

Thaís Valéria Barreiros Alves

Estudo de Complexos Binários de Alumínio(III) com Aminoácidos Sulfurados e Ligantes Fosfatados

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pósgraduação em Química da PUC-Rio como requisito parcial para obtenção do Título de Mestre em Química.

Orientadora: Prof^a. Judith Felcman

Rio de Janeiro Fevereiro de 2010

Thaís Valéria Barreiros Alves

Estudo de Complexos Binários de Alumínio(III) com Aminoácidos Sulfurados e Ligantes Fosfatados

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof^a. Judith Felcman Orientadora Departamento de Química – PUC-Rio

> > Prof^a. Andréa de Moraes Silva IFRJ

> > > Prof^a. Annelise Casellato

Instituto de Química – UFRJ

Prof. Nicolás A. Rey Departamento de Química – PUC-Rio

Prof. Jose Eugenio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 01 de fevereiro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e da orientadora.

Thaís Valéria Barreiros Alves

Graduou-se em Licenciatura em Química no Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro em 2007, em Nutrição na Universidade Federal do Estado do Rio de Janeiro em 2007 e em Bacharelado em Química com Atribuição Tecnológica na Universidade do Grande Rio em 2008. Ingressou no Mestrado em Química com ênfase em Química Inorgânica na PUC-Rio em 2008.

Ficha Catalográfica

Alves, Thaís Valéria Barreiros

Estudo de complexos binários de alumínio(III) com aminoácidos sulfurados e ligantes fosfatados / Thaís Valéria Barreiros Alves; orientador: Judith Felcman. – 2010.

319 f. : il. (color.) ; 30 cm

Dissertação (Mestrado em Química) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

Inclui bibliografia.

 Química – Teses. 2. Complexos binários. 3. Alumínio(III). 4. Aminoácidos sulfurados. 5. Fosfocreatina.
 6. Adenosina 5'-trifosfato. 7. Constantes de estabilidade.
 8. Espectroscopia Raman. 9. Modelagem molecular. 10. Cálculos *ab initio*. I. Felcman, Judith. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. III. Título.

CDD: 540

Agradecimentos

A Deus.

A minha mãe Sonia Maria Alves e ao meu pai Celso Alves que me deram tudo e me apoiaram desde o começo. Agradeço pelo amor inenarrável e pelos conselhos imprescindíveis.

Ao meu irmão Henrique Alves pela cumplicidade, apoio e carinho.

Aos demais familiares.

Ao meu esposo André Tenório pelo apoio técnico, pela compreensão, por cada minuto ao meu lado e pela oportunidade de amá-lo.

A Lília e Marcel pela afeição.

Ao melhor amigo Pingo.

A minha amiga Josy que nunca deixou de estar ao meu lado.

À professora Dra. Judith Felcman pela compreensão e atenção.

À professora Dra. Andréa de Moraes pelo carinho.

Ao professor Dr. Luciano Lião (UFG) pela colaboração nos estudos de RMN.

Aos colegas de laboratório.

Aos membros da comissão examinadora.

Aos professores e funcionários do Departamento de Química.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ser realizado.

Alves, Thaís Valéria Barreiros; Felcman, Judith. Estudo de complexos binários de Alumínio(III) com aminoácidos sulfurados e ligantes fosfatados. Rio de Janeiro, 2010. 319p. Dissertação de Mestrado – Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

O estudo de complexos binários de Al(III) com aminoácidos sulfurados (metionina, cisteína, homocisteína e penicilamina) e ligantes fosfatados (adenosina 5'-trifosfato e fosfocreatina) foi feito em solução aquosa por meio de titulações potenciométricas, de RMN de ¹³C e ²⁷Al, de espectroscopia Raman, de modelagem molecular e de cálculos teóricos do espectro vibracional através do procedimento de cálculo DFT: B3LYP/6-311G. As titulações potenciométricas e o RMN de ¹³C e ²⁷Al foram obtidos apenas para os complexos contendo aminoácidos. Através da potenciometria determinaram-se as constantes de estabilidade dos complexos binários de Al(III) com os aminoácidos e suas curvas de distribuição de espécies. Ao se analisar os valores de constantes obtidos percebe-se que o complexo Al-Penicilamina apresenta um valor maior que os demais complexos formados, indicando um comportamento distinto. Propôs-se que a penicilamina atuaria como tridentada através dos átomos de oxigênio do carboxilato, de nitrogênio da amina e de enxofre da sulfidrila, enquanto os outros atuariam como bidentados coordenando-se através dos átomos de oxigênio do carboxilato e de nitrogênio da amina. As distribuições de espécies em função do pH mostraram que no pH fisiológico há a predominância das espécies hidrolisadas do metal e do complexo. Os espetros de RMN de ¹³C e de Raman e os cálculos teóricos confirmaram a possibilidade dos sítios coordenativos propostos para os aminoácidos. O RMN de ²⁷Al e a modelagem molecular mostraram que a geometria adotada pelo centro metálico é a octaédrica distorcida. Para os ligantes fosfatados, a espectroscopia Raman, a modelagem molecular e os cálculos teóricos indicaram que no complexo com a adenosina 5'-trifosfato a geometria deve ser octaédrica distorcida, com o ligante comportando-se como bidentado através dos átomos de oxigênio dos fosfatos terminais β e γ . Já no complexo com a fosfocreatina, a geometria deve ser tetraédrica distorcida, com o ligante comportando-se como tridentado coordenando-se pelos átomos de oxigênio do grupamento fosfato, de oxigênio do grupamento carboxilato e de nitrogênio do grupamento guanidino. Estes resultados mostram a variedade do comportamento dos ligantes na complexação com o Al(III).

