5 The space $\widetilde{\mathbf{PSL}}_{\mathbf{2}}(\mathbb{R}, au)$

In this chapter we focus our attention in the study of the geometry of the space $\widetilde{PSL}_2(\mathbb{R},\tau)$. We wish to study the *H*-surfaces, which are invariant by one-parameter group of isometries.

It will be make by understanding the isometries of $\widetilde{PSL}_2(\mathbb{R}, \tau)$ as well as the relationship between the space $\widetilde{PSL}_2(\mathbb{R}, \tau)$ and the hyperbolic space.

The space $\widetilde{PSL}_2(\mathbb{R}, \tau)$ is a simply connected homogeneous manifold whose isometry groups has dimension 4, such a manifold is a Riemannian submersion over the 2-dimensional hyperbolic space, which we will denote by $M^2 = M^2(-1)$. Thus, we only consider the case when the Gaussian curvature is equal to -1, that is, $\kappa = -1$.

Throughout this chapter, we will follow the ideas of Eric Toubiana, see (22). Recall that, we have,

$$\pi: \widetilde{PSL}_2(\mathbb{R}, \tau) \longrightarrow M^2$$

the Riemannian submersion; for $p \in M^2$, the fibers $\pi^{-1}(p)$ are geodesics and there exists a one-parameter family of translations along the fibers, generated by the unit Killing field E_3 .

5.1 Isometries of $\widetilde{PSL}_2(\mathbb{R}, au)$

Since there exist a Riemannian submersion $\pi: \widetilde{PSL}_2(\mathbb{R}, \tau) \longrightarrow M^2$, the isometries of $\widetilde{PSL}_2(\mathbb{R}, \tau)$ are strongly related with the isometries of the hyperbolic space M^2 .

From now on we identify the Euclidean space \mathbb{R}^2 with the set of complex numbers \mathbb{C} , more precisely $z = x + iy \approx (x, y)$.

So, if we take $M^2 \equiv \mathbb{D}^2$, we obtain:

$$\widetilde{PSL}_2(\mathbb{R}) = \{(z,t) \in \mathbb{R}^3; x^2 + y^2 < 1, t \in \mathbb{R}\}$$

endowed with metric,

$$d\sigma^{2} = \lambda^{2}(z)|dz|^{2} + (i\tau\lambda(\overline{z}dz - zd\overline{z}) + dt)^{2}$$

If we take $M^2 \equiv \mathbb{H}^2$, we obtain:

$$\widetilde{PSL}_2(\mathbb{R}) = \{ (z, t) \in \mathbb{R}^3; y > 0, t \in \mathbb{R} \}$$

endowed with metric,

$$d\sigma^2 = \lambda^2(z)|dz|^2 + (-\tau\lambda(dz + d\overline{z}) + dt)^2$$

Remark 5.1.1. Let F an isometry of $\widetilde{PSL}_2(\mathbb{R}, \tau)$. As

$$\pi: \widetilde{PSL}_2(\mathbb{R}, \tau) \longrightarrow M^2$$

is a Riemannian submersion, we can write F in the form F(z,t) = (f(z), h(z,t)), where

$$f: M^2 \longrightarrow M^2$$

is an isometry of the hyperbolic space M^2 .

To see this, we take $p \in M^2$ and $u, v \in T_pM^2$. Denotes by $\overline{u}, \overline{v}$ the horizontal lifts of u and v respectively. Let \overline{p} be the point over the fiber $\pi^{-1}(p)$ such that $\overline{u}, \overline{v} \in T_{\overline{p}}\widetilde{PSL}_2(\mathbb{R}, \tau)$.

Denoting by $dF(\overline{u}) = \overline{a}$ and $dF(\overline{v}) = \overline{b}$, then \overline{a} and \overline{b} are horizontal vectors at $T_{F(\overline{p})}\widetilde{PSL}_2(\mathbb{R},\tau)$, hence $d\pi(\overline{a}) = a \in T_q\mathbb{M}^2$ and $d\pi(\overline{b}) = b \in T_q\mathbb{M}^2$, where $q = \pi(F(\overline{p}))$.

