(0,8475; 3,6272)	(0,8525; 3,6228)	0,850	12,0	10,6
		3,0	(0,8475; 3,6272)	(0,8525; 3,6228)	0,850	5,4	4,0
		1,5	(0,0571; 3,4219)	(0,0621; 3,4749)	0,060	34,9	27,7
3	200,0	2,0	(0,0571; 3,4219)	(0,0621; 3,4749)	0,060	15,4	10,0
		3,0	(0,8537; 4,0156)	(0,8586; 4,0096)	0,856	6,2	4,8
		1,5	(0,0441; 3,6692)	(0,0491; 3,7289)	0,047	43,6	34,0
	370,4	2,0	(0,0441; 3,6692)	(0,0491; 3,7289)	0,047	18,1	11,5
		3,0	(0,9690; 4,1834)	(0,9740; 4,1765)	0,972	7,0	5,7
		1,5	(0,0732; 3,4522)	(0,0782; 3,5019)	0,076	26,0	20,2
	100,0	2,0	(0,9628; 3,8046)	(0,9678; 3,7986)	0,965	11,7	10,3
		3,0	(0,9628; 3,8046)	(0,9678; 3,7986)	0,965	5,2	3,8
		1,5	(0,0360; 3,4889)	(0,0410; 3,5733)	0,039	33,6	24,2
5	200,0	2,0	(0,1836; 4,4006)	(0,1885; 4,4140)	0,186	14,9	11, 2
		3,0	(0,9399; 4,1922)	(0,9448; 4,1850)	0,942	6,0	4,7
		1,5	(0,0311; 3,7888)	(0,0360; 3,8758)	0,034	41,7	29,5
	370,4	2,0	(0,1203; 4,5545)	(0,1253; 4,5764)	0,123	17,3	12,6
		3,0	(0,8695; 6,7339)	(0,8655; 4,6017)	0,872	6,7	5,3
		1,5	(0,0763; 3,9141)	(0,0813; 3,9514)	0,079	27,9	21,2
	100,0	2,0	(0,0763; 3,9141)	(0,0813; 3,9514)	0,079	12,9	8,0
		3,0	(0,9107; 4,2350)	(0,9157; 4,2280)	0,913	5,5	4,1
		1,5	(0,0341; 3,8517)	(0,0391; 3,9438)	0,037	35,4	24,6
10	200,0	2,0	(0,1073; 4,5301)	(0,1123; 4,5540)	0,110	15,2	10,4
		3,0	(0,7632; 4,7791)	(0,7682; 4,7732)	0,766	6,2	4,7
		1,5	(0,0341; 4,2105)	(0,0391; 4,2951)	0,037	42,4	29,1
	370,4	2,0	(0,1173; 4,9312)	(0,1222; 4,9545)	0,120	17,5	12,4
		3,0	(0,9659; 4,7631)	(0,9709; 4,7539)	0,968	6,7	5,5
		1,5	(0,0571; 3,9783)	(0,0621; 4,0310)	0,060	29,5	21,6
	100,0	2,0	(0,0571; 3,9783)	(0,0621; 4,0310)	0,060	13,8	8,3
		3,0	(0,8537; 4,5176)	(0,8586; 4,5108)	0,856	5,8	4,4
		1,5	(0,0360; 4,1019)	(0,0410; 4,1893)	0,039	36,9	25,4
15	200,0	2,0	(0,1042; 4,7454)	(0,1092; 4,7692)	0,107	15,8	10,7
		3,0	(0,9429; 4,7042)	(0,9479; 4,6960)	0,945	6,3	4,9
		1,5	(0,0311; 4,3699)	(0,0360; 4,4619)	0,034	44,6	30,4
	370,4	2,0	(0,0993; 5,0552)	(0,1042; 5,0795)	0,102	17,9	12,1
		3,0	(0,7663; 5,2672)	(0,7713; 5,2595)	0,769	7,1	5,5
		1,5	(0,1836; 4,8140)	(0,1885; 4,8279)	0,186	35,1	30,4
	100,0	2,0	(0,1836; 4,8140)	(0,1885; 4,8279)	0,186	14,1	10,2
		3,0	(0,8537; 4,6476)	(0,8586; 4,6408)	0,856	5,8	4,4
		1,5	(0,0521; 4,4836)	(0,0571; 4,5383)	0,055	40,1	29,7
20	200,0	2,0	(0,0974; 4,8642)	(0,1023; 4,8908)	0,100	16,2	10,8
		3,0	(0,8506; 4,9816)	(0,8556; 4,6749)	0,853	6,4	5,0
		1,5	(0,0211; 4,2631)	(0,0261; 4,3875)	0,024	44,8	27,9
	370,4	2,0	(0,0974; 5,1942)	(0,1023; 5,2208)	0,100	18, 2	12,4
		3,0	(0,9287; 5,1240)	(0,9337; 5,1161)	0,931	7,0	5,6

Tabela 7.1 – Projetos ótimos para o GCG de EWMA de MR de DNB (*n*=1)

			() + K)	() + K)	<u>)</u> +		
С	NMA ₀	γ*	(~*, K _{ins})	(NT, Nins)	∿≁ módio	NMA ₁	DPRL
		1 5			0 506	6.0	5.2
	100.0	1,5	(0, 5055, 1, 5202)	(0, 5081, 1, 5204)	0,500	0,0	3,2
	100,0	2,0	(0,0051, 1,5250)	(0,0099, 1,5250)	0,000	2,5	1,0
		5,0	(0,7400, 1,5250)	(0,7507, 1,5250)	0,740	1,4	0,7
•		1,5	(0,2588; 1,5803)	(0,2636; 1,5832)	0,201	7,4	5,7
2	200,0	2,0	(0,6651; 1,6500)	(0,6699; 1,6500)	0,668	2,9	2,1
		3,0	(0,8662; 1,6368)	(0,8709; 1,6358)	0,869	1,5	0,8
		1,5	(0,2088; 1,6629)	(0,2136; 1,6672)	0,211	8,4	6,3
	370,4	2,0	(0,6449;1,7483)	(0,6496; 1,7476)	0,647	3,2	2,4
		3,0	(0,/50/; 1,/3/5)	(0,7555; 1,7372)	0,753	1,5	0,9
		1,5	(0,4129; 1,5863)	(0,4176; 1,5868)	0,415	6,7	5,6
	100,0	2,0	(0,6746; 1,6050)	(0,6794; 1,6050)	0,677	2,7	1,9
		3,0	(0,6746; 1,6050)	(0,6794; 1,6050)	0,677	1,4	0,7
-		1,5	(0,1886; 1,5940)	(0,1934; 1,6007)	0,191	7,9	5,9
3	200,0	2,0	(0,5485; 1,7176)	(0,5533; 1,7173)	0,551	3,1	2,2
		3,0	(0,9143; 1,6928)	(0,9191; 1,6921)	0,917	1,5	0,9
		1,5	(0,1713; 1,6927)	(0,1761; 1,6989)	0,174	9,1	6,8
	370,4	2,0	(0,7603; 1,7940)	(0,7651; 1,7935)	0,763	3,5	2,7
		3,0	(0,8721; 1,7828)	(0,8768; 1,7823)	0,875	1,6	1,0
		1,5	(0,2540; 1,6178)	(0,2588; 1,6212)	0,256	7,5	5,8
	100,0	2,0	(0,6901; 1,6900)	(0,6948; 1,6900)	0,693	3,0	2,2
		3,0	(0,8566; 1,6743)	(0,8614; 1,6739)	0,859	1,5	0,8
		1,5	(0,2195; 1,7275)	(0,2243; 1,7318)	0,222	8,9	6,8
5	200,0	2,0	(0,5592; 1,7991)	(0,5640; 1,7986)	0,562	3,3	2,4
		3,0	(0,8441; 1,7734)	(0,8489; 1,7727)	0,847	1,6	1,0
		1,5	(0,1279; 1,7070)	(0,1327; 1,7185)	0,130	10,2	7,4
	370,4	2,0	(0,5996; 1,8850)	(0,6044; 1,8843)	0,602	3,6	2,7
		3,0	(0,8066; 1,8590)	(0,8114; 1,8583)	0,809	1,7	1,0
		1,5	(0,1857; 1,6899)	(0,1904; 1,6966)	0,188	8,6	6,5
	100,0	2,0	(0,6217; 1,7939)	(0,6265; 1,7937)	0,624	3,3	2,4
		3,0	(0,8066; 1,7793)	(0,8114; 1,7789)	0,809	1,6	0,9
		1,5	(0,1309; 1,7272)	(0,1357; 1,7392)	0,133	10,1	7,2
10	200,0	2,0	(0,6044; 1,8943)	(0,6092; 1,8936)	0,607	3,6	2,6
		3,0	(0,9452; 1,8482)	(0,9500; 1,8475)	0,948	1,7	1,1
		1,5	(0,1232; 1,8256)	(0,12/9; 1,83/0)	0,126	11,6	8,4
	370,4	2,0	(0,6044; 1,9743)	(0,6092; 1,9736)	0,607	4,1	3,1
		3,0	(0,7960; 1,9456)	(0,8007; 1,9449)	0,798	1,8	1,1
	400.0	1,5	(0,1338; 1,6796)	(0,1386; 1,6915)	0,136	9,2	6,6
	100,0	2,0	(0,0353; 1,8497)	(0,6401; 1,8490)	0,038	3,5	2,6
		3,0	(0,8114; 1,8289)	(0,8162; 1,8284)	0,814	1,6	1,0
4-	202.2	1,5	(U,1386; 1,8188)	(0,1434; 1,8298)	0,141	10,9	8,0
15	200,0	2,0	(0,6401; 1,9440)	(0,6449; 1,9433)	0,643	4,0	3,0
		3,0	(0,8287; 1,9157)	(0,8335; 1,9150)	0,831	1,/	1,1
		1,5	(0,1029; 1,8468)	(0,10/7; 1,8577)	0,105	12,3	8,5
	370,4	2,0	(0,5/1/; 2,0321)	(0,5765; 2,0309)	0,574	4,3	3,2
		3,0	(0,8394; 1,9841)	(0,8441; 1,9834)	0,842	1,8	1,1
	100.0	2,2	(0,1004; 1,7939)	(0,1/52, 1,8001)	0,1/1	י, כ סיק	2,5
	100,0	2,0	(U,03U1; 1,8805)	(U,0348; 1,8858)	0,003	3,/ 1 7	2,9
		3,0	(0,1202,1,2205)	(0,0004; 1,8014)	0,004	11.2	1,0
20	200.0	1,5	(0,1202; 1,8285)	(U,125U; 1,84UU)	0,123	11,3 A 1	0,1 2 2
20	200,0	2,0	(0,0524; 1,9801) (0,8400, 1,077)	(0,0571, 1,9794) (0,8537-1,0460)	0,000	4,1 1 0	3,2 1 1
		3,0	(0,0403, 1,3777)	(0,0337, 1,9409)	0,001	12 1	1,1
	370 4	2,2 2 A	(0,1232, 1,9410)	(0,12/3, 1,3313)	0,120	13,1 // E	2,0
	370,4	2,0	(0,4001, 2,0332) (0,7030- 2,0314)	(0,4123, 2,0307) (0,7978· 2,0307)	0,411	د, ب 1 9	3,0 1 1
		3,0	(0,7930, 2,0214)	(0,7970, 2,0204)	0,133	0,1	1,1

Tabela 7.2 – Projetos ótimos para o GCG de EWMA de $ln(S^2)$ (*n*=4)

7.4 Resultados de Desempenho Individual

Esta seção é dedicada aos resultados de desempenho individual dos gráficos de controle de EWMA apresentados, utilizando-se dos resultados dos projetos ótimos obtidos (tabelas 7.1 a 7.2), contra alterações na dispersão do canal afetado

Os resultados são apresentados apenas para o valor de NMA₀ igual 200 amostras, devido ao grande número de resultados obtidos para cada uma das tabelas. Os valores de NMA₁ para os valores de NMA₀ igual a 100 e 370,4 amostras podem ser encontrados no Apêndice D desta tese, e as conclusões em termos relativos (desempenho relativo dos diferentes gráficos, efeito de *n* sobre o desempenho) praticamente não diferem das conclusões para o NMA₀ de 200 amostras.