Palavras-chave

Complexos binários; alumínio(III); aminoácidos sulfurados; fosfocreatina; adenosina 5'-trifosfato; constantes de estabilidade; espectroscopia Raman; espectroscopia de RMN; modelagem molecular; cálculos *ab initio*.

Abstract

Alves, Thaís Valéria Barreiros; Felcman, Judith (Advisor). **Study of binary complexes of Aluminum(III) with sulfur amino acids and phosphate ligands.** Rio de Janeiro, 2010. 319 p. MSc Dissertation - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

The study of binary complexes of Al(III) with sulfur amino acids (methionine, cysteine, homocysteine and penicillamine) and phosphate ligands (adenosine 5'-triphosphate and phosphocreatine) was done in aqueous solution applying potentiometric titrations, ¹³C and ²⁷Al NMR, Raman spectroscopy, molecular modeling and DFT: B3LYP/6-311G theoretical calculations of the vibrational spectra. The potentiometric titrations and ¹³C and ²⁷Al NMR were performed only for the complexes with amino acids. The potentiometry was used to determine the stability constants of the Al(III)-amino acid binary complexes and the distribution graphs of their species. The comparison between the values obtained for the constants revealed a distinct behavior for the Al-Penicillamine complex, with higher stability constants than the other complexes. It is suggested that penicillamine might act as a tridentate ligand through the oxygen of the carboxylate, the nitrogen of the amine and the sulfur of the sulfhydryl, while others act as bidentate ligands coordinating through the oxygen of the carboxylate and the nitrogen of the amine. The graphs of the species distribution in function of pH showed that in biological pH there is a predominance of hydrolyzed species of the metal and the complex. Raman and ¹³C NMR spectroscopy associated with theoretical calculations confirmed the coordination sites proposed for the amino acids. ²⁷Al NMR and molecular modeling showed that the geometry adopted by the metal center is distorted octahedral. For phosphate ligands, Raman spectroscopy, molecular modeling and theoretical calculations indicated that the geometry of adenosine 5'-triphosphate complex can be distorted octahedral with the ligand behaving as bidentate through one oxygen atom of each terminal β and γ phosphates. Nevertheless, for the phosphocreatine complex the geometry seems

to be a distorted tetrahedron with the ligand behaving as a tridentate, one coordinating through one of the oxygens in the phosphate, the oxygen in the carboxylate and the nitrogen in the guanidine group. These results bring to light the multiplicity of ligand behaviors in the complexation with Al(III).

Keywords

Binary complexes; aluminum(III); sulfur amino acids; phosphocreatine; adenosine 5'-triphosphate; stability constants; Raman spectroscopy; NMR spectroscopy; molecular modeling; *ab initio* calculations.

Sumário

1 Introdução	25
1.1. Objetivos	26
2 Ligantes	27
2.1 Aminoácidos Sulfurados	 27
2.1.1. Metionina	30
2.1.2. Cisteína	34
2.1.3. Homocisteína	36
2.1.4. Penicilamina	38
2.2. Ligantes Fosfatados	40
2.2.1. Adenosina 5'-trifosfato	44
2.2.2. Fosfocreatina	48
3 Íon metálico em estudo: Alumínio(III)	52
3.1. Hidrólise do Íon Alumínio(III)	52
3.2. Características Biológicas	53
3.3. Doença de Alzheimer	57
3.4. Doença de Alzheimer e o Íon Alumínio(III)	63
4 Programas computacionais	70
4.1. Hyperquad 2000	70
4.2. Hyss 2006	73
4.3. GaussView 3.0	73
4.4. Gaussian 03W	73
4.5. Chemcraft	75
4.6. Origin 6.0	75
5 Experimental	76
5 1 Reagentes Utilizados	70
5.2 Anarelhagens I Itilizadas	70
5.3 Metodologia	77
5.3.1 Titulação Potenciométrica	20 20
o.o. i. malação i otomolomotina	00