Now, consider f an isometry of M^2 , such that, f(p) = q, df(u) = a, and df(v) = b. Then,

$$\langle d\pi(dF(\overline{u})), d\pi(dF(\overline{v})) \rangle_{\widetilde{PSL}_{2}(\mathbb{R},\tau)} = \langle d\pi(\overline{a}), d\pi(\overline{b}) \rangle_{\widetilde{PSL}_{2}(\mathbb{R},\tau)}$$

$$= \langle a, b \rangle_{M^{2}}$$

$$= \langle u, v \rangle_{M^{2}}.$$

$$= \langle df(a), df(b) \rangle_{M^{2}}$$

the least equality holds since that $f: M^2 \to M^2$, f(p) = q is an isometry, so we have F(z,t) = (f(z),h(z,t)).

Proposition 5.1.1. The isometries of $\widetilde{PSL}_2(\mathbb{R}, \tau)$ are given by, In the half-plane model for the hyperbolic space M^2

$$F(z,t) = (f(z), t - 2\tau \arg f' + c)$$

or

$$G(z,t) = (-\overline{f}(z), -t + 2\tau \arg f' + c)$$

where f is a positive isometry of \mathbb{H}^2 and c is a real number. In the disk model,

$$F(z,t) = (f(z), t - 2\tau \arg f' + c)$$

or

$$G(z,t) = (\overline{f}(z), -t + 2\tau \arg f' + c)$$

where f is a positive isometry of \mathbb{D}^2 and c is a real number.

Proof. We will consider the half-plane model. The proof for the disk model is analogous. As F is a isometry of $\widetilde{PSL}_2(\mathbb{R}, \tau)$, we must have,

$$F^*\left(\lambda^2(z)|dz|^2 + (-\tau\lambda(z)(dz+d\overline{z})+dt)^2\right) = \lambda^2(z)|dz|^2 + (-\tau\lambda(z)(dz+d\overline{z})+dt)^2$$

since,

$$f^*(\lambda^2|dz|^2) = \lambda^2(z)|dz|^2$$

we have

$$F^*(-\tau\lambda(z)(dz+d\overline{z})+dt) = \pm(-\tau\lambda(z)(dz+d\overline{z})+dt).$$

We suppose first that

$$F^*(-\tau\lambda(z)(dz+d\overline{z})+dt) = +(-\tau\lambda(z)(dz+d\overline{z})+dt). \tag{5-1}$$

If f is a positive isometry of \mathbb{H}^2 , then

$$(5-1) \Leftrightarrow -\tau \lambda(f(z))(df(z) + d\overline{f(z)}) + dh = -\tau \lambda(z)(dz + d\overline{z}) + dt$$

$$\Leftrightarrow -\tau \lambda(f(z))(f'dz + \overline{f}'d\overline{z}) + dh = -\tau \lambda(z)(dz + d\overline{z}) + dt$$

$$\Leftrightarrow -\tau \lambda(f(z))(f'dz + \overline{f}'d\overline{z}) + h_z dz + h_{\overline{z}} d\overline{z} + h_t dt = -\tau \lambda(z)(dz + d\overline{z}) + dt$$

$$\Leftrightarrow -\tau \lambda(f(z))(f' + h_z) = -\tau \lambda(z);$$

$$\Leftrightarrow \begin{cases} -\tau \lambda(f(z))\overline{f}' + h_{\overline{z}} = -\tau \lambda(z); \\ h_t = 1; \end{cases}$$

$$\Leftrightarrow \begin{cases} -\tau \lambda(f(z))f' + h_z = -\tau \lambda(z); \\ h_t = 1; \end{cases}$$

Consequently, h is a function of the form $h(z,t) = \varphi(z) + t$, where φ is a real function that verifies,

$$\varphi_{z}(z) = \tau(\lambda(f(z))f' - \lambda(z))$$

$$= \tau \left[\frac{2if'}{f - \overline{f}} - \frac{2i}{z - \overline{z}} \right]$$

$$= 2\tau i [\log(f - \overline{f}) - \log(z - \overline{z})]_{z}$$

$$\Leftrightarrow \varphi = 2\tau i \log\left(\frac{f - \overline{f}}{z - \overline{z}}\right) + \overline{\psi}$$

where $\overline{\psi}$ is a holomorphic function. By other hand, if f is a positive isometry of \mathbb{H}^2 , then

$$f(z) = \frac{az+b}{cz+d}$$
, $a, b, c, d \in \mathbb{R}$, $ad-bc = 1$.