Os resultados obtidos para o controle por observações individuais serão expostos primeiro, seguidos pelos resultados obtidos para o controle por dados subgrupados (amostras de tamanho igual a 4).

7.4.1

Controle por Observações Individuais

As tabelas 7.3 e 7.4 mostram os resultados de desempenho dos gráficos de controle apresentados nos Capítulo 2, 3 e 5 (especificamente, os gráficos de controle de EWMA de Mortell e Runger, 1995, de MEWMA de Runger et al., 1996, GCG de EWMA das diferenças e o GCG de EWMA de MR das diferenças para o monitoramento de observações individuais).

								NMA de st	eady-state			
c GC	ESQUEMA			(λ*,K)				1	<u> </u>			
			0.5	(0.0220.2.0200)	1	1,5	2	2,5	3	4	5	6
	GCG EWMA DNB	e .	0,5	(0,0320; 2,0380)	191,1	78,6	42,2	26,8	19,1	11,5	8,0	6,0
	ESQUEMA GCG EWMA DNB PROPOSTO EWMA R, M&R (1995) MEWMA R,A&M (1996) GCG EWMA MR DNB PROPOSTO GCG EWMA DNB PROPOSTO GCG EWMA MR DNB PROPOSTO GCG EWMA MR DNB PROPOSTO GCG EWMA DNB PROPOSTO EWMA R, M&R (1995) MEWMA R,A&M (1995) MEWMA R,A&M (1995) MEWMA R,A&M (1995)	ò*	1,0	(0,1060; 2,4650)	184,1	57,0	27,0	16,2	11,2	6,7	4,7	3,7
			2,0	(0,3240; 2,7246)	197,4	43,7	17,9	10,1	6,8	4,2	3,0	2,5
	EWMA R _t	_	0,5	(0,0130; 1,0410)	212,2	26,1	12,8	8,5	6,4	4,4	3,5	2,9
	M&R (1995)	δ*	1,0	(0,0130; 1,0410)	212,2	26,1	12,8	8,5	6,4	4,4	3,5	2,9
2			2,0	(0,1310; 2,4464)	195,0	25,5	10,5	6,5	4,8	3,3	2,6	2,2
	MFWMA		0,5	(0,0340; 4,2360)	188,3	76,7	41,3	26,4	18,5	11,2	7,8	5,9
	R.A&M (1996)	δ*	1,0	(0,0860; 5,8200)	189,6	61,4	29,8	18,1	12,5	7,5	5,3	4,1
			2,0	(0,2880; 7,3428)	200,5	45,3	18,8	10,8	7,2	4,4	3,2	2,6
	GCG EWMA MR		1,5	(0,9590; 3,3369)	198,7	39,9	15,9	9,1	6,5	4,4	3,5	3,1
	DNB	γ*	2,0	(0,9590; 3,3369)	198,7	39,9	15,9	9,1	6,5	4,4	3,5	3,1
	PROPOSTO		3,0	(0,9590; 3,3369)	198,7	39,9	15,9	9,1	6,5	4,4	3,5	3,1
			0,5	(0,0320; 2,4420)	184,3	81,0	44,1	28,2	19,9	11,8	8,3	6,3
		δ*	1,0	(0,1060; 2,8420)	192,0	61,2	27,8	16,4	11,2	6,6	4,7	3,7
	PROPOSIO		2,0	(0,2630; 3,0378)	197,7	48,2	19,3	10,7	7,2	4,3	3,1	2,5
	ESQUEMA GCG EWMA DNB PROPOSTO EWMA Rt M&R (1995) MEWMA R,A&M (1996) GCG EWMA MR DNB PROPOSTO GCG EWMA DNB PROPOSTO EWMA Rt M&R (1995) MEWMA R,A&M (1996) GCG EWMA MR DNB PROPOSTO GCG EWMA MR DNB PROPOSTO EWMA Rt M&R (1995) MEWMA R,A&M (1996) GCG EWMA MR DNB PROPOSTO		0,5	(0,0130; 1,0310)	211,5	27,0	13,2	8,7	6,6	4,5	3,6	3,0
		δ*	1,0	(0,0130; 1,0310)	211,5	27,0	13,2	8,7	6,6	4,5	3,6	3,0
3			2,0	(0,2230; 2,6145)	199,8	28,5	10,6	6,3	4,5	3,0	2,4	2,1
	5.4534/5.4A		0,5	(0,0450; 7,1450)	187,0	74,8	38,8	24,4	17,2	10,2	7,1	5,4
		δ*	1,0	(0,1130; 8,8186)	194,3	59,5	26,8	15,8	10,9	6,4	4,5	3,5
	R,A&M (1996)		2,0	(0,2780; 10,0220)	194,9	47,1	18,8	10,3	6,9	4,2	3,1	2,5
	GCG EWMA MR		1,5	(0,0600; 3,4550)	198,5	34,9	15,4	10,1	7,7	5,5	4,5	3,9
	DNB	γ*	2,0	(0,0600; 3,4550)	198,5	34,9	15,4	10,1	7,7	5,5	4,5	3,9
	PROPOSTO	•	3,0	(0,8560; 4,0128)	202,3	41,9	15,4	8,8	6,2	4,2	3,5	3,1
			0,5	(0,0350; 2,7150)	181,0	84,7	45,6	28,5	20,1	12,1	8,2	6,2
	GCG EWMA DNB	δ*	1,0	(0,1110; 3,0548)	189,9	65,6	28,5	16,4	11,1	6,5	4,6	3,5
	PROPOSTO		2.0	(0.2940: 3.2226)	194.5	49.8	18.3	9.9	6.6	4.0	2.9	2.4
			0,5	(0,0130; 1,0365)	213,2	30,0	14,1	9,2	6,9	4,7	3,6	3,0
	EWMA R _t M&R (1995)	δ*	1.0	(0.0130: 1.0365)	213.2	30.0	14.1	9.2	6.9	4.7	3.6	3.0
5		-	2.0	(0.1540: 2.3992)	200.7	30.5	11.4	6.8	4.9	3.3	2.6	2.2
-			0.5	(0.0370: 10.5060)	182.7	87.3	47.3	29.5	20.9	12.5	8.5	6.4
	MEWMA	δ*	1.0	(0,1000; 12,7300)	188.7	68.4	31.7	18.6	12.7	7.3	5.2	4.0
	R,A&M (1996)	U :	2.0	(0.3180; 14.4063)	199.8	52.2	19.4	10.5	6.9	4.1	3.0	2.5
	GCG FWMA MR		1.5	(0.0390: 3.5420)	194.2	33.6	15.4	10.2	7.9	5.7	4.7	4.1
	DNB	* *	2.0	(0.1860; 4.4072)	192.4	39.3	14.9	9.2	6.8	4.8	3.9	3.4
	PROPOSTO	1.	3.0	(0.9420: 4.1891)	205.4	44.5	15.6	8.6	6.0	4.1	3.3	2.9

Tabela 7.3 – Medidas de Desempenho Individual para n=1 e $NMA_0=200$ (Parte I)