5.3.2. Espectroscopia Raman	81
5.3.3. Espectroscopia de Ressonância Magnética Nuclear	82
6 Resultados e Discussão do Estudo Potenciométrico	85
6.1. Estudo Potenciométrico dos Ligantes Puros	85
6.1.1. Aminoácidos Sulfurados	85
6.2. Complexos Binários com o Íon Alumínio(III)	91
6.2.1.Espécies Hidrolisadas do Íon Alumínio(III)	92
6.2.2 Complexos do Íon Alumínio(III) com os Aminoácidos Sulfurados	92
7 Estudo Estrutural e Espectral de Complexos Binários com o Íon Alumínio(III) através da Espectroscopia Raman e Cálculos <i>Ab initio</i> (DFT: B3LYP/6-311G)	109
7.1. Estudo Estrutural e Espectral do Cátion Complexo [Al(Met)(H ₂ O) ₄] ²⁺ através de Espectroscopia Raman e Cálculos Ab initio (DFT: B3LYP/6-311G)	117
7.2. Estudo Estrutural e Espectral do Cátion Complexo [Al(Cis)(H ₂ O) ₄] ²⁺ através da Espectroscopia Raman e Cálculos Ab initio (DFT: B3LYP/6-311G)	133
7.3. Estudo Estrutural e Espectral do Cátion Complexo [Al(Hcis)(H ₂ O) ₄] ²⁺ através da Espectroscopia Raman e Cálculos Ab initio (DFT: B3LYP/6-311G)	148
7.4. Estudo Estrutural e Espectral do Cátion Complexo [Al(Pen)(H ₂ O) ₃] ⁺ através da Espectroscopia Raman e Cálculos Ab initio (DFT: B3LYP/6-311G)	163
7.5. Discussão Geral das Geometrias Estruturais dos Complexos Sulfurados ML Obtidos pelos Cálculos Ab initio (DFT: B3LYP/6-311G)	179
7.6. Estudo Estrutural e Espectral do Cátion Complexo [Al(PCr)(H ₂ O)] ⁺ através da Espectroscopia Raman e Cálculos Ab initio (DFT: B3LYP/6-311G)	183
7.7. Estudo Estrutural e Espectral do Cátion Complexo [AI(ATP)(H ₂ O) ₄] ⁺ através da Espectroscopia Raman e Cálculos Ab initio (DFT: B3LYP/6-311G)	200

8 Discussão Geral	222
8.1. Avaliação da Capacidade Coordenativa dos Átomos dos Ligantes Participantes da Coordenação com o Íon Alumínio(III)	222
8.2. Espectroscopia de Ressonância Magnética Nuclear de ¹³ C e ²⁷ Al	227
8.2.1. Espectroscopia de Ressonância Magnética Nuclear de ¹³ C do Ligante IDA e do Complexo AIIDA	228
8.2.2. Espectroscopia de Ressonância Magnética Nuclear de ¹³ C do Ligante MIDA (Carbono Acoplado) e do Complexo AIMIDA	233
 8.2.3. Espectroscopia de Ressonância Magnética Nuclear de 13C e 27Al dos Aminoácidos Sulfurados e dos Complexos Al-Aminoácidos Sulfurados (Aminoácidos = Cisteína, Homocisteína, Penicilamina e Metionina) 	239
8.2.3.1. Espectroscopia de Ressonância Magnética Nuclear de 13C e 27Al do Ligante Metionina e do Complexo AlMetionina	240
8.2.3.2. Espectroscopia de Ressonância Magnética Nuclear de 13C e 27Al do Ligante Cisteína e do Complexo AlCisteína	245
8.2.3.3. Espectroscopia de Ressonância Magnética Nuclear de 13C e 27Al do Ligante Homocisteína e do Complexo AlHomocisteína	250
8.2.3.4. Espectroscopia de Ressonância Magnética Nuclear de ¹³ C e ²⁷ Al do Ligante Penicilamina e do	
Complexo AlPenicilamina	255
9 Conclusões	261
10 Referências Bibliográficas	264
10.1. Introdução	264
10.2. Ligantes	265
10.3. Íon metálico em estudo: Alumínio(III)	268
10.4. Programas computacionais	270
10.5. Experimental	271
10.6. Resultados e Discussão do Estudo Potenciométrico	272

10.7. Estudo Estrutural e Espectral de Complexos Binários com o Íon Alumínio(III) através da Espectroscopia	
Raman e Cálculos Ab initio (DFT: B3LYP/6-311G)	273
10.8. Discussão Geral	275
11 Anexos	276
11.1. Dados Potenciométricos	276
11.2. Dados Espectroscópicos (Raman e DFT: B3LYP/6-311G)	279
11.3. Dados Espectroscópicos (Segunda derivada dos	
espectros Raman dos complexos)	314
11.4. Dados Espectroscópicos da Ressonância Magnética	
(RMN de ² Al)	319