A simple computation gives,

$$\frac{f - \overline{f}}{z - \overline{z}} = \frac{1}{|cz + d|^2} = |f'(z)|$$

so, we obtain,

$$\varphi = 2\tau i \arg |f'(z)| + \overline{\psi}$$

as ψ is holomorphic and φ is a real function, we must have

$$\psi = 2\tau i \log(f') + c$$

where c is a constant real. So we conclude that

$$\varphi = -2\tau \arg(f'(z)) + c.$$

Thus

$$h(z,t) = t - 2\tau \arg(f'(z)) + c.$$

Now let f be a negative isometry, that is $f = -\overline{g}$ where g is a positive isometry of \mathbb{H}^2 . Thus, we have,

$$(5-1) \Leftrightarrow -\tau \lambda(f(z))(df(z) + d\overline{f(z)}) + dh = -\tau \lambda(z)(dz + d\overline{z}) + dt$$

$$\Leftrightarrow \tau \lambda(f(z))(d\overline{g}(z) + d\overline{g}(z)) + dh = -\tau \lambda(z)(dz + d\overline{z}) + dt$$

$$\Leftrightarrow \tau \lambda(f(z))(\overline{g}'d\overline{z} + g'd\overline{z}) + h_z dz + h_{\overline{z}}d\overline{z} + h_t dt = -\tau \lambda(z)(dz + d\overline{z}) + dt$$

$$\Leftrightarrow \begin{cases} \tau \lambda(f(z))g' + h_z = -\tau \lambda(z); \\ \tau \lambda(f(z))\overline{g}' + h_{\overline{z}} = -\tau \lambda(z); \\ h_t = 1; \end{cases}$$

$$\Leftrightarrow \begin{cases} \tau \lambda(f(z))g' + h_z = -\tau \lambda(z); \\ h_t = 1; \end{cases}$$

Again h is of the form $h(z,t) = \varphi(z) + t$, where φ is a real function that verifies,

$$\varphi_z = -\tau(\lambda(f(z))g' + \lambda(z))$$

$$= -\tau \left[\frac{2ig'}{g - \overline{g}} + \frac{2i}{z - \overline{z}} \right]$$

$$= -2\tau i \left[\log(g - \overline{g}) + \log(z - \overline{z}) \right],$$

so,

$$\varphi = -2\tau i[\log(g - \overline{g}) + \log(z - \overline{z})] + \overline{\psi}$$

where ψ is holomorphic. Since φ is real, this implies that $[\log(g-\overline{g}) + \log(z-\overline{z})]$ is harmonic, which is false. Thus f must be a positive function.

Now, we suppose that F verify,

$$F^*(-\tau\lambda(z)(dz+d\overline{z})+dt) = -(-\tau\lambda(z)(dz+d\overline{z})+dt)$$
 (5-2)

Again, we consider a negative isometry, that is, we consider $f = -\overline{g}$ where g is a positive isometry of \mathbb{H}^2 , so

$$(5-2) \Leftrightarrow -\tau \lambda(f(z))(df(z) + d\overline{f(z)}) + dh = -(-\tau \lambda(z)(dz + d\overline{z}) + dt)$$

$$\Leftrightarrow -\tau \lambda(f(z))(-d\overline{g}(z) - d\overline{g}(z)) + dh = -(-\tau \lambda(z)(dz + d\overline{z}) + dt)$$

$$\Leftrightarrow \tau \lambda(f(z))(\overline{g}'d\overline{z} + g'd\overline{z}) + dh = -(-\tau \lambda(z)(dz + d\overline{z}) + dt)$$

$$\Leftrightarrow \tau \lambda(f(z))(\overline{g}'d\overline{z} + g'd\overline{z}) + h_z dz + h_{\overline{z}} d\overline{z} + h_t dt = \tau \lambda(z)(dz + d\overline{z}) - dt$$

$$\Leftrightarrow \left\{ \begin{array}{l} \tau \lambda(f(z))g' + h_z = \tau \lambda(z); \\ \tau \lambda(f(z))\overline{g}' + h_{\overline{z}} = \tau \lambda(z); \\ h_t = -1; \end{array} \right.$$

$$\Leftrightarrow \begin{cases} \tau \lambda(f(z))g' + h_z = \tau \lambda(z); \\ h_t = -1; \end{cases}$$