c 10 10 15 20	ESOLIEMA			() + K)	NMA de steady-state									
	ESQUEIVIA			(//*,K) _	1	1,5	2	2,5	<u>γ</u> 3	4	5	6		
			0,5	(0,0350; 2,9775)	173,7	93,9	50,6	31,4	21,5	12,8	8,9	6,6		
	GCG EWMA DNB	δ*	1,0	(0,0880; 3,2360)	190,6	78,7	34,8	20,0	13,2	7,7	5,3	4,1		
	PROPOSIO		2,0	(0,2340; 3,4104)	197,0	60,6	21,8	11,8	7,8	4,6	3,3	2,7		
			0,5	(0,0130; 1,0265)	207,6	36,5	16,2	10,1	7,3	4,8	3,7	3,0		
		δ*	1,0	(0,0130; 1,0265)	207,6	36,5	16,2	10,1	7,3	4,8	3,7	3,0		
10	M&R (1995)		2,0	(0,1310; 2,3178)	201,0	38,5	13,4	7,6	5,4	3,5	2,7	2,3		
			0,5	(0,0370; 18,2990)	181,1	100,4	56,6	35,9	25,3	14,9	10,1	7,6		
		δ*	1,0	(0,1130; 21,3806)	190,3	81,5	37,5	21,3	14,0	8,1	5,5	4,2		
	R,A&IVI (1996)		2,0	(0,2200; 22,6240)	193,0	70,1	28,6	15,2	9,9	5,6	4,0	3,1		
	GCG EWMA MR		1,5	(0,0370; 3,9045)	189,1	35,4	15,9	10,6	8,1	5,9	4,8	4,2		
	DNB	γ*	2,0	(0,1100; 4,5430)	192,5	39,3	15,2	9,6	7,2	5,2	4,2	3,7		
	PROPOSTO	•	3,0	(0,7660; 4,7758)	202,2	51,3	16,6	9,0	6,2	4,2	3,4	3,0		
			0,5	(0,0420; 3,1820)	177,6	99,4	50,9	31,0	21,2	12,3	8,4	6,3		
	GCG EWIMA DNB	δ*	1,0	(0,0910; 3,3725)	188,8	84,0	36,9	20,6	13,6	7,8	5,3	4,1		
	PROPOSIO		2,0	(0,3020; 3,5455)	194,5	61,4	21,1	10,7	7,0	4,1	3,0	2,4		
			0,5	(0,0130; 1,0210)	209,6	40,8	17,5	10,5	7,5	4,8	3,6	3,0		
15		δ*	1,0	(0,0130; 1,0210)	209,6	40,8	17,5	10,5	7,5	4,8	3,6	3,0		
	M&R (1995)		2,0	(0,1100; 2,2320)	201,4	42,6	14,9	8,3	5,7	3,6	2,8	2,3		
			0,5	(0,0370; 25,1760)	173,8	105,4	63,2	40,3	28,2	16,3	11,3	8,4		
		δ*	1,0	(0,1100; 28,8400)	190,6	94,0	44,0	25,0	16,5	9,2	6,2	4,7		
	R,A&IVI (1996)		2,0	(0,2410; 30,4280)	195,7	82,0	33,5	17,3	11,0	6,1	4,2	3,2		
	GCG EWMA MR		1,5	(0,0390; 4,1565)	189,7	36,9	16,2	10,8	8,3	6,0	4,9	4,3		
	DNB	γ*	2,0	(0,1070; 4,7586)	197,2	42,4	15,8	9,7	7,3	5,2	4,3	3,7		
	PROPOSTO	-	3,0	(0,9450; 4,7008)	200,8	56,0	17,2	9,1	6,3	4,1	3,4	3,0		
			0,5	(0,0350; 3,2150)	172,1	101,5	55,9	34,9	24,5	14,4	9,7	7,2		
	GCG EWIMA DNB	δ*	1,0	(0,1010; 3,4764)	189,7	86,8	36,6	20,3	13,2	7,6	5,2	4,1		
	PROPOSIO		2,0	(0,2840; 3,6202)	196,6	68,3	22,5	11,4	7,5	4,4	3,1	2,5		
			0,5	(0,0130; 1,0315)	211,9	44,9	18,7	11,1	7,7	5,0	3,7	3,1		
		δ*	1,0	(0,0130; 1,0315)	211,9	44,9	18,7	11,1	7,7	5,0	3,7	3,1		
20	M&R (1995)		2,0	(0,1230; 2,2855)	198,2	48,2	15,8	8,4	5,7	3,6	2,7	2,3		
			0,5	(0,0340; 31,4700)	170,5	111,7	69,7	46,2	32,8	19,3	13,2	9,7		
		δ*	1,0	(0,0890; 35,2830)	185,7	103,9	52,9	30,7	20,5	11,3	7,6	5,8		
	K,A&IVI (1996)		2,0	(0,2670; 37,7850)	195,6	90,1	36,5	18,4	11,4	6,2	4,3	3,3		
	GCG EWMA MR		1,5	(0,0550; 4,5150)	193,4	40,1	16,6	10,7	8,1	5,9	4,8	4,1		
	DNB	γ*	2,0	(0,1000; 4,8800)	198,6	44,7	16,2	10,1	7,6	5,4	4,4	3,9		
	PROPOSTO	•	3,0	(0,8530; 4,9779)	199,3	59,6	18,4	9,4	6,4	4,2	3,4	3,0		

Tabela 7.4 – Medidas de Desempenho Individual para $n=1 e NMA_0=200$ (Parte II)

Os resultados foram divididos em duas tabelas por causa do número de casos analisados (foram obtidos 3 projetos ótimos para cada gráfico de controle, o que resulta em 12 projetos por número de canais). Ao todo, nas duas tabelas, são analisados 72 projetos para o NMA₀ de 200 amostras.

Os valores mínimos de NMA₁ obtidos para o GCG de EWMA de MR das diferenças para cada combinação de número de canais (*c*) e magnitude de aumento na dispersão (γ) estão destacados em vermelho.

É evidente na Tabela 7.3 que, em processos compostos por até 5 canais, o gráfico de controle de EWMA de R_t de Mortell e Runger (1995) apresenta o melhor desempenho contra pequenas alterações na dispersão. O GCG de EWMA de MR das diferenças é o segundo melhor em desempenho contra tais alterações em processos compostos por poucos canais.

No entanto, pode ser observado na Tabela 7.4 que o GCG de EWMA de MR DNB é o gráfico de controle mais eficiente (valores menores de NMA₁) contra pequenos aumentos na dispersão, em processos compostos por mais de 10 canais (onde a correlação entre as diferenças nos canais é menor que -0,11).

No caso de processos compostos por 20 canais (onde os canais são praticamente independentes) para $\gamma = 1,5$, observa-se uma melhora de desempenho de 10,68% do GCG de EWMA de MR das diferenças em relação ao gráfico de controle de EWMA de R_t, o segundo melhor em desempenho, considerando um aumento na dispersão com $\gamma = 1,5$.

Ao comparar o desempenho dos gráficos de controle de EWMA apresentados nesse capítulo com o desempenho dos gráficos de controle de Shewhart apresentados na Tabela 4.1 do Capítulo 4, pode se concluir que a incorporação do amortecimento exponencial (EWMA) melhorou os desempenhos somente do gráfico de controle de R_t e do GCG de MR das diferenças contra pequenas alterações na dispersão das componentes individuais de variação.

O gráfico de controle de S^2 de Runger et al. (1996) e o GCG das diferenças apresentam melhor desempenho (valores menores de NMA₁) contra pequenos aumentos na dispersão quando são utilizados nas suas versões "de Shewhart". Vale lembrar, porém, que tais gráficos são destinados ao controle das médias, uso para o qual suas versões EWMA são mais eficientes, como visto no Capítulo 6. Para melhor ilustrar o ganho de desempenho mencionado para os gráficos de controle de EWMA apresentados contra alterações na dispersão, os valores de NMA₁ destes gráficos (em suas versões EWMA e Shewhart desenvolvidas ao longo da tese) são apresentados graficamente. Os valores de NMA₁ das versões EWMA e Shewhart do GCG das diferenças em relação ao nível-base podem ser vistos na Figura 7.9, os do gráfico de controle de R_t de Mortell e Runger (1995) no Figura 7.10, os do gráfico de controle de S^2 de Runger et al. (1996), na Figura 7.11, e os do GCG de MR das diferenças em relação ao nível-base, na Figura 7.12.

Para representar graficamente os valores de NMA₁ dos gráficos de controle de EWMA destinados ao controle das médias foram escolhidos os valores obtidos para $\delta *=2,0$ (o caso em que houve maior ganho de desempenho pela incorporação do esquema EWMA nos três gráficos de controle da média). Foi considerado somente o caso de processos compostos por 15 canais, para não sobrecarregar o capítulo com muitos gráficos que trariam a mesma informação.

Figura 7.9 – Comparação de desempenho entre as versões Shewhart e EWMA do GCG de DNB para *NMA*₀=200 (*c*=15, *n*=1)

Figura 7.10 – Comparação de desempenho entre as versões Shewhart e EWMA do GC de R_t para *NMA*₀=200 (*c*=15, *n*=1)

Figura 7.11 – Comparação de desempenho entre as versões Shewhart e EWMA do GC de S² para $NMA_0=200$ (c=15, n=1)

Figura 7.12 – Comparação de desempenho entre as versões Shewhart e EWMA do GCG de MR de DNB para *NMA*₀=200 (*c*=15, *n*=1)

Em relação às alterações de pequena magnitude (alterações menores que 2,0) na dispersão de um canal individual, o gráfico de controle de EWMA de R_t apresenta o melhor desempenho, dentre os 4 gráficos apresentados (nas versões EWMA e Shewhart), considerando processos compostos por até 5 canais. Já o GCG de EWMA de MR das diferenças em relação ao nível-base apresenta o melhor desempenho, dentre os 4 gráficos apresentados (nas versões EWMA e Shewhart), para processos compostos por mais de 10 canais.

No entanto, ao considerar alterações de magnitude maior que 2,0 na dispersão, pode-se afirmar que o GCG das diferenças em relação ao nível-base na versão Shewhart continua a apresentar melhor desempenho (valores menores de NMA₁) que os outros 3 gráficos (nas versões EWMA e Shewhart) para o controle por observações individuais, independentemente do número de canais que compõem o processo.

C	ESQUEMA	PROJ	eto Mo	(λ * ,K)	regime de probabilidades				NM)	[A ₁			
		011			probabilitataes =	1	1,5	2	2,5	3	4	5	6
	GCG EWMA DNB	PROJETO ÓTIMO δ* 2,0 δ* 2,0	(0 2620, 2 0270)	Steady-State	197,7	48,2	19,3	10,7	7,2	4,3	3,1	2,5	
	PROPOSTO	0+	2,0	(0,2030, 3,0376)	Zero-State	202,2	49,3	19,6	11,1	7,5	4,5	3,3	2,6
	EWMA R _t	S+	20	(0 2220- 2 61/15)	Steady-State	199,8	28,5	10,6	6,3	4,5	3,0	2,4	2,1
3	M&R (1995)	0+	2,0	(0,2230, 2,0143)	Zero-State	202,6	27,8	10,7	6,3	4,5	3,0	2,4	2,1
	MEWMA	8*	20	(0 2780- 10 0220)	Steady-State	194,9	47,1	18,8	10,3	6,9	4,2	3,1	2,5
	R,A&M (1996)	0+	2,0	(0,2700, 10,0220)	Zero-State	204,3	47,9	19,2	10,8	7,3	4,4	3,2	2,6
	GCG EWMA MR	Arth	20	(0.0600-3.4550)	Steady-State	198,5	34,9	15,4	10,1	7,7	5,5	4,5	3,9
	DNB	1.	* 2,0 ;* 2,0 ;* 2,0 ;* 2,0	(0,0000, 3,4330)	Zero-State	199,7	36,0	16,3	10,7	8,2	5,9	4,8	4,1
	GCG EWMA DNB	δ±	γ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 γ* 2,0	(0 2940 · 3 2226)	Steady-State	194,5	49,8	18,3	9,9	6,6	4,0	2,9	2,4
	PROPOSTO	0*		(0,2340, 3,2220)	Zero-State	198,9	50,9	19,0	10,3	6,9	4,1	3,0	2,4
	EWMA R _t	δ ±		(0 1540 2 3992)	Steady-State	200,7	30,5	11,4	6,8	4,9	3,3	2,6	2,2
5	M&R (1995)	0*		(0,1310, 2,3352)	Zero-State	198,8	30,8	11,6	6,8	4,8	3,2	2,5	2,1
	MEWMA	δ#		(0.3180: 14.4063)	Steady-State	199,8	52,2	19,4	10,5	6,9	4,1	3,0	2,5
	R,A&M (1996)	0.		(0,0100, 11, 1000)	Zero-State	202,7	53,5	20,6	11,2	7,3	4,4	3,1	2,5
	GCG EWMA MR	v#		(0.1860: 4.4072)	Steady-State	192,4	39,3	14,9	9,2	6,8	4,8	3,9	3,4
	DNB	1.		(0)2000) 1) 1012)	Zero-State	198,1	39,6	15,1	9,3	6,9	4,9	4,0	3,5
	GCG EWMA DNB	δ#	2.0	(0.2840: 3.6202)	Steady-State	196,6	68,3	22,5	11,4	7,5	4,4	3,1	2,5
	PROPOSTO	V .	δ * 2,0	(0)=0:0) 0)0=0=)	Zero-State	199,5	69,2	23,5	12,0	7,8	4,4	3,2	2,6
	EWMA R _t	δ#	δ* 2,0 δ* 2,0 δ* 2,0 (γ* 2,0	(0.1230: 2.2855)	Steady-State	198,2	48,2	15,8	8,4	5,7	3,6	2,7	2,3
20	M&R (1995)	U .		(0)2200) 2)2000)	Zero-State	199,8	49,3	16,1	8,5	5,8	3,6	2,7	2,3
	MEWMA	δ#		(0.2670: 37,7850)	Steady-State	195,6	90,1	36,5	18,4	11,4	6,2	4,3	3,3
	R,A&M (1996)	U .		(0)2010)01)1000	Zero-State	198,6	94,2	38,6	20,1	12,9	7,1	4,9	3,8
	GCG EWMA MR	v*		(0.1000: 4.8800)	Steady-State	198,6	44,7	16,2	10,1	7,6	5,4	4,4	3,9
	DNB	1.	2,0	10,1000, 7,0000	Zero-State	198,3	44,7	16,7	10,5	7,9	5,6	4,6	3,9