Lista de figuras

Figura 2.1 - Aminoácidos sulfurados em estudo	29
Figura 2.2 - Produtos das reações de estresse oxidativo sobre os aminoácidos sulfurados em estudo	30
Figura 2.3 - Metabolismo da Metionina	31
Figura 2.4 - Metabolismo da homocisteína e possível mecanismo da doença aterotrombótica	37
Figura 2.5 - RMI do cérebro de paciente com Doença de Wilson	39
Figura 2.6 - Ligantes fosfatados em estudo	41
Figura 2.7 - Ciclo do ácido tricarboxílico	45
Figura 2.8 - Geração líquida de adenosina 5'-trifosfato	46
Figura 2.9 - Reações envolvendo o ATP e a fosfocreatina na contração muscular	49
Figura 3.1 - Placa senil cercada por estruturas neurofibrilares	58
Figura 3.2 - Sequência de aminoácidos da proteína Aβ42	59
Figura 3.3 - Esquema do processamento da APP	59
Figura 3.4 - Estrutura da dimebolina	60
Figura 3.5 - RMI da evolução metabólica de um cérebro acometido por Alzheimer	61
Figura 3.6 - Tecido cerebral com Alzheimer e sadio	62
Figura 3.7 - Cérebro com Alzheimer e sadio	63
Figura 3.8 - Características do tecido cerebral humano com conteúdos de alumínio	68
Figura 5.1 - Espalhamento de luz	81
Figura 6.1 - Curvas de titulação potenciométrica dos aminoácidos Met, Cis, Hcis e Pen	85
Figura 6.2 - Curva de titulação potenciométrica do aminoácido glicina	86
Figura 6.3 - Distribuição de espécies em função do pH para os aminoácidos Met, Cis, Hcis e Pen	89
Figura 6.4 - Curvas de titulação experimental e calculada para os aminoácidos Met, Cis, Hcis e Pen	91
Figura 6.5 - Curvas de titulação potenciométrica dos sistemas binários de aminoácidos sulfurados com íon	00
aiuminio(III) na proporção 1:5	93

Figura 6.6 - Curvas de t binários de alumínio(III)	itulação potenciométrica dos sistemas aminoácidos sulfurados com íon) na proporção 1:1	93
Figura 6.7 - Estruturas p com o amin	propostas dos complexos formados oácido metionina	95
Figura 6.8 - Estruturas p com o amin	propostas dos complexos formados oácido cisteína	96
Figura 6.9 - Estruturas p com o amin	propostas dos complexos formados oácido homocisteína	97
Figura 6.10 - Estruturas com o ami	propostas dos complexos formados noácido penicilamina	98
Figura 6.11 - Modelo de	coordenação dos aminoácidos	100
Figura 6.12 - Distribuiçã o sistema	o de espécies em função do pH para Al:Met concentrada	102
Figura 6.13 - Distribuiçã o sistema	o de espécies em função do pH para Al:Cis concentrada	102
Figura 6.14 - Distribuiçã o sistema	o de espécies em função do pH para Al:Hcis concentrada	103
Figura 6.15 - Distribuiçã o sistema	o de espécies em função do pH para Al:Pen concentrada	103
Figura 6.16 - Distribuiçã o sistema	o de espécies em função do pH para Al:Met	104
Figura 6.17 - Distribuiçã o sistema	o de espécies em função do pH para Al:Cis	104
Figura 6.18 - Distribuiçã o sistema	o de espécies em função do pH para Al:Hcis	104
Figura 6.19 - Distribuiçã o sistema	o de espécies em função do pH para Al:Pen	105
Figura 6.20 - Curvas de o sistema	titulação experimental e calculada para binário Al:Met concentrada	106
Figura 6.21 - Curvas de o sistema	titulação experimental e calculada para binário Al:Cis concentrada	106
Figura 6.22 - Curvas de o sistema	titulação experimental e calculada para binário Al:Hcis concentrada	106
Figura 6.23 - Curvas de o sistema	titulação experimental e calculada para binário Al:Pen concentrada	107
Figura 6.24 - Curvas de o sistema	titulação experimental e calculada para binário Al:Met	107

Figura 6.25 - Curvas de titulação experimental e calculada para o sistema binário Al:Cis	108
Figura 6.26 - Curvas de titulação experimental e calculada para o sistema binário Al:Hcis	108
Figura 6.27 - Curvas de titulação experimental e calculada para o sistema binário Al:Pen	108
Figura 7.1 - Distribuição de espécies em função do pH para o sistema Al:Met	110
Figura 7.2 - Distribuição de espécies em função do pH para o sistema AI:Cis	110
Figura 7.3 - Distribuição de espécies em função do pH para o sistema Al:Hcis	111
Figura 7.4 - Distribuição de espécies em função do pH para o sistema Al:Pen	111
Figura 7.5 - Distribuição de espécies em função do pH para o sistema Al:PCr	112
Figura 7.6 - Distribuição de espécies em função do pH para o sistema AI:ATP	112
Figura 7.7 - Espectro Raman da água bidestilada e deionizada	115
Figura 7.8 - Espectro Raman da solução de nitrato de alumínio	116
Figura 7.9 – Modelagem molecular do complexo	
[Al(Met)(H ₂ O) ₄] ²⁺ (a) e do ligante metionina (b)	118
Figura 7.10 – Espectro Raman do ligante metionina em solução	120
Figura 7.11 - Espectro Raman do ligante metionina no estado sólido	120
Figura 7 12 - Espectro calculado do ligante metionina	120
Figura 7.13 - Espectro Raman do sistema binário alumínio e	
metionina em solução pH=3,5	122
Figura 7.14 - Espectro Raman deconvoluído do sistema binário alumínio e metionina da região de 3500 a 2800 cm ⁻¹	122
Figura 7.15 - Espectro Raman deconvoluído do sistema binário alumínio e metionina da região de 1700 a 900 cm ⁻¹	123
Figura 7.16 - Espectro calculado do sistema binário alumínio e metionina	123
Figura 7.17 - Geometrias distorcidas de alguns modos normais do complexo [Al(Met)(H ₂ O) ₄] ²⁺	131