Again h is of the form $h(z,t) = \varphi(z) - t$, where φ is a real function verify

$$\varphi_z = -\tau \left[\lambda(f(z))g' - \lambda(z) \right]$$

$$= -\tau \left[\frac{2ig'}{g - \overline{g}} - \frac{2i}{z - \overline{z}} \right]$$

$$= -2\tau i \left[\log(g - \overline{g}) - \log(z - \overline{z}) \right]_z$$

so,

$$\varphi = -2\tau i \log \left(\frac{g - \overline{g}}{z - \overline{z}} \right) + \overline{\psi}$$

where $\overline{\psi}$ is a holomorphic function. On the other hand, making the same calculation as above, we obtain

$$\varphi = -2\tau i \log |g'(z)| + \overline{\psi}$$

as ψ is holomorphic and φ is a real function, we must have

$$\psi = -2\tau i \log(g') + c$$

where c is a constant real. So we conclude that

$$\varphi = 2\tau \arg(g'(z)) + c$$

Thus

$$h(z,t) = -t + 2\tau \arg(f'(z)) + c$$

Finally, in this case, if we consider an isometry positive f we get a contradiction.

5.2

The mean curvature equation in $\widetilde{\mathrm{PSL}}_{\mathbf{2}}(\mathbb{R}, au)$

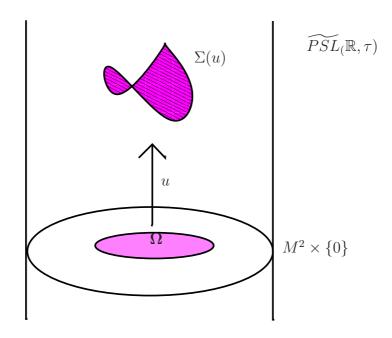
In this section we will explore the equation of the mean curvature in the divergence form.

Recall that, for a Riemannian submersion we have the notion of graph.

Definition 5.2.1. A graph in $\widetilde{PSL}_2(\mathbb{R}, \tau)$ over a domain Ω of M^2 is the image of a section $s_0 : \Omega \subset M^2 \longrightarrow \widetilde{PSL}_2(\mathbb{R}, \tau)$.

Given a domain $\Omega \subset M^2$ we also denote by Ω its lift to $M^2 \times \{0\}$, with this identification we have that the graph $\Sigma(u)$ of $u \in (C^0(\partial\Omega) \cap C^\infty(\Omega))$ is given by (see figure),

$$\Sigma(u) = \{(x, y, u(x, y)) \in \widetilde{PSL}_2(\mathbb{R}, \tau); (x, y) \in \Omega\}$$



Lemma 5.2.1. Let $\Sigma(u)$ be a graph in $\widetilde{PSL}_2(\mathbb{R}, \tau)$ of the function

$$u:\Omega\subset M^2\longrightarrow\mathbb{R}$$

having constant mean curvature H. Then, the function u satisfies the equation

$$2H = div_{M^2} \left(\frac{\alpha}{W} e_1 + \frac{\beta}{W} e_2 \right),$$

where $W = \sqrt{1 + \alpha^2 + \beta^2}$ and,

$$-\alpha = \frac{u_x}{\lambda} + 2\tau \frac{\lambda_y}{\lambda^2},$$
$$-\beta = \frac{u_y}{\lambda} - 2\tau \frac{\lambda_x}{\lambda^2}.$$

Proof. The proof follows directly from Lema 4.1.2.

Taking into account the notations of the Lemma 5.2.1 we obtain the next Proposition.

