11 CONCLUSÕES

Foram sintetizados 16 complexos inéditos de cobre(II) coordenados com seis aminoácidos presentes na placa β-amilóide (ácido aspártico, acido glutâmico, metionina, glicina, serina e arginina), além de outros dois aminoácidos também encontrados no cérebro (cisteína e homocisteína) e L-carnitina e acetil-L-carnitina que vêm sendo utilizados como suplemento alimentar em pacientes com doenças neurodegenerativas.

Todos os ligantes, exceto a acetil-L-carnitina, se comportaram como ligantes bidentados.

Os dados descritos neste trabalho mostraram que a reação de cobre(II) com ácido aspártico e cisteína, ácido aspártico e metionina, ácido glutâmico e metionina, e ácido glutâmico e cisteína, levaram a obtenção de quatro complexos na proporção 1:1:1 ligante:metal:ligante, $[Cu(Asp)(Cis)]\cdot H_2O$ (1) $(CuC_7H_{14}N_2O_7S; 333,6 \text{ g/mol})$, [Cu(Asp)(Met)] (2) $(CuC_9H_{16}N_2O_6S; 343,6 \text{ g/mol})$, [Cu(Glu)(Cis)] (3) $(CuC_8H_{14}N_2O_6S; 329,63 \text{ g/mol})$ e $[Cu(Glu)(Met)]\cdot H_2O$ (4) $(CuC_{10}H_{20}N_2O_7S; 375,63 \text{ g/mol})$.

A reação de cobre(II) com a homocisteína levou à obtenção de um complexo binário na proporção 1:2 metal:ligante [Cu(hCis)₂]·H₂O (**5**) (CuC₈H₁₈N₂O₅S₂, 349,5 g/mol) e as reações de cobre(II) e homocisteína com ácido aspártico, ácido glutâmico ou metionina levaram a obtenção de três complexos na proporção 1:1:1, [Cu(Asp)(hCis)]·H₂O (**6**) (CuC₈H₁₆N₂O₇S; 347,6 g/mol), [Cu(Glu)(hCis)]·H₂O (**7**) (CuC₉H₁₈N₂O₇S; 361,5 g/mol) e [Cu(Met)(hCis)] (**8**) (CuC₉H₁₈N₂O₄S₂; 345,9 g/mol).

Ao complexar cobre(II) e ácido aspártico com serina, glicina, ácido glutâmico ou arginina foram obtidos outros quatro complexos na proporção 1:1:1, [Cu(Asp)(Ser)]·H₂O (9) (CuC₇H₁₄N₂O₈; 317,6 g/mol), [Cu(Asp)(Gli)]·H₂O (10) (CuC₆H₁₂N₂O₇; 287,6 g/mol); [Cu(Asp)(Glu)]·H₂O (11) (CuC₉H₁₆N₂O₉; 359,6 g/mol); [Cu(Asp)(Arg)] (12) (CuC₁₀H₁₉N₅O₆; 368,8 g/mol).

Finalmente, as reações de cobre(II) com L-carnitina ou acetil-Lcarnitina levaram a formação de dois complexos na proporção 1:1 metal:ligante [Cu(Lcar)(Cl)(H_2O)] (13) ($C_7H_{16}NClO_4$; 277,21 g/mol) e [Cu(acetil-Lcar)(H_2O)₃]·(ClO_4)₂· H_2O (15)

Os resultados obtidos através das diversas técnicas de caracterização utilizadas (análise elementar, análise termogravimétrica, condutimetria, ultravioleta-visível, infravermelho, condutimetria, Ressonância Paramagnética Eletrônica e voltametria cíclica) permitiram sugerir as fórmulas empíricas e estruturais para todos os complexos.

Para os ligantes ácido aspártico, ácido glutâmico, metionina, serina, glicina e arginina, a coordenação ocorreu através de um átomo de oxigênio do carboxilato e um átomo de nitrogênio do grupo amino. Para o ácido aspártico e o ácido glutâmico que são aminoácidos dí-carboxílicos o átomo de oxigênio coordenado foi o pertencente ao grupo carboxilato vizinho ao grupamento amino, o outro grupo carboxilato não participou da coordenação.

Os ligantes cisteína e homocisteína formaram complexos coordenados através do átomo de nitrogênio do grupo amino e do átomo de enxofre.

A L-carnitina se coordenou também de forma bidentada através do átomo de oxigênio do grupo carboxilato e do átomo de oxigênio alcoólico enquanto que a acetil-L-carnitina se coordenou apenas de forma monodentada através do átomo de oxigênio do grupo carboxilato.

Todas as reações foram feitas em pH próximo ao fisiológico utilizando apenas água deionizada e destilada como solvente, e a observação de que todos estes ligantes se coordenaram facilmente ao íon metálico Cu(II) é um indicativo de que *in vivo* estes complexos também podem estar sendo formados.