Figura 7.18 -	 Modelagem molecular do complexo 	
	[Al(Cis)(H ₂ O) ₄] ²⁺ (a) e do ligante cisteína (b)	135
Figura 7.19 -	 Espectro Raman do ligante cisteína em solução 	136
Figura 7.20 ·	 Espectro Raman do ligante cisteína no estado 	
	sólido	137
Figura 7.21	 Espectro calculado do ligante cisteína 	137
Figura 7.22 ·	 Espectro Raman do sistema binário alumínio e cisteína em solução pH=2,8 	138
Figura 7.23	 Espectro Raman deconvoluído do sistema binário alumínio e cisteína 	138
Figura 7.24	 Espectro calculado do sistema binário alumínio e cisteína 	139
Figura 7.25	 Geometrias distorcidas de alguns modos normais do complexo [Al(Cis)(H₂O)₄]²⁺ 	146
Figura 7.26	 Modelagem molecular do complexo [Al(Hcis)(H₂O)₄]²⁺ (a) e do ligante homocisteína (b) 	149
Figura 7.27	 Espectro Raman do ligante homocisteína em solução 	151
Figura 7.28 ·	 Espectro Raman do ligante homocisteína no estado sólido 	151
Figura 7.29	- Espectro calculado do ligante homocisteína	152
Figura 7.30 ·	 Espectro Raman do sistema binário alumínio e homocisteína em solução pH=2,6 	152
Figura 7.31	 Espectro Raman deconvoluído do sistema binário alumínio e homocisteína 	153
Figura 7.32 ·	 Espectro calculado do sistema binário alumínio e homocisteína 	153
Figura 7.33	 Geometrias distorcidas de alguns modos normais do complexo [Al(Hcis)(H₂O)₄]²⁺ 	160
Figura 7.34 -	 Modelagem molecular do complexo <i>fac</i>-[Al(Pen)(H₂O)₃]⁺ (a) e do ligante popicilamina (b) 	165
Figuro 7 25	- Espectro Daman de ligante nonicilamine em estucão	100
Figure 7.35	- Espectro Raman do ligante penicilarina em solução	100
i iyula 7.30 '	sólido	167
Figura 7.37	- Espectro calculado do ligante penicilamina	167

Figura 7.38	 Espectro Raman do sistema binário alumínio e penicilamina em solução pH=2,7 	168
Figura 7.39	Fespectro Raman deconvoluído do sistema binário alumínio e penicilamina da região de 3500 a 2800 cm ⁻¹	168
Figura 7.40) - Espectro Raman deconvoluído do sistema binário alumínio e penicilamina da região de 1700 a 100 cm ⁻¹	169
Figura 7.41	 Espectro calculado do sistema binário alumínio e penicilamina 	169
Figura 7.42	 Geometrias distorcidas de alguns modos normais do complexo <i>fac</i>-[Al(Pen)(H₂O)₃]⁺ 	176
Figura 7.43	3 - Modelagem molecular do complexo [Al(PCr)(H ₂ O)] ⁺ (a) e do ligante fosfocreatina (b)	185
Figura 7.44	1 - Espectro Raman do ligante fosfocreatina em solução	186
Figura 7.45	 Espectro Raman do ligante fosfocreatina no estado sólido 	187
Figura 7.46	S - Espectro calculado do ligante fosfocreatina	187
Figura 7.47	 - Espectro Raman do sistema binário alumínio e fosfocreatina em solução pH=4,5 	188
Figura 7.48	- Espectro Raman deconvoluído do sistema binário alumínio e fosfocreatina da região de 3500 a 2800 cm ⁻¹	188
Figura 7.49	Fespectro Raman deconvoluído do sistema binário alumínio e fosfocreatina da região de 1800 a 100 cm ⁻¹	189
Figura 7.50	 Espectro calculado do sistema binário alumínio e fosfocreatina 	189
Figura 7.51	 Geometrias distorcidas de alguns modos normais do complexo [Al(PCr)(H₂O)]⁺ com seus vetores de deslocamento 	195
Figura 7.52	 Modelagem molecular do complexo [AI(ATP)(H₂O)₄]⁺ (a) e do ligante adenosina 5'-trifosfato (b) 	202
Figura 7.53	3 - Espectro Raman do ligante adenosina 5'- trifosfato em solução	205
Figura 7.54	 Espectro Raman do ligante adenosina 5'- trifosfato no estado sólido 	205