Proposition 5.2.1. By expanding the equation of the mean curvature from the equation of divergence form, we obtain

$$2H\lambda^{2}W^{3} = \lambda\alpha_{x}(1+\beta^{2}) + \lambda\beta_{y}(1+\alpha^{2}) - \lambda\alpha\beta(\alpha_{y}+\beta_{x}) + (\lambda_{x}\alpha+\lambda_{y}\beta)W^{2}$$
 (5-3)
where, $W^{2} = 1 + \alpha^{2} + \beta^{2}$, and

$$-\alpha_{x} = \frac{1}{\lambda^{2}} \left[u_{xx}\lambda - u_{x}\lambda_{x} + \frac{2\tau}{\lambda^{2}}(\lambda^{2}\lambda_{xy} - 2\lambda\lambda_{x}\lambda_{y}) \right]$$

$$-\alpha_{y} = \frac{1}{\lambda^{2}} \left[u_{xy}\lambda - u_{x}\lambda_{y} + \frac{2\tau}{\lambda^{2}}(\lambda^{2}\lambda_{yy} - 2\lambda\lambda_{y}^{2}) \right]$$

$$-\beta_{x} = \frac{1}{\lambda^{2}} \left[u_{xy}\lambda - u_{y}\lambda_{x} - \frac{2\tau}{\lambda^{2}}(\lambda^{2}\lambda_{xx} - 2\lambda\lambda_{x}^{2}) \right]$$

$$-\beta_{y} = \frac{1}{\lambda^{2}} \left[u_{yy}\lambda - u_{y}\lambda_{y} - \frac{2\tau}{\lambda^{2}}(\lambda^{2}\lambda_{xy} - 2\lambda\lambda_{x}\lambda_{y}) \right]$$

Proof. Since M^2 has conformal metric to \mathbb{R}^2 we can use the formula,

$$div_{M^2}\left(\frac{\alpha}{\lambda W}\partial_x + \frac{\beta}{\lambda W}\partial_y\right) = \frac{1}{\lambda^2}div_{\mathbb{R}^2}\left(\lambda^2\left(\frac{\alpha}{\lambda W}\partial_x + \frac{\beta}{\lambda W}\partial_y\right)\right)$$

we obtain,

$$2H\lambda^{2} = div_{\mathbb{R}^{2}} \left(\frac{\lambda}{W} (\alpha \partial_{x} + \beta \partial_{y}) \right)$$

$$= \left(\left(\frac{\lambda}{W} \right)_{x} \partial_{x} + \left(\frac{\lambda}{W} \right)_{y} \partial_{y} \right) (\alpha \partial_{x} + \beta \partial_{y}) + \frac{\lambda}{W} div_{\mathbb{R}^{2}} (\alpha \partial_{x} + \beta \partial_{y})$$

$$= \alpha \left(\frac{\lambda}{W} \right)_{x} + \beta \left(\frac{\lambda}{W} \right)_{y} + \frac{\lambda}{W} (\alpha_{x} + \beta_{y})$$

Observe that:

$$\left(\frac{\lambda}{W}\right)_x = \frac{\lambda_x W - \lambda W_x}{W^2}$$

$$\left(\frac{\lambda}{W}\right)_y = \frac{\lambda_y W - \lambda W_y}{W^2}$$

and

$$w_x = \frac{\alpha \alpha_x + \beta \beta_x}{W}$$

$$w_y = \frac{\alpha \alpha_y + \beta \beta_y}{W}$$

by substitution, we obtain:

$$2H\lambda^{2} = \frac{\alpha}{W^{2}} \left(\lambda_{x}W - \frac{\lambda}{W} (\alpha \alpha_{x} + \beta \beta_{x}) \right) + \frac{\beta}{W^{2}} \left(\lambda_{y}W - \frac{\lambda}{W} (\alpha \alpha_{y} + \beta \beta_{y}) \right) + \frac{\lambda}{W^{3}} (\lambda_{x}W^{2} + \beta_{y}W^{2})$$

which we be write in the form:

$$2H\lambda^2 W^3 = \alpha \lambda_x W^2 - \lambda \alpha (\alpha \alpha_x + \beta \beta_x) + \beta \lambda_y W^2 + \lambda (\alpha_x W^2 + \beta_y W^2) - \lambda \beta (\alpha \alpha_y + \beta \beta_y)$$

remember that $W^2 = 1 + \alpha^2 + \beta^2$, so

$$2H\lambda^{2}W^{3} = \alpha\lambda_{x}(1+\alpha^{2}+\beta^{2}) - \lambda\alpha^{2}\alpha_{x} - \lambda\alpha\beta\beta_{x} + \beta\lambda_{y}(1+\alpha^{2}+\beta^{2}) + \lambda\alpha\beta\alpha_{y} - \lambda\beta^{2}\beta_{y} + \lambda\alpha_{x}(1+\alpha^{2}+\beta^{2}) + \lambda\beta_{y}(1+\alpha^{2}+\beta^{2})$$

$$= \lambda\alpha_{x}(1+\beta^{2}) + \lambda\beta_{y}(1+\alpha^{2}) - \lambda\alpha\beta(\alpha_{y}+\beta_{x}) + \lambda\alpha\alpha(1+\alpha^{2}+\beta^{2}) + \lambda\alpha\beta(1+\alpha^{2}+\beta^{2})$$

