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The space P̃SL2(R, τ)

In this chapter we focus our attention in the study of the geometry of

the space P̃ SL2(R, τ). We wish to study the H-surfaces, which are invariant

by one-parameter group of isometries.

It will be make by understanding the isometries of P̃ SL2(R, τ) as well as

the relationship between the space P̃ SL2(R, τ) and the hyperbolic space.

The space P̃ SL2(R, τ) is a simply connected homogeneous manifold

whose isometry groups has dimension 4, such a manifold is a Riemannian

submersion over the 2-dimensional hyperbolic space, which we will denote by

M2 = M2(−1). Thus, we only consider the case when the Gaussian curvature

is equal to −1, that is, κ = −1.

Throughout this chapter, we will follow the ideas of Eric Toubiana, see

(22). Recall that, we have,

π : P̃ SL2(R, τ) −→M2

the Riemannian submersion; for p ∈ M2, the fibers π−1(p) are geodesics and

there exists a one-parameter family of translations along the fibers, generated

by the unit Killing field E3.

5.1

Isometries of P̃SL2(R, τ)

Since there exist a Riemannian submersion π : P̃ SL2(R, τ) −→ M2,

the isometries of P̃ SL2(R, τ) are strongly related with the isometries of the

hyperbolic space M2.

From now on we identify the Euclidean space R2 with the set of complex

numbers C, more precisely z = x+ iy ≈ (x, y).

So, if we take M2 ≡ D2, we obtain:

P̃ SL2(R) = {(z, t) ∈ R3; x2 + y2 < 1, t ∈ R}

endowed with metric,
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dσ2 = λ2(z)|dz|2 + (iτλ(zdz − zdz) + dt)2

If we take M2 ≡ H2, we obtain:

P̃ SL2(R) = {(z, t) ∈ R3; y > 0, t ∈ R}

endowed with metric,

dσ2 = λ2(z)|dz|2 + (−τλ(dz + dz) + dt)2

Remark 5.1.1. Let F an isometry of P̃ SL2(R, τ). As

π : P̃ SL2(R, τ) −→M2

is a Riemannian submersion, we can write F in the form F (z, t) =

(f(z), h(z, t)), where

f : M2 −→ M2

is an isometry of the hyperbolic space M2.

To see this, we take p ∈ M2 and u, v ∈ TpM
2. Denotes by u, v the

horizontal lifts of u and v respectively. Let p be the point over the fiber π−1(p)

such that u, v ∈ TpP̃ SL2(R, τ).

Denoting by dF (u) = a and dF (v) = b, then a and b are horizontal

vectors at TF (p)P̃ SL2(R, τ), hence dπ(a) = a ∈ TqM
2 and dπ(b) = b ∈ TqM

2,

where q = π(F (p)).

Now, consider f an isometry of M2, such that, f(p) = q, df(u) = a, and

df(v) = b. Then,

〈dπ(dF (u)), dπ(dF (v))〉
P̃ SL2(R,τ)

= 〈dπ(a), dπ(b)〉
P̃ SL2(R,τ)

= 〈a, b〉M2

= 〈u, v〉M2.

= 〈df(a), df(b)〉M2

the least equality holds since that f : M2 → M2, f(p) = q is an isometry, so

we have F (z, t) = (f(z), h(z, t)).

Proposition 5.1.1. The isometries of P̃ SL2(R, τ) are given by,

In the half-plane model for the hyperbolic space M2

F (z, t) = (f(z), t− 2τ arg f ′ + c)
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or

G(z, t) = (−f(z),−t + 2τ arg f ′ + c)

where f is a positive isometry of H2 and c is a real number.

In the disk model,

F (z, t) = (f(z), t− 2τ arg f ′ + c)

or

G(z, t) = (f(z),−t+ 2τ arg f ′ + c)

where f is a positive isometry of D2 and c is a real number.

Proof. We will consider the half-plane model. The proof for the disk model is

analogous. As F is a isometry of P̃ SL2(R, τ), we must have,

F ∗ (λ2(z)|dz|2 + (−τλ(z)(dz + dz) + dt)2) = λ2(z)|dz|2+(−τλ(z)(dz + dz) + dt)2

since,

f ∗(λ2|dz|2) = λ2(z)|dz|2

we have

F ∗(−τλ(z)(dz + dz) + dt) = ±(−τλ(z)(dz + dz) + dt).