Figura 7.55 - Espectro calculado do ligante adenosina 5'- trifosfato	206
Figura 7.56 - Espectro Raman do sistema binário alumínio e adenosina 5' -trifosfato em solução pH=3,0	206
Figura 7.57 - Espectro Raman deconvoluído do sistema binário alumínio e adenosina 5'- trifosfato da região de 3500 a 2900 cm ⁻¹	207
Figura 7.58 - Espectro Raman deconvoluído do sistema binário alumínio e adenosina 5'- trifosfato da região de 1800 a 100 cm ⁻¹	207
Figura 7.59 - Espectro calculado do sistema binário alumínio e adenosina 5'- trifosfato	208
Figura 7.60 - Geometrias distorcidas de alguns modos normais do complexo [Al(ATP)(H ₂ O) ₄] ⁺ com seus	047
	217
Figura 8.1 - Ligantes agrupados para a avaliação dos átomos participantes da coordenação com o íon Al(III)	223
Figura 8.2 - Gráfico de capacidade coordenativa dos átomos dos ligantes nos complexos formados entre o Al(III)	
e ligantes bi, tri e tetradentados	225
Figura 8.3 - Ligante IDA	228
Figura 8.4 - Espectro RMN de ¹³ C do ligante IDA	228
Figura 8.5 - Deslocamentos químicos característicos da RMN de ¹³ C	229
Figura 8.6 - Atribuições dos picos em ppm para o ligante IDA	230
Figura 8.7 - Estrutura proposta para o AIIDA	230
Figura 8.8 - Espectro RMN de ¹³ C do complexo AlIDA	231
Figura 8.9 - Atribuições dos picos em ppm para o complexo	
AIIDA	232
Figura 8.10 - Espectro RMN de ¹³ C do complexo AlIDA	232
Figura 8.11 - Espectro RMN de ¹³ C do complexo AIIDA	233
Figura 8.12 - Ligante MIDA	234
Figura 8.13 - Espectro RMN de C do ligante MIDA (Carbono acoplado)	234
Figura 8.14 - Espectro RMN de C do ligante MIDA (Carbono acoplado)	235
Figura 8.15 - Atribuições dos picos em ppm para o ligante MIDA	237

Figura 8.16 -	Estrutura proposta para o complexo AlMIDA	238
Figura 8.17 -	Espectro RMN de ¹³ C do complexo AlMIDA	238
Figura 8.18 -	Atribuições dos picos em ppm para o complexo	
	AIMIDA	239
Figura 8.19 -	Ligante metionina	240
Figura 8.20 -	RMN de ¹³ C do ligante metionina	240
Figura 8.21 -	Atribuições dos picos em ppm para o ligante metionina	241
Figura 8.22 -	Estrutura proposta para o complexo AlMetionina	242
Figura 8.23 -	RMN de ¹³ C do sistema alumínio e metionina	242
Figura 8.24 -	Atribuições dos picos para o complexo AlMetionina	243
Figura 8.25 -	RMN de ¹³ C do sistema alumínio e metionina	243
Figura 8.26 -	RMN de ²⁷ Al do sistema alumínio e metionina	244
Figura 8.27 -	Ligante cisteína	245
Figura 8.28 -	RMN de ¹³ C do ligante cisteína	246
Figura 8.29 -	Atribuições dos picos em ppm para o ligante cisteína	246
Figura 8.30 -	Estrutura proposta para o complexo AlCisteína	247
Figura 8.31 -	RMN de ¹³ C do sistema alumínio e cisteína	247
Figura 8.32 -	Atribuições dos picos para o complexo AlCisteína	248
Figura 8.33 -	RMN de ¹³ C do sistema alumínio e cisteína	248
Figura 8.34 -	RMN de ²⁷ Al do sistema alumínio e cisteína	249
Figura 8.35 -	Ligante homocisteína	250
Figura 8.36 -	RMN de ¹³ C do ligante homocisteína	251
Figura 8.37 -	Atribuições dos picos em ppm para o ligante homocisteína	251
Figura 8.38 -	Estrutura proposta para o complexo AlHomocisteína	252
Figura 8.39 -	RMN de ¹³ C do sistema alumínio e homocisteína	252
Figura 8.40 -	Atribuições dos picos para o complexo AlHomocisteína	253
Figura 8.41 -	RMN de ¹³ C do sistema alumínio e homocisteína	253
	RMN de ²⁷ Al do sistema alumínio e homocisteína	254
- Figura 8.43 -	Ligante penicilamina	255
-		