This gives,

$$2H\lambda^2 W^3 = \lambda \alpha_x (1+\beta^2) + \lambda \beta_y (1+\alpha^2) - \lambda \alpha \beta (\alpha_y + \beta_x) + (\lambda_x \alpha + \lambda_y \beta) W^2$$

A simple computation gives the other expressions.

An immediate consequence from Proposition 5.2.1 is the next corollary. Here we are considering the half-plane model for the hyperbolic space, that is $M^2 \equiv \mathbb{H}^2$.

Corollary 5.2.1. By expanding the mean curvature equation of the divergence form in $\widetilde{PSL}_2(\mathbb{R}, \tau)$, we obtain:

$$2H\lambda^{2}m^{3} = u_{xx}(\lambda^{3} + \lambda u_{y}^{2}) + u_{yy}\lambda(\lambda^{2} + (u_{x} - 2\tau\lambda)^{2}) - 2u_{xy}\lambda(u_{x} - 2\tau\lambda)u_{y} + -u_{x}u_{y}\lambda^{2}(u_{x} - 2\tau\lambda) - \lambda^{2}u_{y}^{3}$$

where
$$m = \sqrt{\lambda^2 + (2\tau\lambda - u_x)^2 + u_y^2}$$

Proof. Since $\lambda = \frac{1}{y}$, so $\lambda_x \equiv 0$. The equation from the Proposition 5.2.1 becomes:

$$2H\lambda^2 W^3 = \lambda \alpha_x (1+\beta^2) + \lambda \beta_y (1+\alpha^2) - \lambda \alpha \beta (\beta_x + \alpha_y) + \lambda^2 (\beta + \alpha^2 \beta + \beta^3)$$

By considering:

$$\alpha = \frac{u_x}{\lambda} - 2\tau, \quad \beta = \frac{u_y}{\lambda}, \quad \lambda = \frac{1}{y}$$

$$\alpha_x = \frac{u_{xx}}{\lambda}, \qquad \lambda_y = u_x + \frac{u_{xy}}{\lambda},$$

$$\beta_x = \frac{u_{xy}}{\lambda}, \qquad \lambda_y = u_y + \frac{u_{xy}}{\lambda}$$

we obtain:

$$2H\lambda^{2}W^{3} = u_{xx}\left(1 + \frac{u_{y}^{2}}{\lambda^{2}}\right) + (\lambda u_{y} + u_{yy})\left(1 + \frac{(u_{x} - 2\tau\lambda)^{2}}{\lambda^{2}}\right) +$$

$$-\lambda\left(\frac{u_{x}}{\lambda} - 2\tau\right)\left(\frac{u_{y}}{\lambda}\right)\left(u_{x} + 2\frac{u_{xy}}{\lambda}\right) - \lambda^{2}\left(\frac{u_{y}}{\lambda} + \frac{u_{y}}{\lambda}\left(\frac{u_{x}}{\lambda} - 2\tau\right)^{2} + \frac{u_{y}^{3}}{\lambda^{3}}\right)$$

$$= u_{xx}\left(\frac{\lambda^{2} + u_{y}^{2}}{\lambda^{2}}\right) + u_{yy}\left(\frac{\lambda^{2} + (u_{x} - 2\tau\lambda)^{2}}{\lambda^{2}}\right) +$$

$$+\lambda u_{y}\left(\frac{\lambda^{2} + (u_{x} - 2\tau\lambda)^{2}}{\lambda^{2}}\right) - 2u_{xy}\left(\frac{u_{x} - 2\tau\lambda}{\lambda}\right)\frac{u_{y}}{\lambda}$$

$$-u_{x}u_{y}\left(\frac{u_{x} - 2\tau\lambda}{\lambda}\right) - \lambda^{2}\left(\frac{u_{y}}{\lambda} + \frac{u_{y}}{\lambda}\left(\frac{(u_{x} - 2\tau\lambda)^{2}}{\lambda^{2}}\right) + \frac{u_{y}^{3}}{\lambda^{3}}\right).$$