Tabela 7.5 – Comparação entre os valores de NMA₁ de steady-state e zero-state (n=1)

Pode ser observado na Tabela 7.5 que, ao comparar as medidas de desempenho obtidas em regime de probabilidades de *zero-state* e *steady-state*, os valores de NMA₁ de *steady-state* são freqüentemente menores que os de *zero-state*. Nesta tabela foram considerados apenas alguns projetos ótimos obtidos para fornecer uma idéia quantitativa das diferenças entre os desempenhos de *steady-state* e *zero-state*.

O comportamento apresentado nesta tabela (valores de NMA₁ de *steadystate* menores que os de zero-state) coincide com o observado para outros gráficos EWMA na literatura.

7.4.2 Controle por Dados Subgrupados

As tabelas 7.6 e 7.7 mostram os resultados de desempenho dos gráficos de controle apresentados nos Capítulo 2, 3 e 5 (especificamente os gráficos de controle de EWMA de Mortell e Runger, 1995, de MEWMA de Runger et al., 1996, o GCG de EWMA das diferenças e o GCG de EWMA de $\ln(S^2)$) para o controle por dados subgrupados.

Os valores destacados em vermelho nas tabelas 7.6 e 7.7 são os valores mínimos de NMA₁ para o GCG de EWMA de $\ln(S^2)$ para cada combinação de número de canais (*c*) e alteração na dispersão (γ), com amostras de tamanho igual a 4 unidades.

c	ESOLIEMA	$ \begin{array}{c} MA & (\lambda*,K) & & & & & & & & & & & & & & & & & & &$										
	ESQUEIMA			(∧ * ,K) _	1	1,5	2	2,5	γ 3	4	5	6
			0,5	(0,1060; 2,4650)	188,6	58,1	27,3	16,4	11,5	6,9	4,9	3,8
	GCG EWMA DNB	δ*	1,0	(0,3240; 2,7246)	199,0	43,6	17,7	10,0	6,8	4,1	3,0	2,4
	PROPOSIO		2,0	(0,7660; 2,8033)	201,0	37,4	13,8	7,3	4,9	3,1	2,4	2,0
			0,5	(0,0130; 1,0410)	209,7	26,1	12,9	8,6	6,5	4,5	3,5	2,9
	EWIVIA R _t	δ*	1,0	(0,1310; 2,4464)	192,6	25,3	10,5	6,5	4,8	3,3	2,6	2,2
2	M&R (1995)		2,0	(0,6540; 3,2324)	202,4	32,4	11,8	6,4	4,4	2,9	2,2	1,9
			0,5	(0,0860; 5,8200)	194,5	62,4	29,7	18,3	12,6	7,6	5,4	4,1
		δ*	1,0	(0,2880; 7,3428)	203,4	45,3	18,8	10,7	7,3	4,4	3,2	2,6
	R,A&IVI (1996)		2,0	(0,6980; 7,8394)	200,4	37,7	14,1	7,5	5,0	3,1	2,4	2,0
			1,5	(0,2610; 1,5816)	194,2	7,4	3,1	2,1	1,7	1,4	1,2	1,1
	GCG EWINA In(S)	γ*	2,0	(0,6680; 1,6500)	198,9	8,1	2,9	1,9	1,5	1,2	1,1	1,1
	PROPOSTO (n=4)		3,0	(0,8690; 1,6362)	200,2	9,2	3,0	1,9	1,5	1,2	1,1	1,1
			0,5	(0,1060; 2,8420)	192,2	61,4	28,3	16,9	11,6	6,8	4,8	3,7
		δ*	1,0	(0,2630; 3,0378)	199,3	48,0	19,0	10,8	7,2	4,3	3,2	2,6
	PROPOSIO		2,0	(0,7400; 3,1250)	200,1	38,0	13,0	7,1	4,7	2,9	2,3	1,9
	MEWMA R,A&M (1996) GCG EWMA In(S ²) PROPOSTO (n=4) GCG EWMA DNB PROPOSTO EWMA R, M&R (1995) MEWMA R,A&M (1996) GCG EWMA In(S ²) PROPOSTO (n=4) GCG EWMA DNB		0,5	(0,0130; 1,0310)	213,1	26,9	13,3	8,9	6,7	4,6	3,6	3,0
		δ*	1,0	(0,2230; 2,6145)	200,3	27,7	10,5	6,3	4,5	3,1	2,4	2,1
3	M&R (1995)		2,0	(0,6830; 3,0141)	199,4	33,9	11,7	6,4	4,3	2,8	2,2	1,9
			0,5	(0,1130; 8,8186)	193,4	59,6	27,4	16,1	11,1	6,6	4,7	3,6
	DARM (1006)	δ*	1,0	(0,2780; 10,0220)	198,0	46,0	18,3	10,4	7,0	4,2	3,1	2,5
	K,AQIVI (1990)		2,0	(0,7720; 10,5794)	200,3	37,3	12,9	7,0	4,6	2,9	2,3	1,9
	$CCC = 1A(AA + m(s^2))$		1,5	(0,1910; 1,5974)	195,0	7,9	3,4	2,4	1,9	1,5	1,3	1,2
		γ*	2,0	(0,5510; 1,7174)	195,9	8,6	3,1	2,0	1,6	1,3	1,1	1,1
	PROPOSTO (n=4)		3,0	(0,9170; 1,6925)	204,4	11,1	3,3	2,0	1,5	1,2	1,1	1,1
			0,5	(0,1110; 3,0548)	193,6	65,6	28,7	16,4	11,1	6,5	4,6	3,6
		δ*	1,0	(0,2940; 3,2226)	199,5	49,7	18,2	10,0	6,7	4,0	2,9	2,4
	PROPOSIO		2,0	(0,7660; 3,2833)	196,9	40,4	12,8	6,6	4,4	2,8	2,2	1,8
	FW/MA R		0,5	(0,0130; 1,0365)	212,1	30,0	14,2	9,2	6,9	4,7	3,6	3,0
		δ*	1,0	(0,1540; 2,3992)	200,2	30,3	11,6	6,9	4,9	3,2	2,5	2,2
5	M&R (1995)		2,0	(0,6230; 2,8919)	200,4	38,3	12,2	6,5	4,4	2,8	2,2	1,9
	ΝΛΕΙΛ/ΝΛΛ		0,5	(0,1000; 12,7300)	192,1	69,3	31,7	18,7	12,6	7,3	5,1	3,9
	R A&M (1996)	δ*	1,0	(0,3180; 14,4063)	200,4	51,8	19,3	10,5	7,0	4,1	3,0	2,4
	N,AGINI (1990)		2,0	(0,7480; 14,8192)	194,5	43,3	14,2	7,3	4,8	3,0	2,3	1,9
			1,5	(0,2220; 1,7298)	193,8	8,9	3,6	2,5	2,0	1,5	1,3	1,2
		γ*	2,0	(0,5620; 1,7988)	197,8	10,0	3,3	2,1	1,6	1,3	1,2	1,1
	PROPOSIO (n=4)		3,0	(0.8470: 1.7730)	201.9	12.3	3.5	2.1	1.6	1.3	1.1	1.1

Tabela 7.6 – Medidas de Desempenho Individual para *n*=4 e *NMA*₀=200 (Parte I)