Figura 8.44 - RMN de ¹³ C do ligante penicilamina	255
Figura 8.45 - Atribuições dos picos em ppm para o ligante	
penicilamina	256
Figura 8.46 - Estrutura proposta para o complexo AlPenicilamina	256
Figura 8.47 - RMN de ¹³ C do sistema alumínio e penicilamina	257
Figura 8.48 - Atribuições dos picos para o complexo AlPenicilamir	na 257
Figura 8.49 - RMN de ¹³ C do sistema alumínio e penicilamina	258
Figura 8.50 - RMN de ¹³ C do sistema alumínio e penicilamina	258
Figura 8.51 - RMN de ²⁷ Al do sistema alumínio e penicilamina	259
Figura A.1 - Segunda derivada do espectro Raman do sistema	
binário alumínio e metionina da região de 3500 a	
2900 cm ⁻	314
Figura A.2 - Segunda derivada do espectro Raman do sistema	
100 cm^{-1}	314
Figura A 3 - Segunda derivada do espectro Raman do sistema	011
binário alumínio e cisteína	315
Figura A.4 - Segunda derivada do espectro Raman do sistema	
binário alumínio e homocisteína	315
Figura A.5 - Segunda derivada do espectro Raman do sistema	
binário alumínio e penicilamina da região de 3500 a	
2800 cm '	316
Figura A.6 - Segunda derivada do espectro Raman do sistema	
100 cm^{-1}	316
Figura A.7 - Segunda derivada do espectro Raman do sistema	
binário alumínio e fosfocreatina da região de 3500 a	
2900 cm ⁻¹	317
Figura A.8 - Segunda derivada do espectro Raman do sistema	
binário alumínio e fosfocreatina da região de 1700 a	0.47
100 cm ⁻	317
Figura A.9 - Segunda derivada do espectro Raman do sistema	
de 3500 a 2500 cm $^{-1}$	318
Figura A.10 - Segunda derivada do espectro Raman do sistema	
binário alumínio e adenosina 5'- trifosfato da região	
de 1800 a 100 cm ⁻¹	318
Figura A.11 - RMN de ²⁷ AI da solução de nitrato de alumínio	319

Lista de tabelas

Tabela 2.1 -	Energias livres para as hidrólises de alguns compostos fosfatados (pH 7,0)	42
Tabela 6.1 -	Equilíbrios de dissociação dos aminoácidos Met, Cis, Hcis e Pen	86
Tabela 6.2 -	Constantes de dissociação dos aminoácidos Met, Cis, Hcis e Pen	87
Tabela 6.3 -	Constantes de formação das espécies hidrolisadas do íon Al(III) usadas nos cálculos de complexos	92
Tabela 6.4 -	Constantes de estabilidade para os complexos formados entre o íon alumínio(III) e os aminoácidos sulfurados: Espécies protonadas e ML, ML ₂ , ML ₃	94
Tabela 6.5 -	Constantes de estabilidade (log β) para os complexos formados entre o íon alumínio(III) e os aminoácidos sulfurados: Espécies hidrolisadas	94
Tabela 6.6 -	Valores de log β da literatura para os complexos entre os aminoácidos sulfurados e o íon alumínio(III)	99
Tabela 6.7 -	Valores de log β _{ML} para o Al(III) e para os complexos entre os aminoácidos sulfurados e outros íons metálicos (III)	99
Tabela 7.1 -	Parâmetros geométricos calculados (comprimentos de ligação em Å) para o complexo [Al(Met)(H ₂ O) ₄] ²⁺ e para o ligante metionina	117
Tabela 7.2 -	Parâmetros geométricos calculados (ângulos de ligação em graus) para o complexo	447
Tabela 7.3 -	$[AI(Met)(H_2O)_4]^{-*}$ e para o ligante metionina Espectro vibracional Raman experimental e calculado para o complexo $[AI(Met)(H_2O)_4]^{2+}$	117
Tabela 7.4 –	Parâmetros geométricos calculados (comprimentos de ligação em Å) para o complexo [Al(Cis)(H ₂ O) ₄] ²⁺ e para o ligante cisteína	134
Tabela 7.5 -	Parâmetros geométricos calculados (ângulos de ligação em graus) para o complexo [Al(Cis)(H ₂ O) ₄] ²⁺ e para o ligante cisteína	134
Tabela 7.6 -	Espectro vibracional Raman experimental e calculado para o complexo [Al(Cis)(H ₂ O) ₄] ²⁺	139