Since $\lambda^3 W^3 = m^3$, where $m = \sqrt{\lambda^2 + (u_x - 2\tau\lambda)^2 + u_y^2}$ we obtain:

$$\begin{split} 2H\lambda^2 m^3 &= u_{xx}(\lambda^3 + \lambda u_y^2) + u_{yy}\lambda(\lambda^2 + (u_x - 2\tau\lambda)^2) + \\ &- 2u_{xy}\lambda(u_x - 2\tau\lambda)u_y - u_x u_y \lambda^2(u_x - 2\tau\lambda) + \\ &- \lambda^5 \left(\frac{u_y}{\lambda} + \frac{u_y}{\lambda} \frac{(u_x - 2\tau\lambda)^2}{\lambda^2} + \frac{u_y^3}{\lambda^3}\right) + \lambda^2 u_y (\lambda^2 + (u_x - 2\tau\lambda)^2) \\ &= u_{xx}(\lambda^3 + \lambda u_y^2) + u_{yy}\lambda(\lambda^2 + (u_x - 2\tau\lambda)^2) - 2u_{xy}\lambda(u_x - 2\tau\lambda)u_y + \\ &- u_x u_y \lambda^2 (u_x - 2\tau\lambda) - \lambda^2 u_y^3 \end{split}$$

This complete the proof.

On the other hand, by considering the coefficients of the first and second fundamental form of a surface immersed into $\widetilde{PSL}_2(\mathbb{R},\tau)$ we can obtain the mean curvature equation. For example, taking the half plane model M^2 for the hyperbolic space. Taking graphs of the form t = u(x,y), where u is a smooth function. Setting $S = \operatorname{graf}(u) \in \widetilde{PSL}_2(\mathbb{R})$, and parameterizing S by

$$\varphi(x,y) = (x, y, u(x,y))$$

The coordinate global frame field to the graph is given by,

$$\begin{cases}
\varphi_x = \partial_x + u_x \partial_t = \lambda E_1 + (u_x - 2\tau \lambda) E_3; \\
\varphi_y = \partial_y + u_y \partial_t = \lambda E_2 + u_y E_3;
\end{cases}$$

So the normal vector is given by,

$$N = \frac{1}{\sqrt{(u_x - 2\tau\lambda)^2 + \lambda^2 + u_y^2}} [-(u_x - 2\tau\lambda)E_1 - u_y E_2 + \lambda E_3]$$

Set.

$$m = m(x,t) = \sqrt{(u_x - 2\tau\lambda)^2 + \lambda^2 + u_y^2}$$

Lemma 5.2.2. With the notations above, and denoting by H the mean curvatura of S, then H satisfies

$$2H\lambda^{2}m^{3} = u_{xx}(\lambda^{3} + \lambda u_{y}^{2}) + u_{yy}\lambda(\lambda^{2} + (u_{x} - 2\tau\lambda)^{2}) - 2u_{xy}\lambda(u_{x} - 2\tau\lambda)u_{y} + u_{yy}\lambda^{2}(u_{x} - 2\tau\lambda) - \lambda^{2}u_{y}^{3}$$

Proof. The coefficients of the second fundamental forms are given by,

$$b_{11} = \langle \overline{\nabla}_{\varphi_x} \varphi_x, N \rangle, \qquad g_{11} = \langle \varphi_x, \varphi_x \rangle$$

$$b_{12} = \langle \overline{\nabla}_{\varphi_x} \varphi_y, N \rangle, \qquad g_{12} = \langle \varphi_x, \varphi_y \rangle$$

$$b_{22} = \langle \overline{\nabla}_{\varphi_y} \varphi_y, N \rangle, \qquad g_{22} = \langle \varphi_y, \varphi_y \rangle$$

where $\langle .,. \rangle$ is the metric of $\widetilde{PSL}_2(\mathbb{R})$, then H satisfies,

$$2H = \frac{b_{11}g_{22} + b_{22}g_{11} - 2b_{12}g_{12}}{g_{11}g_{22} - g_{12}^2}$$
 (5-4)