	500115144			(2 + 14)				NMA de s	teady-state			
c G(10 10 F G(PF G(PF G(Pf) (Pf) (Pf) (Pf) (Pf) (Pf) (Pf) (Pf) (ESQUEMA			(λ*,K) _	1	1,5	2	2,5	<u>γ</u> 3	4	5	6
	000 5100 5 5		0,5	(0,0880; 3,2360)	189,1	79,1	35,0	19,9	13,3	7,7	5,3	4,1
		δ*	1,0	(0,2340; 3,4104)	197,5	62,0	22,3	11,8	7,8	4,5	3,2	2,6
	PROPOSIO		2,0	(0,7660; 3,4783)	197,9	47,2	13,7	7,0	4,6	2,8	2,2	1,9
			0,5	(0,0130; 1,0265)	211,9	36,6	16,3	10,2	7,4	4,9	3,7	3,1
		δ*	1,0	(0,1310; 2,3178)	202,1	38,2	13,6	7,7	5,4	3,5	2,7	2,3
10	M&R (1995)		2,0	(0,6760; 2,8728)	199,6	47,8	14,3	7,2	4,8	2,9	2,3	1,9
			0,5	(0,1130; 21,3806)	187,7	81,3	37,5	21,5	14,3	8,2	5,5	4,2
		δ*	1,0	(0,2200; 22,6240)	196,5	72,0	28,8	15,5	10,0	5,6	3,9	3,1
	R,A&IVI (1996)		2,0	(0,7250; 23,5625)	198,9	59,3	18,8	9,2	5,9	3,4	2,5	2,1
			1,5	(0,1330; 1,7325)	189,3	10,1	4,2	2,9	2,4	1,9	1,6	1,4
	GCG EWIMA In(S)	γ*	2,0	(0,6070; 1,8940)	197,8	12,5	3,6	2,2	1,7	1,3	1,2	1,1
	PROPOSIO (n=4)		3,0	(0,9480; 1,8478)	200,6	17,5	4,3	2,3	1,7	1,3	1,1	1,1
			0,5	(0,0910; 3,3725)	190,1	84,1	37,0	20,8	13,7	7,9	5,5	4,2
		δ*	1,0	(0,3020; 3,5455)	196,7	62,2	21,1	10,8	7,1	4,1	3,0	2,4
	ESQUEMA GCG EWMA DNB PROPOSTO EWMA Rt M&R (1995) MEWMA R,A&M (1996) GCG EWMA In(S ²) PROPOSTO (n=4) GCG EWMA DNB PROPOSTO EWMA Rt M&R (1995) MEWMA R,A&M (1996) GCG EWMA In(S ²) PROPOSTO (n=4) GCG EWMA Rt M&R (1995) MEWMA R,A&M (1996) EWMA Rt M&R (1995) MEWMA R,A&M (1996) CCG EWMA In(S ²) PROPOSTO (n=4) MEWMA R,A&M (1996) CCG EWMA In(S ²) PROPOSTO (n=4) CCG EWMA In(S ²) CCG		2,0	(0,8550; 3,5877)	201,2	51,5	14,3	7,0	4,6	2,8	2,2	1,8
			0,5	(0,0130; 1,0210)	207,9	41,1	17,7	10,7	7,6	4,9	3,7	3,1
15		δ*	1,0	(0,1100; 2,2320)	195,5	42,8	15,0	8,3	5,7	3,6	2,8	2,4
	IVI&R (1995)		2,0	(0,5430; 2,8308)	201,4	52,4	15,4	7,6	4,9	3,0	2,3	2,0
	NAE1A/NAA		0,5	(0,1100; 28,8400)	190,3	94,4	44,7	25,3	16,6	9,3	6,4	4,8
		δ*	1,0	(0,2410; 30,4280)	199,0	83,2	33,1	17,4	11,0	6,1	4,2	3,2
	K,AQIVI (1990)		2,0	(0,6760; 31,2528)	199,3	71,1	23,6	11,2	6,8	3,8	2,7	2,2
			1,5	(0,1410; 1,8243)	191,0	10,9	4,4	3,0	2,4	1,9	1,6	1,4
		γ*	2,0	(0,6430; 1,9435)	203,4	14,6	4,0	2,3	1,7	1,3	1,2	1,1
	PROPOSTO (n=4)		3,0	(0,8310; 1,9153)	205,6	17,7	4,3	2,3	1,7	1,3	1,2	1,1
			0,5	(0,1010; 3,4764)	187,4	87,6	37,4	20,8	13,5	7,6	5,2	4,0
	GCG EWMA In(S ²) PROPOSTO (n=4) GCG EWMA DNB PROPOSTO EWMA R _t M&R (1995)	δ*	1,0	(0,2840; 3,6202)	196,4	67,6	22,8	11,7	7,5	4,3	3,1	2,5
			2,0	(0,7610; 3,6600)	197,3	55,5	15,5	7,4	4,7	2,9	2,2	1,9
			0,5	(0,0130; 1,0315)	213,1	45,3	18,9	11,2	7,9	5,0	3,7	3,1
		δ*	1,0	(0,1230; 2,2855)	199,3	48,8	15,9	8,5	5,8	3,6	2,7	2,3
20			2,0	(0,5220; 2,8232)	202,4	57,4	16,7	7,9	5,0	3,1	2,3	2,0
			0,5	(0,0890; 35,2830)	189,3	107,3	55,4	31,8	21,0	11,5	7,7	5,7
	R A&M (1996)	δ*	1,0	(0,2670; 37,7850)	195,6	91,4	36,7	18,6	11,6	6,2	4,3	3,2
	N,AQIVI (1990)		2,0	(0,6570; 38,5285)	197,1	81,3	28,2	13,2	7,6	4,1	2,9	2,3
	GCG EWMA In(S ²) PROPOSTO (n=4) GCG EWMA DNB PROPOSTO EWMA R _t M&R (1995) GCG EWMA In(S ²) PROPOSTO (n=4) GCG EWMA DNB PROPOSTO EWMA R _t M&R (1995) MEWMA R,A&M (1996) GCG EWMA In(S ²) PROPOSTO (n=4)		1,5	(0,1230; 1,8352)	187,7	11,3	4,6	3,2	2,6	2,0	1,7	1,5
		γ*	2,0	(0,6350; 1,9798)	199,0	16,0	4,1	2,4	1,8	1,3	1,2	1,1
	PROPOSTO (n=4)		3,0	(0,8510;1,9473)	205,6	20,5	4,6	2,4	1,8	1,3	1,2	1,1

Tabela 7.7 – Medidas de Desempenho Individual para *n*=4 e *NMA*₀=200 (Parte II)

Observando os resultados nas tabelas 7.6 e 7.7, torna-se evidente que o GCG de EWMA de $\ln(S^2)$ apresenta o melhor desempenho dentre todos os gráficos de controle analisados. Tal ganho de desempenho (valores bem menores de NMA₁) já era esperado, pois além do GCG de EWMA de $\ln(S^2)$ proposto ser projetado (e otimizado) especificamente para sinalizar pequenos aumentos na dispersão (enquanto os outros se destinam a sinalizar alterações na média), a estatística de controle $\ln(S^2)$ mede apenas a dispersão intra-canal, enquanto que as estatísticas utilizadas pelos demais gráficos são afetadas apenas em parte pela dispersão intra-canal, e em parte pelas diferenças entre médias de diferentes canais. O ganho de desempenho do GCG de EWMA $\ln(S^2)$ proposto é de até 75,0% em relação ao GC de EWMA de R_t, o segundo melhor em desempenho para um aumento na dispersão de γ =1,5, no caso de processos compostos por 20 canais para γ *=1,5.

Comparando as tabelas acima com as tabelas 7.3 e 7.4, nota-se nos resultados apresentados que o tamanho de amostra influi no desempenho do GCG de EWMA de DNB e do GC de MEWMA de S² de Runger et al. (1996) contra alterações na dispersão. Observa-se também que o efeito do tamanho de amostra sobre o desempenho do gráfico de controle de EWMA de R_t de Mortell e Runger (1995) é desprezível, no que diz respeito à sinalização de aumentos na dispersão de um canal.

Comparando o desempenho dos gráficos de controle de EWMA analisados neste capítulo com o desempenho dos gráficos de controle de Shewhart analisados na Tabela 4.7 do Capítulo 4, é possível concluir que o ganho de eficiência pela incorporação do esquema de controle de EWMA foi maior no caso de uso da variância linearizada (no GCG) e de uso da amplitude amostral (do gráfico de controle de R_t) contra alteração de magnitude igual a 1.5 na dispersão.

Para melhor ilustrar o ganho de desempenho mencionado dos gráficos de controle de EWMA contra alterações na dispersão (considerando amostra de tamanho igual a 4), algumas das medidas de desempenho apresentadas por tais gráficos em suas versões EWMA e Shewhart são apresentadas graficamente.

Figura 7.13 – Comparação de desempenho entre as versões Shewhart e EWMA do GCG de DNB para *NMA*₀=200 (*c*=15, *n*=4)

Figura 7.14 – Comparação de desempenho entre as versões Shewhart e EWMA do GC de R_t para *NMA*₀=200 (*c*=15, *n*=4)

Figura 7.15 – Comparação de desempenho entre as versões Shewhart e EWMA do GC de S² para $NMA_0=200$ (*c*=15, *n*=4)

Figura 7.16 – Comparação de desempenho entre o GCG de S² e o GCG EWMA de $In(S^2)$ para $NMA_0=200$ (c=15, n=4)

A comparação entre as medidas de desempenho das versões EWMA e Shewhart do GCG das diferenças em relação ao nível-base pode ser verificada na Figura 7.13, do gráfico de controle de R_t de Mortell e Runger (1995) na Figura 7.14, do gráfico de controle de S^2 de Runger et al. (1996) na Figura 7.15 e do GCG de MR das diferenças em relação ao nível-base na Figura 7.16.

Para as comparações de desempenho entre as versões Shewhart e EWMA foi considerado somente o caso de processos compostos por 15 canais. Para representar graficamente os valores de NMA₁ dos gráficos de controle de EWMA destinados ao controle das médias foram escolhidos os valores obtidos para δ *=2,0 (o caso em que houve maior ganho de desempenho pela incorporação do esquema EWMA nos três gráficos de controle da média).

Na Figura 7.13 (GCG de DNB e EWMA DNB) e na Figura 7.15 (GC de S^2 e MEWMA S^2 de Runger et al., 1996), nota-se que há uma superposição das curvas de desempenho dos gráficos de Shewhart com as curvas de desempenho dos gráficos de EWMA (do melhor desempenho obtido dentre os projetos ótimos). Ou seja, para os dois gráficos de controle mencionados não há melhora na incorporação de um esquema de controle de EWMA para o controle da dispersão. Não se deve esquecer, porém, que tais gráficos são destinados ao controle da média, e para este fim o esquema EWMA melhora os seus desempenhos, como visto no Capítulo 6.

Em relação à Figura 7.14 (GC de R_t e EWMA de R_t de Mortell e Runger, 1995), observa-se que há uma pequena melhora (redução dos valores de NMA₁) especialmente contra pequenos aumentos na dispersão.

No entanto, observa-se na Figura 7.16 (GCG de S^2 e EWMA de $ln(S^2)$) que o GCG de EWMA proposto cumpre o seu objetivo contra pequenos aumentos na dispersão das componentes individuais de variação (magnitude menor que 2,0). Para alterações de magnitude maior que 2,0 na dispersão, o GCG de S^2 é mais aconselhável para o controle do processo, por oferecer maior proteção contra tais alterações.