Tabela 7.7 - F	Parâmetros geométricos calculados (comprimentos de ligação em Å) para o complexo [Al(HCis)(H ₂ O) ₄] ²⁺ e para o ligante homocisteína	148
Tabela 7.8 - F I [Parâmetros geométricos calculados (ângulos de igação em graus) para o complexo Al(HCis)(H ₂ O) ₄] ²⁺ e para o ligante homocisteína	149
Tabela 7.9 - E	Espectro vibracional Raman experimental e calculado para o complexo [Al(Hcis)(H ₂ O) ₄] ²⁺	154
Tabela 7.10 -	Parâmetros geométricos calculados (comprimentosde ligação em Å) para o complexo <i>fac-</i> [Al(Pen)(H ₂ O) ₃] ⁺ e para o ligante penicilamina	163
Tabela 7.11 -	Parâmetros geométricos calculados (ângulos de ligação em graus) para o complexo <i>fac-</i> [Al(Pen)(H ₂ O) ₃] ⁺ e para o ligante penicilamina	164
Tabela 7.12 -	Espectro vibracional Raman experimental e calculado para o complexo <i>fac</i> -[Al(Pen)(H ₂ O) ₃] ⁺	170
Tabela 7.13 -	Parâmetros geométricos - Comprimentos de ligação	179
Tabela 7.14 -	Média da ligação Al-O (H ₂ O)	181
Tabela 7.15 -	Diferença entre a ligação AI-O da água coordenada e a ligação AI-O do carboxilato	181
Tabela 7.16 -	Energia de estabilização calculada no vácuo para os complexos AIL	182
Tabela 7.17 -	Parâmetros geométricos calculados (comprimentos de ligação em Å) para o complexo [Al(PCr)(H ₂ O)] ⁺ e para o ligante	
	fosfocreatina	183
Tabela 7.18 -	Parâmetros geométricos calculados (ângulos de ligação em graus) para o complexo	183
Tabela 7.19 -	Espectro vibracional Raman experimental e calculado para o complexo $[Al(PCr)(H_2O)]^+$	190
Tabela 7.20 -	Parâmetros geométricos calculados (comprimentos de ligação em Å) para o complexo [Al(ATP)(H ₂ O) ₄] ⁺ e para o ligante adenosina	
	5'-trifosfato	200

Tabela 7.21 - Parâmetros geométricos calculados (ângulos de ligação em graus) para o complexo [AI(ATP)(H ₂ O) ₄] ⁺ e para o ligante adenosina 5'-trifosfato	201
Tabela 7.22 - Espectro vibracional Raman experimental e calculado para o complexo [Al(ATP)(H ₂ O) ₄] ⁺	208
Tabela 8.1 - Valores de log β_{AIL} para os complexos em estudo e log β_{HL} para os ligantes	224
Tabela 8.2 - Valores de log β_{HL} e log β_{AIL} para o IDA e MIDA	237
Tabela A.1 - Titulação potenciométrica dos ligantes Pen, Cis, Hcis e Met	276
Tabela A.2 - Titulação potenciométrica dos sistemas Al:aa na proporção 1:1	277
Tabela A.3 - Titulação potenciométrica dos sistemas Al:aa na proporção 1:5	278
Tabela A.4 - Número de onda nos espectros Raman da água bidestilada e da solução de nitrato de alumínio 0,5 mol.L ⁻¹	279
Tabela A.5 - Atribuições aproximadas dos espectros experimentais e calculados para o complexo [Al(Met)(H ₂ O) ₄] ²⁺ e para o ligante metionina	280
Tabela A.6 - Atribuições aproximadas dos espectros experimentais e calculados para o complexo [Al(Cis)(H ₂ O) ₄] ²⁺ e para o ligante cisteína	285
Tabela A.7 - Atribuições aproximadas dos espectros experimentais e calculados para o complexo $[Al(Hcis)(H_2O)_4]^{2+}$ e para o ligante homocisteína	290
Tabela A.8 - Atribuições aproximadas dos espectros experimentais e calculados para o complexo [Al(Pen)(H ₂ O) ₃] ⁺ e para o ligante penicilamina	295
Tabela A.9 - Atribuições aproximadas dos espectros experimentais e calculados para o complexo [AI(PCr)(H ₂ O)] ⁺ e para o ligante fosfocreatina	300
Tabela A.10 - Atribuições aproximadas dos espectros experimentais e calculadospara o complexo $[AI(ATP)(H_2O)_4]^+$ e para o ligante ATP	305

Lista de símbolos e abreviações

- RMN Ressonância Magnética Nuclear
- RMI Ressonância Magnética Nuclear por imagem
- DA doença de Alzheimer
- aa aminoácidos
- L ligante
- I força iônica
- f.e.m. força eletromotriz
- SERS sinal Raman por efeitos de superfície
- DFT teoria do funcional de densidade
- HF hartree fock
- D₂O água deuterada
- TMSP-2,2,3,3-D4 2,2,3,3-d4-(3- trimetilsilil)-propionato de sódio
- TMS trimetilsilano
- EDDA ácido 1,2-diaminoetano-N,N'-dietanóico
- EDDPA ácido etilenodiamino-N,N'-dipropanóico
- HEIDA ácido N-(2-hidroxietil)iminoetanóico
- IDA ácido iminodiacético
- NTA ácido nitrilotrietanóico
- MIDA ácido metil-iminodiacético

Gli - glicina

 α -Ala - α -alanina

- β -Ala β -alanina
- lle isoleucina
- Leu leucina
- Ser serina
- Tir tirosina
- Tre treonina
- Val valina
- Met metionina
- Cis cisteína
- Hcis homocisteína
- Pen penicilamina
- PCr fosfocreatina
- ATP adenosina 5'-trifosfato
- GAA ácido guanidino acético