We suppose first that

F ∗(−τλ(z)(dz + dz) + dt) = +(−τλ(z)(dz + dz) + dt). (5-1)

If f is a positive isometry of H2, then

(5 − 1) ⇔ −τλ(f(z))(df(z) + df(z)) + dh = −τλ(z)(dz + dz) + dt

⇔ −τλ(f(z))(f ′dz + f
′
dz) + dh = −τλ(z)(dz + dz) + dt

⇔ −τλ(f(z))(f ′dz + f
′
dz) + hzdz + hzdz + htdt = −τλ(z)(dz + dz) + dt

⇔





−τλ(f(z))f ′ + hz = −τλ(z);

−τλ(f(z))f
′
+ hz = −τλ(z);

ht = 1;

⇔





−τλ(f(z))f ′ + hz = −τλ(z);

ht = 1;
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Consequently, h is a function of the form h(z, t) = ϕ(z) + t, where ϕ is a real

function that verifies,

ϕz(z) = τ(λ(f(z))f ′ − λ(z))

= τ

[
2if ′

f − f
− 2i

z − z

]

= 2τi[log(f − f) − log(z − z)]z

⇔ ϕ = 2τi log

(
f − f

z − z

)
+ ψ

where ψ is a holomorphic function. By other hand, if f is a positive isometry

of H2, then

f(z) =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1.

A simple computation gives,

f − f

z − z
=

1

|cz + d|2 = |f ′(z)|

so, we obtain,

ϕ = 2τi arg |f ′(z)| + ψ

as ψ is holomorphic and ϕ is a real function, we must have

ψ = 2τi log(f ′) + c

where c is a constant real. So we conclude that

ϕ = −2τ arg(f ′(z)) + c.

Thus

h(z, t) = t− 2τ arg(f ′(z)) + c.

Now let f be a negative isometry, that is f = −g where g is a positive

isometry of H2. Thus, we have,

(5 − 1) ⇔ −τλ(f(z))(df(z) + df(z)) + dh = −τλ(z)(dz + dz) + dt

⇔ τλ(f(z))(dg(z) + dg(z)) + dh = −τλ(z)(dz + dz) + dt

⇔ τλ(f(z))(g′dz + g′dz) + hzdz + hzdz + htdt = −τλ(z)(dz + dz) + dt
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⇔





τλ(f(z))g′ + hz = −τλ(z);

τλ(f(z))g′ + hz = −τλ(z);

ht = 1;

⇔





τλ(f(z))g′ + hz = −τλ(z); .

ht = 1;

Again h is of the form h(z, t) = ϕ(z)+t, where ϕ is a real function that verifies,

ϕz = −τ(λ(f(z))g′ + λ(z))

= −τ
[

2ig′

g − g
+

2i

z − z

]

= −2τi [log(g − g) + log(z − z)]z

so,

ϕ = −2τi[log(g − g) + log(z − z)] + ψ

where ψ is holomorphic. Since ϕ is real, this implies that [log(g−g)+log(z−z)]
is harmonic, which is false. Thus f must be a positive function.

Now, we suppose that F verify,

F ∗(−τλ(z)(dz + dz) + dt) = −(−τλ(z)(dz + dz) + dt) (5-2)

Again, we consider a negative isometry, that is, we consider f = −g where g

is a positive isometry of H2, so

(5 − 2) ⇔ −τλ(f(z))(df(z) + df(z)) + dh = −(−τλ(z)(dz + dz) + dt)

⇔ −τλ(f(z))(−dg(z) − dg(z)) + dh = −(−τλ(z)(dz + dz) + dt)

⇔ τλ(f(z))(g′dz + g′dz) + dh = −(−τλ(z)(dz + dz) + dt)

⇔ τλ(f(z))(g′dz + g′dz) + hzdz + hzdz + htdt = τλ(z)(dz + dz) − dt

⇔





τλ(f(z))g′ + hz = τλ(z);

τλ(f(z))g′ + hz = τλ(z);

ht = −1;
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⇔





τλ(f(z))g′ + hz = τλ(z);

ht = −1;