C	ESQUEMA	PRO. ÓTI	IETO MO	(λ * ,K)	regime de probabilidades				NM Y	A ₁			
		011			probabilidades -	1	1,5	2	2,5	3	4	5	6
	GCG EWMA DNB	s.	20	(0.7400-2.1250)	Steady-State	200,1	38,0	13,0	7,1	4,7	2,9	2,3	1,9
	PROPOSTO	0*	2,0	(0,7400, 5,1230)	Zero-State	204,0	38,8	13,3	7,0	4,7	2,9	2,2	1,9
	EWMA R _t	s.	20	(0 6020- 2 0141)	Steady-State	199,4	33,9	11,7	6,4	4,3	2,8	2,2	1,9
3	M&R (1995)	δ* 2,0 δ* 2,0 γ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0	(0,0030, 3,0141)	Zero-State	204,4	34,7	11,8	6,3	4,3	2,8	2,2	1,9	
	MEWMA	δ* 2,0 δ* 2,0 γ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 γ* 2,0 γ* 2,0 γ* 2,0	(0 7720-10 5704)	Steady-State	200,3	37,3	12,9	7,0	4,6	2,9	2,3	1,9	
	R,A&M (1996)	0+	δ* 2,0 δ* 2,0 γ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0 γ* 2,0 γ* 2,0 γ* 2,0	(0,7720, 10,5794)	Zero-State	203,2	38,5	13,1	6,9	4,6	2,9	2,2	1,9
	GCG EWMA In(S ²)		δ* 2,0 $γ*$ 2,0 $δ*$ 2,0 $δ*$ 2,0 $δ*$ 2,0 $δ*$ 2,0 $δ*$ 2,0 $δ*$ 2,0	(0 EE10: 1 7174)	Steady-State	195,9	8,6	3,1	2,0	1,6	1,3	1,1	1,1
	PROPOSTO	γ •	γ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0	(0,3310, 1,7174)	Zero-State	198,6	8,9	3,2	2,1	1,6	1,3	1,2	1,1
	GCG EWMA DNB	*2	γ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0	10 7660. 2 2822)	Steady-State	196,9	40,4	12,8	6,6	4,4	2,8	2,2	1,8
	PROPOSTO	VIA DNB OSTO 1A R _t 1995) δ*	2,0	(0,7000, 3,2033)	Zero-State	196,9	40,0	12,8	6,7	4,5	2,9	2,2	1,9
	OCCUMINATION δ4 PROPOSTO δ4 EWMA R, δ4 M&R (1995) δ4	S±	20	(0 6230- 2 8010)	Steady-State	200,4	38,3	12,2	6,5	4,4	2,8	2,2	1,9
5	M&R (1995)	δ* 2,0 δ* 2,0 δ* 2,0 δ* 2,0	2,0	(0,0230, 2,0313)	Zero-State	205,3	38,0	12,5	6,6	4,5	2,9	2,3	1,9
	MEWMA	S±	δ* 2,0 δ* 2,0 δ* 2,0 (0,0) (0,0)	(0 7480- 14 8192)	Steady-State	194,5	43,3	14,2	7,3	4,8	3,0	2,3	1,9
	R,A&M (1996)	0+	δ* 2,0 δ* 2,0 γ* 2,0	(0,7400, 14,0152)	Zero-State	198,2	43,2	14,3	7,4	5,0	3,1	2,4	2,0
	GCG EWMA In(S ²)	**	δ* 2,0 δ* 2,0 γ* 2,0	(0 5620.1 7988)	Steady-State	197,8	10,0	3,3	2,1	1,6	1,3	1,2	1,1
	PROPOSTO	1.	δ* 2,0 γ* 2,0	(0,5020, 1,7500)	Zero-State	203,5	10,5	3,4	2,2	1,7	1,3	1,2	1,1
	GCG EWMA DNB	S±	γ * 2,0	(0.7610.3.6600)	Steady-State	197,3	55,5	15,5	7,4	4,7	2,9	2,2	1,9
	PROPOSTO	04	δ* 2,0	(0,7010, 5,0000)	Zero-State	198,3	56,8	15,6	7,5	4,8	2,9	2,3	1,9
	EWMA R _t	S±	δ * 2,0	(0 5220 2 8232)	Steady-State	202,4	57,4	16,7	7,9	5,0	3,1	2,3	2,0
20	M&R (1995)	R _t δ ≉ 2, 95)	2,0	(0,5220, 2,0252)	Zero-State	199,5	57,7	16,5	7,9	5,1	3,1	2,4	2,0
	MEWMA	S±	δ * 2,0 ((0 6570. 38 5285)	Steady-State	197,1	81,3	28,2	13,2	7,6	4,1	2,9	2,3
	R,A&M (1996)	0*	δ* 2,0 ((0,0370, 30,3203)	Zero-State	199,9	82,5	28,7	13,3	7,9	4,3	3,0	2,4
	GCG EWMA In(S ²)	**	δ* 2,0 γ* 2,0	(0 6350-1 9798)	Steady-State	199,0	16,0	4,1	2,4	1,8	1,3	1,2	1,1
	PROPOSTO	1*	2,0	(0,0550, 1,5750)	Zero-State	201,1	16,3	4,2	2,4	1,8	1,4	1,2	1,1

Tabela 7.8 - Comparação entre os valores de NMA1 de steady-state e zero-state (n=4)

Ao comparar as medidas de desempenho de *zero-state* e *steady-state*, as quais podem ser observadas na Tabela 7.8, nota-se que os valores de NMA₁ de *steady-state* são freqüentemente menores que os de *zero-state*. Para a construção dessa tabela foram considerados apenas alguns projetos ótimos obtidos com o único propósito de obter visão quantitativa das diferenças entre os desempenhos de *zero-state* e *steady-state*.

7.5

Resultados de Desempenho Conjunto

Esta seção é dedicada aos resultados de desempenho conjunto dos gráficos de controle apresentados contra alterações na dispersão do canal afetado.

Os resultados são apresentados apenas para NMA_0 igual 200 amostras, devido ao grande número de resultados obtidos para cada uma das tabelas. A exposição de todos os valores de NMA_1 poderia sobrecarregar o capítulo com informações redundantes em relação ao desempenho conjunto dos esquemas de controle (a análise dos resultados não difere muito entre os outros valores de NMA_0). Os valores de NMA_1 conjunto para os valores de NMA_0 igual a 100 e a 370,4 amostras podem ser encontrados no Apêndice E desta tese.

Em relação às medidas de desempenho obtidas por simulação, os valores $\gamma = 1$ (caso em que não há aumento na dispersão do canal para afetado) correspondem à metade do NMA₀ considerado, devido à presença de dois gráficos de controle de EWMA distintos para o controle do mesmo processo. Ou seja, um NMA₁ conjunto para γ =1 de dois gráficos de controle de EWMA distintos projetados para um NMA₀ de 100 amostras será de cerca de 50 amostras, o de dois gráficos projetados para um NMA₀ igual a 200 amostras será de cerca de 100 amostras e assim por diante.

Os resultados obtidos para o controle por observações individuais serão expostos primeiro, seguidos pelos resultados obtidos para o controle por dados subgrupados (amostras de tamanho igual a 4 unidades).

7.5.1

Controle por Observações Individuais

As tabelas 7.9 e 7.10 mostram os resultados de desempenho do GCG de EWMA de MR DNB em conjunto com cada um dos três esquemas EWMA projetados para o controle da média (especificamente, o gráficos de controle de EWMA de Mortell e Runger, 1995, de MEWMA de Runger et al., 1996, GCG de EWMA DNB proposto).

Os menores valores de NMA₁ conjunto obtidos dentre os pares de gráficos de controle de EWMA analisados estão destacados em vermelho. Tais valores são os menores obtidos para cada combinação de número de canais (c) e alteração na dispersão (γ). Dentre os projetos ótimos obtidos para os gráficos de controle de EWMA projetados contra alterações na média foram considerados apenas os projetos obtidos para δ^* =1,0.

Nas tabelas 7.9 e 7.10, nota-se que o uso conjunto do gráfico de controle de EWMA de R_t com o GCG de EWMA de MR das diferenças obtém o melhor desempenho contra pequenas alterações na dispersão (valores de NMA₁ conjunto

menores para alterações de magnitude até 2,0 na dispersão) dentre todos os pares de gráficos avaliados (GCG de EWMA de MR DNB com cada um dos outros gráficos de controle de EWMA).

Nos resultados apresentados, pode-se observar que os valores de NMA₁ calculados para γ =1 do uso do GCG de EWMA MR DNB em conjunto com o GCG de EWMA DNB e com o gráfico de controle de MEWMA de S² de Runger et al. (1996) estão próximos à metade do NMA₀ de 200 amostras, diferentemente do que foi observado com as medidas de desempenho obtidas pelos mesmos pares na versão "de Shewhart" (Tabela 4.6).

		GCG	PARA DISPERSÃO	G	C PARA MÉDIA			٢	NMA de st	eady-state	2		
с	ESQUEMA		(2 + K)	<u>ب</u> ک	() + ()					1			
		¥.	(<i>//</i> *,K)	0*	(<i>∿</i> ≁,N)	1	1,5	2	2,5	3	4	5	6
	GCG EWMA MR DNB	1,5	(0,9590; 3,3369)			99,2	25,1	11,3	6,9	5,0	3,4	2,7	2,4
	+	2,0	(0,9590; 3,3369)	1,0	(0,1060; 2,4650)	99,2	25,1	11,3	6,9	5,0	3,4	2,7	2,4
	GCG EWMA DNB	3,0	(0,9590; 3,3369)			99,2	25,1	11,3	6,9	5,0	3,4	2,7	2,4
	GCG EWMA MR DNB	1,5	(0,9590; 3,3369)			118,8	20,9	9,9	6,4	4,8	3,4	2,8	2,4
2	+	2,0	(0,9590; 3,3369)	1,0	(0,0130; 1,0410)	118,8	20,9	9,9	6,4	4,8	3,4	2,8	2,4
	EWMA Rt M&R (1995)	3,0	(0,9590; 3,3369)			118,8	20,9	9,9	6,4	4,8	3,4	2,8	2,4
	GCG EWMA MR DNB	1,5	(0,9590; 3,3369)			101,1	25,9	11,5	7,0	5,1	3,4	2,8	2,4
	+	2,0	(0,9590; 3,3369)	1,0	(0,0860; 5,8200)	101,1	25,9	11,5	7,0	5,1	3,4	2,8	2,4
	MEWMA R,A&M (1996)	3,0	(0,9590; 3,3369)			101,1	25,9	11,5	7,0	5,1	3,4	2,8	2,4
	GCG EWMA MR DNB	1,5	(0,0600; 3,4550)			100,9	24,3	11,6	7,7	5,8	4,0	3,2	2,7
	+	2,0	(0,0600; 3,4550)	1,0	(0,1060; 2,8420)	100,9	24,3	11,6	7,7	5,8	4,0	3,2	2,7
	GCG EWMA DNB	3,0	(0,8560; 4,0128)	1,0 (0,1060; 2,8420) 1,0 (0,0130; 1,0310)	100,3	26,2	11,2	6,7	4,8	3,3	2,7	2,3	
	GCG EWMA MR DNB	1,5	(0,0600; 3,4550)			124,7	21,7	10,8	7,3	5,6	4,0	3,2	2,7
3	+	2,0	(0,0600; 3,4550)	1,0	(0,0130; 1,0310)	124,7	21,7	10,8	7,3	5,6	4,0	3,2	2,7
	EWMA Rt M&R (1995)	3,0	(0,8560; 4,0128)			116,9	21,1	10,0	6,5	4,8	3,4	2,8	2,4
	GCG EWMA MR DNB	1,5	(0,0600; 3,4550)			100,5	24,2	11,5	7,6	5,7	4,0	3,1	2,7
	+	2,0	(0,0600; 3,4550)	1,0	(0,1130; 8,8186)	100,5	24,2	11,5	7,6	5,7	4,0	3,1	2,7
	MEWMA R,A&M (1996)	3,0	(0,8560; 4,0128)			99,9	25,9	11,1	6,7	4,8	3,3	2,7	2,3
	GCG EWMA MR DNB	1,5	(0,0390; 3,5420)			100,3	25,1	11,9	7,8	5,9	4,1	3,3	2,7
	+	2,0	(0,1860; 4,4072)	1,0	(0,1110; 3,0548)	98,4	26,4	11,2	7,1	5,3	3,7	2,9	2,5
	GCG EWMA DNB	3,0	(0,9420; 4,1891)			99,2	27,8	11,1	6,5	4,7	3,2	2,6	2,3
	GCG EWMA MR DNB	1,5	(0,0390; 3,5420)			120,4	23,0	11,4	7,6	5,8	4,1	3,3	2,8
5	+	2,0	(0,1860; 4,4072)	1,0	(0,0130; 1,0365)	113,9	22,7	10,6	6,9	5,3	3,8	3,0	2,6
	EWMA Rt M&R (1995)	3,0	(0,9420; 4,1891)			114,8	22,7	10,2	6,4	4,8	3,4	2,7	2,4
5	GCG EWMA MR DNB	1,5	(0,0390; 3,5420)			100,1	25,5	12,2	8,1	6,1	4,3	3,4	2,9
	+	2,0	(0,1860; 4,4072)	1,0	(0,1000; 12,7300)	98,1	26,7	11,5	7,3	5,4	3,8	3,0	2,6
	MEWMA R,A&M (1996)	3,0	(0,9420; 4,1891)			100,1	28,5	11,5	6,7	4,9	3,3	2,7	2,3