It is easily deduce that the connection is given by,

$$\overline{\nabla}_{\varphi_x}\varphi_x = (\lambda^2 - 2\tau\lambda(u_x - 2\tau\lambda))E_2 + u_{xx}E_3$$

$$\overline{\nabla}_{\varphi_x}\varphi_y = (\lambda\tau(u_x - 2\tau\lambda) - \lambda^2)E_1 - \lambda\tau u_y E_2 + (u_{xy} + \lambda^2\tau)E_3$$

$$\overline{\nabla}_{\varphi_y}\varphi_y = 2\tau\lambda u_y E_1 - \lambda^2 E_2 + u_{yy}E_3$$

and with this,

$$b_{11} = \lambda u_{xx} - u_y (\lambda^2 - 2\tau\lambda(u_x - 2\tau\lambda))$$

$$b_{12} = \lambda(u_{xy} + \lambda^2\tau) - (u_x - 2\tau\lambda)(\lambda\tau(u_x - 2\tau\lambda) - \lambda^2) + \lambda\tau u_y^2$$

$$b_{22} = \lambda u_{yy} - 2\tau\lambda u_y (u_x - 2\tau\lambda) + \lambda^2 u_y$$

since,

$$g_{11} = \lambda^2 + (u_x - 2\tau\lambda)^2$$

$$g_{12} = u_y(u_x - 2\tau\lambda)$$

$$g_{22} = \lambda^2 + u_y^2$$

by substitution this expressions in (5-4), we obtain the lemma.

5.3 Maximum principle in $\widetilde{\mathbf{PSL_2}}(\mathbb{R}, au)$

An important criterium in Riemannian Geometry is the maximum principle. There are many books, which study the maximum principle. We enunciate this principle in the next form,

Theorem 5.3.1. (17, Theorem 3.1)[Maximum principle] Let Σ_1 and Σ_2 two convex surfaces in $\widehat{PSL}_2(\mathbb{R}, \tau)$, such that Σ_2 touch Σ_1 at $p \in \Sigma_1$, that is $p \in \Sigma_1 \cap \Sigma_2$, and suppose that, there is a neighborhood of p, such that, Σ_2 stay in the mean convex side of Σ_1 . Denoting by $\overrightarrow{H}_{\Sigma_1}$, and $\overrightarrow{H}_{\Sigma_2}$, the mean curvature vector field respectively, if:

$$|\overrightarrow{H}_{\Sigma_1}| = |\overrightarrow{H}_{\Sigma_2}| = cte$$

and

$$\langle \overrightarrow{H}_{\Sigma_1}(p), \overrightarrow{H}_{\Sigma_2}(p) \rangle \ge 0.$$

Then, $\Sigma_1 = \Sigma_2$. When the intersection point p belongs to the boundary of the surfaces, the result holds as well, provided further that the two boundaries are tangent and both are local graphs over a common neighborhood in $T_p\Sigma_1 = T_p\Sigma_2$.

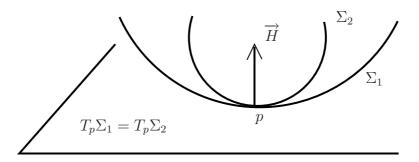


Figure 5.1: Schematic figure for the maximum principle.

The proof of the maximum principle is based on the fact that a constant mean curvature surface in $\widetilde{PSL}_2(\mathbb{R},\tau)$ locally satisfies a second order elliptic PDE, see Lemma 5.2.2. For the proof of the maximum principle in space forms see (17, Theorem 3.1). The proof generalizes to $\widetilde{PSL}_2(\mathbb{R}, \tau)$ as well.

Remark 5.3.1. As simple application, we will show that, there is no entire H-graph G in $\widetilde{PSL}_2(\mathbb{R},\tau)$ having constant mean curvature $H > \frac{1}{2}$. From example 6.2.1, we know that, there are rotational spheres having constant mean curvature $H > \frac{1}{2}$. We denote this sphere by S.

Since the vertical translations are isometries on $\widetilde{PSL}_2(\mathbb{R}, \tau)$. Moving the sphere S, such that S lies in the mean convex side of G and touch G at $p \in S$, then by using the maximum principle, we obtain $G \equiv S$, which is a contradiction.