Again h is of the form h(z, t) = ϕ(z) − t, where ϕ is a real function verify

ϕz = −τ [λ(f(z))g′ − λ(z)]

= −τ
[

2ig′

g − g
− 2i

z − z

]

= −2τi [log(g − g) − log(z − z)]z

so,

ϕ = −2τi log

(
g − g

z − z

)
+ ψ

where ψ is a holomorphic function. On the other hand, making the same

calculation as above, we obtain

ϕ = −2τi log |g′(z)| + ψ

as ψ is holomorphic and ϕ is a real function, we must have

ψ = −2τi log(g′) + c

where c is a constant real. So we conclude that

ϕ = 2τ arg(g′(z)) + c

Thus

h(z, t) = −t+ 2τ arg(f ′(z)) + c

Finally, in this case, if we consider an isometry positive f we get a

contradiction.

5.2

The mean curvature equation in P̃SL2(R, τ)

In this section we will explore the equation of the mean curvature in the

divergence form.

Recall that, for a Riemannian submersion we have the notion of graph.

Definition 5.2.1. A graph in P̃ SL2(R, τ) over a domain Ω of M2 is the image

of a section s0 : Ω ⊂M2 −→ P̃ SL2(R, τ).
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Given a domain Ω ⊂ M2 we also denote by Ω its lift to M2 × {0}, with

this identification we have that the graph Σ(u) of u ∈ (C0(∂Ω) ∩ C∞(Ω)) is

given by (see figure),

Σ(u) = {(x, y, u(x, y)) ∈ P̃ SL2(R, τ); (x, y) ∈ Ω}
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Σ(u)
P̃ SL(R, τ)

u

M2 × {0}Ω

Lemma 5.2.1. Let Σ(u) be a graph in P̃ SL2(R, τ) of the function

u : Ω ⊂M2 −→ R

having constant mean curvature H. Then, the function u satisfies the equation

2H = divM2

(
α

W
e1 +

β

W
e2

)
,

where W =
√

1 + α2 + β2 and,

– α =
ux

λ
+ 2τ

λy

λ2
,

– β =
uy

λ
− 2τ

λx

λ2
.

Proof. The proof follows directly from Lema 4.1.2.

Taking into account the notations of the Lemma 5.2.1 we obtain the next

Proposition.

Proposition 5.2.1. By expanding the equation of the mean curvature from

the equation of divergence form, we obtain
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2Hλ2W 3 = λαx(1+β2)+λβy(1+α2)−λαβ(αy +βx)+(λxα+λyβ)W 2 (5-3)

where, W 2 = 1 + α2 + β2, and

– αx =
1

λ2

[
uxxλ− uxλx +

2τ

λ2
(λ2λxy − 2λλxλy)

]

– αy =
1

λ2

[
uxyλ− uxλy +

2τ

λ2
(λ2λyy − 2λλ2

y)

]

– βx =
1

λ2

[
uxyλ− uyλx −

2τ

λ2
(λ2λxx − 2λλ2

x)

]

– βy =
1

λ2

[
uyyλ− uyλy −

2τ

λ2
(λ2λxy − 2λλxλy)

]

Proof. Since M2 has conformal metric to R2 we can use the formula,

divM2

(
α

λW
∂x +

β

λW
∂y

)
=

1

λ2
divR2

(
λ2

(
α

λW
∂x +

β

λW
∂y

))

we obtain,

2Hλ2 = divR2

(
λ

W
(α∂x + β∂y)

)

=

((
λ

W

)

x

∂x +

(
λ

W

)

y

∂y

)
(α∂x + β∂y) +

+
λ

W
divR2(α∂x + β∂y)

= α

(
λ

W

)

x

+ β

(
λ

W

)

y

+
λ

W
(αx + βy)

Observe that:

(
λ

W

)

x

=
λxW − λWx

W 2

(
λ

W

)

y

=
λyW − λWy

W 2

and

wx =
ααx + ββx

W

wy =
ααy + ββy

W

by substitution, we obtain:

2Hλ2 =
α

W 2

(
λxW − λ

W
(ααx + ββx)

)
+

β

W 2

(
λyW − λ

W
(ααy + ββy)

)

+
λ

W 3
(λxW

2 + βyW
2)
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which we be write in the form:

2Hλ2W 3 = αλxW
2 − λα(ααx + ββx) + βλyW

2 +

+λ(αxW
2 + βyW

2) − λβ(ααy + ββy)

remember that W 2 = 1 + α2 + β2, so

2Hλ2W 3 = αλx(1 + α2 + β2) − λα2αx − λαββx + βλy(1 + α2 + β2) +

−λαβαy − λβ2βy + λαx(1 + α2 + β2) + λβy(1 + α2 + β2)

= λαx(1 + β2) + λβy(1 + α2) − λαβ(αy + βx) +

+λxα(1 + α2 + β2) + λyβ(1 + α2 + β2)

This gives,

2Hλ2W 3 = λαx(1 + β2) + λβy(1 + α2) − λαβ(αy + βx) + (λxα + λyβ)W 2

A simple computation gives the other expressions.

An immediate consequence from Proposition 5.2.1 is the next corollary.

Here we are considering the half-plane model for the hyperbolic space, that is

M2 ≡ H2.

Corollary 5.2.1. By expanding the mean curvature equation of the divergence

form in P̃ SL2(R, τ), we obtain:

2Hλ2m3 = uxx(λ
3 + λu2

y) + uyyλ(λ2 + (ux − 2τλ)2) − 2uxyλ(ux − 2τλ)uy +

−uxuyλ
2(ux − 2τλ) − λ2u3

y

where m =
√
λ2 + (2τλ− ux)2 + u2

y

Proof. Since λ =
1

y
, so λx ≡ 0. The equation from the Proposition 5.2.1

becomes:

2Hλ2W 3 = λαx(1 + β2) + λβy(1 + α2) − λαβ(βx + αy) +

−λ2(β + α2β + β3)

By considering:

α =
ux

λ
− 2τ, β =

uy

λ
, λ =

1

y
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αx =
uxx

λ
, λy = ux +

uxy

λ

βx =
uxy

λ
, λy = uy +

uxy

λ

we obtain:

2Hλ2W 3 = uxx

(
1 +

u2
y

λ2

)
+ (λuy + uyy)

(
1 +

(ux − 2τλ)2

λ2

)
+

−λ
(ux

λ
− 2τ

)(uy

λ

)(
ux + 2

uxy

λ

)
− λ2

(
uy

λ
+
uy

λ

(ux

λ
− 2τ

)2

+
u3

y

λ3

)

= uxx

(
λ2 + u2

y

λ2

)
+ uyy

(
λ2 + (ux − 2τλ)2

λ2

)
+

+λuy

(
λ2 + (ux − 2τλ)2

λ2

)
− 2uxy

(
ux − 2τλ

λ

)
uy

λ

−uxuy

(
ux − 2τλ

λ

)
− λ2

(
uy

λ
+
uy

λ

(
(ux − 2τλ)2

λ2

)
+
u3

y

λ3

)
.

Since λ3W 3 = m3, where m =
√
λ2 + (ux − 2τλ)2 + u2

y we obtain:

2Hλ2m3 = uxx(λ
3 + λu2

y) + uyyλ(λ2 + (ux − 2τλ)2) +

−2uxyλ(ux − 2τλ)uy − uxuyλ
2(ux − 2τλ) +

−λ5

(
uy

λ
+
uy

λ

(ux − 2τλ)2

λ2
+
u3

y

λ3

)
+ λ2uy(λ

2 + (ux − 2τλ)2)

= uxx(λ
3 + λu2

y) + uyyλ(λ2 + (ux − 2τλ)2) − 2uxyλ(ux − 2τλ)uy +

−uxuyλ
2(ux − 2τλ) − λ2u3

y

This complete the proof.

On the other hand, by considering the coefficients of the first and second

fundamental form of a surface immersed into P̃ SL2(R, τ) we can obtain the

mean curvature equation. For example, taking the half plane model M2 for the

hyperbolic space. Taking graphs of the form t = u(x, y), where u is a smooth

function. Setting S = graf(u) ∈ P̃ SL2(R), and parameterizing S by

ϕ(x, y) = (x, y, u(x, y))

The coordinate global frame field to the graph is given by,
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



ϕx = ∂x + ux∂t = λE1 + (ux − 2τλ)E3;

ϕy = ∂y + uy∂t = λE2 + uyE3;

So the normal vector is given by,

N =
1√

(ux − 2τλ)2 + λ2 + u2
y

[−(ux − 2τλ)E1 − uyE2 + λE3]

Set,

m = m(x, t) =
√

(ux − 2τλ)2 + λ2 + u2
y.