Tabela 7.9 – Medidas de Desempenho Conjunto para n=1 e $NMA_0=200$ (Parte I)

		GCG	PARA DISPERSÃO	G	C PARA MÉDIA				NMA de st	eady-state			
с	ESQUEMA	th	() + K)	5.4	() + K)					1			
		γ *	(∧ *, k)	0*	(∧ ≠,K)	1	1,5	2	2,5	3	4	5	6
	GCG EWMA MR DNB	1,5	(0,0370; 3,9045)			98,1	26,9	12,7	8,4	6,4	4,4	3,5	3,0
	+	2,0	(0,1100; 4,5430)	1,0	(0,0880; 3,2360)	96,2	28,3	12,2	7,8	5,8	4,0	3,2	2,7
	GCG EWMA DNB	3,0	(0,7660; 4,7758)			97,1	32,6	12,4	7,1	5,0	3,4	2,8	2,4
	GCG EWMA MR DNB	1,5	(0,0370; 3,9045)			112,0	24,5	11,9	7,9	6,0	4,2	3,3	2,8
10	+	2,0	(0,1100; 4,5430)	1,0	(0,0130; 1,0265)	110,2	25,2	11,5	7,5	5,6	4,0	3,2	2,7
	EWMA Rt M&R (1995)	3,0	(0,7660; 4,7758)			111,6	26,4	11,3	6,9	5,0	3,5	2,8	2,4
	GCG EWMA MR DNB	1,5	(0,0370; 3,9045)			97,8	27,2	12,9	8,5	6,4	4,5	3,5	2,9
	+	2,0	(0,1100; 4,5430)	1,0	(0,1130; 21,3806)	96,6	28,5	12,3	7,8	5,9	4,1	3,2	2,8
	MEWMA R,A&M (1996)	3,0	(0,7660; 4,7758)	8) 9 5) 9 6) 1,0 (0,0910; 3,3725) 9 8) 9	97,1	33,0	12,5	7,2	5,1	3,5	2,8	2,4	
	GCG EWMA MR DNB	1,5	(0,0390; 4,1565)			98,0	28,7	13,3	8,7	6,6	4,5	3,6	3,0
	+	2,0	(0,1070; 4,7586)	1,0	(0,0910; 3,3725)	97,5	29,7	12,6	8,0	6,0	4,2	3,3	2,8
	GCG EWMA DNB	3,0	(0,9450; 4,7008)			99,1	34,9	13,0	7,2	5,1	3,4	2,7	2,4
	GCG EWMA MR DNB	1,5	(0,0390; 4,1565)			110,0	26,3	12,5	8,2	6,2	4,3	3,3	2,8
	+	2,0	(0,1070; 4,7586)	1,0	(0,0130; 1,0210)	108,8	27,2	12,1	7,7	5,8	4,0	3,2	2,7
	EWMA Rt M&R (1995)	3,0	(0,9450; 4,7008)			109,8	28,5	11,7	7,0	5,0	3,4	2,7	2,4
	GCG EWMA MR DNB	1,5	(0,0390; 4,1565)			98,2	29,2	13,7	9,0	6,8	4,7	3,7	3,1
	+	2,0	(0,1070; 4,7586)	1,0	(0,1100; 28,8400)	98,3	30,5	13,0	8,2	6,2	4,3	3,4	2,9
	MEWMA R,A&M (1996)	3,0	(0,9450; 4,7008)			98,3	36,4	13,5	7,5	5,3	3,5	2,8	2,4
	GCG EWMA MR DNB	1,5	(0,0550; 4,5150)			98,8	30,5	13,3	8,6	6,4	4,4	3,5	2,9
	+	2,0	(0,1000; 4,8800)	1,0	(0,1010; 3,4764)	99 <i>,</i> 5	31,3	12,8	8,1	6,1	4,2	3,3	2,8
	GCG EWMA DNB	3,0	(0,8530; 4,9779)			97,6	36,6	13,4	7,4	5,2	3 <i>,</i> 5	2,8	2,4
	GCG EWMA MR DNB	1,5	(0,0550; 4,5150)			111,2	28,5	12,8	8,4	6,3	4,3	3,4	2,8
20	+	2,0	(0,1000; 4,8800)	1,0	(0,0130; 1,0315)	111,8	29,1	12,6	8,0	6,0	4,1	3,3	2,7
	EWMA Rt M&R (1995)	3,0	(0,8530; 4,9779)			109,1	31,3	12,5	7,3	5,2	3,5	2,8	2,4
	GCG EWMA MR DNB	1,5	(0,0550; 4,5150)			99,2	31,7	14,2	9,2	7,0	4,9	3,9	3,3
	+	2,0	(0,1000; 4,8800)	1,0	99,2 1,0 (0,0890; 35,2830) 100,	100,0	32,8	13,8	8,7	6,6	4,6	3,7	3,1
	MEWMA R,A&M (1996)	3,0	(0,8530; 4,9779)			99,1	39,5	14,7	8,0	5,6	3,7	3,0	2,6

Tabela 7.10 – Medidas de Desempenho Conjunto para *n*=1 e *NMA*₀=200 (Parte II)

Observando os valores de NMA₁ individual do GCG de EWMA DNB da tabela 7.3 com os valores de NMA₁ obtido pelo uso do GCG de EWMA de MR DNB em conjunto com o GCG de EWMA DNB da tabela 7.9, nota-se que, para processos compostos por 15 canais, há um ganho de até 65,87% para $\gamma^*=1,5$ e $\delta^*=1,0$, considerando uma alteração de magnitude igual a 1,5 na dispersão.

Embora o uso conjunto do EWMA de R_t com o GCG EWMA MR DNB apresente os melhores resultados, em termos de boas reduções nos valores de NMA₁ conjunto, o NMA₁ para γ =1 mostra uma possível correlação entre as estatísticas EWMA de R_t e EWMA MR DNB (o valor de NMA₁ para tal alteração não corresponde à metade do NMA₀ de 200 amostras).

Comparando as medidas de desempenho conjunto dos gráficos de controle EWMA (tabelas 7.9 e 7.10) com as medidas de desempenho conjunto dos mesmos pares na versão Shewhart (controle da observação sem amortecimentos) analisados no Capítulo 4 (Tabela 4.6), pode ser observado um ganho de desempenho dos esquemas EWMA contra pequenas alterações na dispersão. Contudo, com alterações maiores que γ =2,0 na dispersão, os gráficos de Shewhart são mais sensíveis (apresentam valores menores de NMA₁ conjunto).

7.5.2

Controle por Dados Subgrupados

Nas tabelas 7.11 e 7.12 são mostrados os resultados de desempenho do GCG de EWMA de $\ln(S^2)$ em conjunto com cada um dos três esquemas EWMA projetados para o controle da média (especificamente, o gráficos de controle de EWMA de Mortell e Runger, 1995, de MEWMA de Runger et al., 1996, GCG de EWMA DNB proposto).

Os menores valores de NMA₁ conjunto obtido dentre os pares de esquemas de controle aqui analisados para cada combinação de número de canais (*c*) e alteração na dispersão (γ), para amostras de tamanho 4, estão destacados em vermelho. Dentre os projetos ótimos obtidos para os gráficos de controle de EWMA contra alterações na média da componente individual de variação foram considerados somente os projetos obtidos para $\delta^*=1,0$.

Pode ser observado que o desempenho conjunto dos gráficos de controle EWMA projetados para o controle da média com o GCG de EWMA de $\ln(S^2)$ é praticamente o mesmo (os valores de NMA₁ conjunto são bem similares entre as associações analisadas). Tal comportamento também foi observado anteriormente no Capítulo 4, onde foi verificado que o ganho de desempenho é praticamente o mesmo das associações dos gráficos de controle de Shewhart para a média com o GCG de S² proposto.

Contudo, comparando os valores de NMA₁ do uso do GCG DNB em conjunto com o GCG S² proposto aos valores de NMA₁ do uso do GCG de EWMA DNB em conjunto com o GCG de EWMA $\ln(S^2)$, nota-se que há um ganho de sensibilidade de até 41,04% das associações dos gráficos de controle de EWMA contra pequenas alterações (γ =1,5) na dispersão do canal afetado, considerando um processo composto por 20 canais. Com alterações maiores que γ =2,0 na dispersão, as associações dos gráficos de controle de Shewhart já conseguem desempenho melhor contra tais alterações (valores menores de NMA₁).

Comparando os valores de NMA₁ do uso do GCG de EWMA de $\ln(S^2)$ em conjunto com cada um dos três esquemas EWMA projetados para o controle da média conjunto (das tabelas 7.11 e 7.12) aos valores de NMA₁ individual do GCG de EWMA de $\ln(S^2)$, observa-se que, quase não há melhora de desempenho (valores de NMA₁ individual semelhantes aos de NMA₁ conjunto). Isso indica que o GCG EWMA de $\ln(S^2)$ é o grande responsável pela eficiência do conjunto, o que explica a pouca diferença entre os desempenhos das diversas associações dele com outro gráfico de controle. С

			5 UC L		junto para	u 11—4 C 11	<i>mn</i> 0–200					
	GCG I	PARA DISPERSÃO	G	C PARA MÉDIA				NMA de st	eady-state			
ESQUEMA	0/3	() * K)	8*	() * K)				1	(
	Y+	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0+	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1,5	2	2,5	3	4	5	6
GCG EWMA ln(S ²) (n=4)	1,5	(0,2610; 1,5816)			98,6	6,5	2,9	2,0	1,6	1,3	1,1	1,1
+	2,0	(0,6680; 1,6500)	1,0	(0,3240; 2,7246)	100,1	7,0	2,6	1,7	1,4	1,2	1,1	1,0
GCG EWMA DNB	3,0	(0,8690; 1,6362)			99,8	7,8	2,8	1,8	1,4	1,2	1,1	1,0
GCG EWMA ln(S ²) (n=4)	1,5	(0,2610; 1,5816)			96,8	6,3	2,8	2,0	1,6	1,3	1,1	1,1
+	2,0	(0,6680; 1,6500)	1,0	(0,1310; 2,4464)	99,1	6,6	2,6	1,7	1,4	1,2	1,1	1,0
EWMA Rt M&R (1995)	3,0	(0,8690; 1,6362)			101,4	7,3	2,7	1,8	1,4	1,2	1,1	1,0
GCG EWMA In(S2) (n=4)	1,5	(0,2610; 1,5816)			98,7	6,5	2,9	2,0	1,6	1,3	1,1	1,1
+	2,0	(0,6680; 1,6500)	1,0	(0,2880; 7,3428)	101,0	7,1	2,7	1,8	1,4	1,2	1,1	1,0
MEWMA R,A&M (1996)	3,0	(0,8690; 1,6362)			101,1	7,8	2,8	1,8	1,4	1,2	1,1	1,0
GCG EWMA ln(S ²) (n=4)	1,5	(0,1910; 1,5974)			97,3	7,1	3,2	2,2	1,8	1,4	1,2	1,1
+	2,0	(0,5510; 1,7174)	1,0	(0,2630; 3,0378)	99,5	7,6	2,8	1,9	1,5	1,2	1,1	1,0
GCG EWMA DNB	3,0	(0,9170; 1,6925)			101,5	9,3	3,1	1,9	1,5	1,2	1,1	1,0
GCG FWMA ln(S ²) (n=4)	1,5	(0,1910; 1,5974)			97,9	6,7	3,0	2,1	1,7	1,4	1,2	1,1

Tabela 7.11 – Medidas de Desempenho Conjunto para *n*=4 e *NMA*₀=200 (Parte I)

2	+	2,0	(0,6680; 1,6500)	1,0	(0,1310; 2,4464)	99,1	6,6	2,6	1,7	1,4	1,2	1,1	1,0
	EWMA Rt M&R (1995)	3,0	(0,8690; 1,6362)			101,4	7,3	2,7	1,8	1,4	1,2	1,1	1,0
	GCG EWMA In(S2) (n=4)	1,5	(0,2610; 1,5816)			98,7	6,5	2,9	2,0	1,6	1,3	1,1	1,1
	+	2,0	(0,6680; 1,6500)	1,0	(0,2880; 7,3428)	101,0	7,1	2,7	1,8	1,4	1,2	1,1	1,0
_	MEWMA R,A&M (1996)	3,0	(0,8690; 1,6362)			101,1	7,8	2,8	1,8	1,4	1,2	1,1	1,0
	GCG EWMA ln(S ²) (n=4)	1,5	(0,1910; 1,5974)			97,3	7,1	3,2	2,2	1,8	1,4	1,2	1,1
	+	2,0	(0,5510; 1,7174)	1,0	(0,2630; 3,0378)	99,5	7,6	2,8	1,9	1,5	1,2	1,1	1,0
3	GCG EWMA DNB	3,0	(0,9170; 1,6925)			101,5	9,3	3,1	1,9	1,5	1,2	1,1	1,0
	GCG EWMA ln(S ²) (n=4)	1,5	(0,1910; 1,5974)		(0,2230; 2,6145)	97,9	6,7	3,0	2,1	1,7	1,4	1,2	1,1
	+	2,0	(0,5510; 1,7174)	1,0		101,6	7,1	2,7	1,8	1,4	1,2	1,1	1,0
	EWMA Rt M&R (1995)	3,0	(0,9170; 1,6925)			101,6	8,5	2,9	1,8	1,4	1,2	1,1	1,0
	GCG EWMA ln(S ²) (n=4)	1,5	(0,1910; 1,5974)			97,8	7,1	3,1	2,2	1,8	1,4	1,2	1,1
	+	2,0	(0,5510; 1,7174)	1,0	(0,2780; 10,0220)	99,1	7,6	2,8	1,8	1,5	1,2	1,1	1,0
	MEWMA R,A&M (1996)	3,0	(0,9170; 1,6925)			100,8	9,3	3,0	1,9	1,5	1,2	1,1	1,0
	GCG EWMA ln(S ²) (n=4)	1,5	(0,2220; 1,7298)			98,0	7,8	3,3	2,3	1,8	1,4	1,2	1,1
	+	2,0	(0,5620; 1,7988)	1,0	(0,2940; 3,2226)	102,2	8,7	3,0	1,9	1,5	1,2	1,1	1,0
5	GCG EWMA DNB	3,0	(0,8470; 1,7730)			97,8	10,3	3,2	1,9	1,5	1,2	1,1	1,0
	GCG EWMA ln(S ²) (n=4)	1,5	(0,2220; 1,7298)	1,0	(0,1540; 2,3992)	98,9	7,5	3,3	2,3	1,8	1,4	1,2	1,1
	+	2,0	(0,5620; 1,7988)			100,5	8,2	3,0	1,9	1,5	1,2	1,1	1,1
	EWMA Rt M&R (1995)	3,0	(0,8470; 1,7730)			98,9	9,5	3,1	1,9	1,5	1,2	1,1	1,0
	GCG EWMA ln(S ²) (n=4)	1,5	(0,2220; 1,7298)			98,5	7,8	3,3	2,3	1,8	1,4	1,2	1,1
	+	2,0	(0,5620; 1,7988)	1,0	(0,3180; 14,4063)	101,9	8,8	3,0	1,9	1,5	1,2	1,1	1,1
	MEWMA R,A&M (1996)	3,0	(0,8470; 1,7730)			98,9	10,4	3,2	1,9	1,5	1,2	1,1	1,0

(0,1100; 2,2320)

1,0 (0,2410; 30,4280)

(0,2840; 3,6202)

(0,1230; 2,2855)

1,0 (0,2670; 37,7850)

1,0

1,0

1,0

2,0 (0,6430; 1,9435)

3,0 (0,8310; 1,9153)

2,0 (0,6430; 1,9435)

3,0 (0,8310; 1,9153)

2,0 (0,6350; 1,9798)

3,0 (0,8510;1,9473)

1,5 (0,1230; 1,8352)

2,0 (0,6350; 1,9798)

(0,8510;1,9473)

(0,1230; 1,8352)

(0,6350; 1,9798)

(0,8510;1,9473)

1,5

1,5

3,0

1,5

2,0

3,0

(0,1410; 1,8243)

(0,1230; 1,8352)

С

10

15

20

+

EWMA Rt M&R (1995)

GCG EWMA In(S²) (n=4)

+

MEWMA R,A&M (1996)

GCG EWMA In(S²) (n=4)

+

GCG EWMA DNB

GCG EWMA In(S²) (n=4)

+ EWMA Rt M&R (1995)

GCG EWMA ln(S²) (n=4)

+

MEWMA R,A&M (1996)

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		I											
	GCG PARA DISPERSAO			GC PARA MEDIA		NMA de steady-state									
ESQUEIMA	γ*	γ* (λ*,Κ)		(λ*,К)	$\frac{\gamma}{1  1,5  2  2,5  3  4  5  6}$										
GCG EWMA ln(S ² ) (n=4)	1,5	(0,1330; 1,7325)			97 <i>,</i> 0	9,2	3,9	2,7	2,2	1,7	1,4	1,2			
+	2,0	(0,6070; 1,8940)	1,0	(0,2340; 3,4104)	100,7	10,9	3,4	2,1	1,6	1,2	1,1	1,1			
GCG EWMA DNB	3,0	(0,9480; 1,8478)			99,7	14,0	3,7	2,1	1,6	1,2	1,1	1,1			
GCG EWMA ln(S ² ) (n=4)	1,5	(0,1330; 1,7325)			97,2	8,8	3,8	2,7	2,2	1,7	1,4	1,2			
+	2,0	(0,6070; 1,8940)	1,0	(0,1310; 2,3178)	101,3	10,3	3,3	2,0	1,6	1,2	1,1	1,1			
EWMA Rt M&R (1995)	3,0	(0,9480; 1,8478)			102,5	12,9	3,6	2,1	1,6	1,2	1,1	1,1			
GCG EWMA ln(S2) (n=4)	1,5	(0,1330; 1,7325)			94,9	9,2	4,0	2,8	2,2	1,7	1,4	1,3			
+	2,0	(0,6070; 1,8940)	1,0	(0,2200; 22,6240)	99,2	11,2	3,4	2,1	1,6	1,3	1,1	1,1			
MEWMA R,A&M (1996)	3,0	(0,9480; 1,8478)			100,6	14,6	3,8	2,2	1,6	1,2	1,1	1,1			
GCG EWMA ln(S ² ) (n=4)	1,5	(0,1410; 1,8243)			95,9	9,7	4,0	2,7	2,2	1,7	1,4	1,3			
+	2,0	(0,6430; 1,9435)	1,0	(0,3020; 3,5455)	98,9	12,2	3,6	2,1	1,6	1,2	1,1	1,1			
GCG EWMA DNB	3,0	(0,8310; 1,9153)			100,9	14,4	3,8	2,1	1,6	1,2	1,1	1,1			
GCG EWMA In(S ² ) (n=4)	1,5	(0,1410; 1,8243)			95,6	9,5	4,0	2,8	2,2	1,7	1,4	1,3			

102,1

100,1

96,4

98,7

101,6

95,4

101,3

100,8

96,3

100,6

103,0

97,3

100,1

99,4

11,7

13,6

9,9

12,8

15,1

10,2

13,1

16,3

10,0

12,5

15,4

10,4

13,6

17,1

3,5

3,7

4,1

3,7

4,0

4,3

3,7

4,1

4,2

3,7

4,0

4,4

3,9

4,2

2,1

2,1

2,9

2,2

2,2

2,9

2,2

2,2

2,9

2,2

2,2

3,0

2,3

2,3

1,6

1,6

2,3

1,7

1,6

2,3

1,7

1,6

2,3

1,7

1,6

2,4

1,7

1,7

1,2

1,2

1,8

1,3

1,3

1,8

1,3

1,2

1,8

1,3

1,2

1,9

1,3

1,3

1,1

1,1

1,5

1,1

1,1

1,5

1,1

1,1

1,5

1,1

1,1

1,6

1,1

1,1

1,1

1,1

1,3

1,1

1,1

1,3

1,1

1,1

1,3

1,1

1,1

1,4

1,1

1,1

Tabela 7.12 – Medidas de Desempenho Conjunto para  $n=4 \text{ e } NMA_0=200$  (Parte II)