Lemma 5.2.2. With the notations above, and denoting by H the mean

curvatura of S, then H satisfies

2Hλ2m3 = uxx(λ
3 + λu2

y) + uyyλ(λ2 + (ux − 2τλ)2) − 2uxyλ(ux − 2τλ)uy +

−uxuyλ
2(ux − 2τλ) − λ2u3

y

Proof. The coefficients of the second fundamental forms are given by,

b11 = 〈∇ϕx
ϕx, N〉, g11 = 〈ϕx, ϕx〉

b12 = 〈∇ϕx
ϕy, N〉, g12 = 〈ϕx, ϕy〉

b22 = 〈∇ϕy
ϕy, N〉, g22 = 〈ϕy, ϕy〉

where 〈., .〉 is the metric of P̃ SL2(R), then H satisfies,

2H =
b11g22 + b22g11 − 2b12g12

g11g22 − g2
12

(5-4)

It is easily deduce that the connection is given by,

∇ϕx
ϕx = (λ2 − 2τλ(ux − 2τλ))E2 + uxxE3

∇ϕx
ϕy = (λτ(ux − 2τλ) − λ2)E1 − λτuyE2 + (uxy + λ2τ)E3

∇ϕy
ϕy = 2τλuyE1 − λ2E2 + uyyE3

and with this,

b11 = λuxx − uy(λ
2 − 2τλ(ux − 2τλ))

b12 = λ(uxy + λ2τ) − (ux − 2τλ)(λτ(ux − 2τλ) − λ2) + λτu2
y

b22 = λuyy − 2τλuy(ux − 2τλ) + λ2uy
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since,

g11 = λ2 + (ux − 2τλ)2

g12 = uy(ux − 2τλ)

g22 = λ2 + u2
y

by substitution this expressions in (5-4), we obtain the lemma.

5.3

Maximum principle in P̃SL2(R, τ)

An important criterium in Riemannian Geometry is the maximum princi-

ple. There are many books, which study the maximum principle. We enunciate

this principle in the next form,

Theorem 5.3.1. (17, Theorem 3.1)[Maximum principle] Let Σ1 and Σ2

two convex surfaces in P̃ SL2(R, τ), such that Σ2 touch Σ1 at p ∈ Σ1, that is

p ∈ Σ1 ∩Σ2, and suppose that, there is a neighborhood of p, such that, Σ2 stay

in the mean convex side of Σ1. Denoting by
−→
HΣ1

, and
−→
HΣ2

, the mean curvature

vector field respectively, if:

|−→HΣ1
| = |−→HΣ2

| = cte

and

〈−→HΣ1
(p),

−→
HΣ2

(p)〉 ≥ 0.

Then, Σ1 = Σ2. When the intersection point p belongs to the boundary of the

surfaces, the result holds as well, provided further that the two boundaries are

tangent and both are local graphs over a common neighborhood in TpΣ1 = TpΣ2.

Σ2

Σ1

p

−→
H

TpΣ1 = TpΣ2

Figure 5.1: Schematic figure for the maximum principle.

The proof of the maximum principle is based on the fact that a constant

mean curvature surface in P̃ SL2(R, τ) locally satisfies a second order elliptic
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PDE, see Lemma 5.2.2. For the proof of the maximum principle in space forms

see (17, Theorem 3.1). The proof generalizes to P̃ SL2(R, τ) as well.

Remark 5.3.1. As simple application, we will show that, there is no entire

H-graph G in P̃ SL2(R, τ) having constant mean curvature H > 1
2
. From

example 6.2.1, we know that, there are rotational spheres having constant mean

curvature H > 1
2
. We denote this sphere by S.

Since the vertical translations are isometries on P̃ SL2(R, τ). Moving the

sphere S, such that S lies in the mean convex side of G and touch G at

p ∈ S, then by using the maximum principle, we obtain G ≡ S, which is a

contradiction.
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