

Emilio Abud Filho

Aplicação de métodos variacionais e formulações heurísticas para análise e síntese numérica de transformadores em guia de onda retangulares

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC – Rio.

Orientador: Prof. José Ricardo Bergmann

Emilio Abud Filho

Aplicação de métodos variacionais e formulações heurísticas para análise e síntese numérica de transformadores em guia de onda retangulares

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Ricardo Bergmann
Orientador

m Telecomunicações - PLIC-Rio

Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Flávio José Vieira Hasselmann Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Luiz Costa da SilvaConsultor Independente - PUC-Rio

Prof. Luis Alencar dos Reis da Silva Mello Centro de Estudos em Telecomunicações - PUC-Rio

Prof. José Eugênio LealCoordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 26 de fevereiro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Emilio Abud Filho

Graduou-se em Engenharia Elétrica pela USP em 1980; obteve os certificados de especialização em telecomunicações pela Telecom de Paris (França) em 1982, em Gerência de Projetos pela Project Mentors (USA) em 1998 e o MBA pela ESPM- Campinas em 1988. É autor de 3 patentes, foi chairman convidado em diversos eventos, publicou mais de 30 trabalhos em conferências nacionais e Internacional. Atuou como Gerente de Pesquisa & Desenvolvimento do CPqD da TELEBRAS por mais de 12 anos, onde foi responsável pela Divisão de Comunicação Sem Fio e pela Área de Sistemas Radiantes. Foi Vice-Presidente e Diretor Executivo de Operações de várias empresas de prestação de serviços de telecomunicações, dentre elas TAHO Wireless Internet, Ipredia International Inc. e COMSAT Brasil. Atualmente é Vice-Presidente de Tecnologia e Inovação da BrasilSat Harald S/A. Em 2009, foi agraciado com a "Medalha de Mérito" do Sistema CONFEA-CREA.

Ficha Catalográfica

Abud Filho, Emílio

Aplicação de métodos variacionais e formulações heurísticas para análise e síntese numérica de transformadores em guia de onda retangulares / Emílio Abud Filho ; orientador: José Ricardo Bergmann. — 2010. 153 f. : il. ; 30cm

Dissertação (Mestrado em Engenharia Elétrica)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

Incluí bibliografia.

Engenharia elétrica - Teses.
 Guias de onda coaxiais.
 Método dos elementos finitos.
 Bergmann, José Ricardo.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Engenharia Elétrica.
 III. Título.

Agradecimentos

O resultado do trabalho de um indivíduo ao longo de sua vida é um mosaico de peças que revelam em si as contribuições e influências recebidas por este mesmo indivíduo na sua vida profissional e pessoal.

Após mais de trinta anos atuando na indústria de telecomunicações, sistemas radiantes e microondas, o cardápio de trabalhos realizados não deixa dúvida sobre como foram positivas e determinantes as influências e o aprendizado que tive com Marco Marchesi, Aluízio Prata Junior e Subir Ghosh.

Devo ao Marco Marchesi o aprendizado de quão importante é construir uma visão holística quando desenhamos uma solução técnica, e quão importante é obtermos conhecimentos multidisciplinares para compormos soluções completas e de sucesso. O Marco me abraçou quando ainda era estagiário da Universidade de São Paulo, e seus ensinamentos me acompanharam por toda a vida.

Ao Prof. Dr. Aluízio Prata e Dr. Subir Ghosh devo o aprendizado da importância da eficiência e da efetividade. Construir soluções com tais predicados não é uma tarefa simples, e são poucos os profissionais e acadêmicos que conheci que detêm a habilidade de realizar a correta escolha da melhor abordagem para se solucionar um problema de engenharia dentre as inúmeras técnicas disponíveis que inundam nossos neurônios.

Elaborar uma visão física e compreensível do problema a ser solucionado, criar o conceito que será a base para a solução de engenharia e eleger as técnicas e modelos matemáticos que fornecerão a melhor relação de efetividade e eficiência não é uma tarefa simples. Há que se ter humildade na escolha dos caminhos para que a componente de eficiência se equilibre e se harmonize com a eficácia.

O privilégio de ter podido trabalhar por anos com o Dr. Aluízio e o Dr. Ghosh me proporcionou a consciência da importância dessa postura profissional e a absorção de ensinamentos que construíram a base de meu crescimento intelectual.

Por último queria agradecer meu orientador, Prof. Dr. José Ricardo Bergmann, pelo constante estímulo, espírito crítico e paciência no incansável esforço de me conduzir ao longo da elaboração desse trabalho.

Sem o apoio do Dr. Bergmann eu jamais teria conseguido concluir este trabalho.

Resumo

Abud Filho, Emilio; Bergmann, José Ricardo (Orientador). **Aplicação de métodos variacionais e formulações heurísticas para análise e síntese numérica de transformadores em guia de onda retangulares**. Rio de Janeiro, 2009. 153p. Dissertação de Mestrado — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Transformadores de guia de onda são amplamente empregados no projeto de componentes em onda guiada e são encontrados em praticamente todas as cadeias alimentadoras de antenas e demais estruturas de onda guiada na faixa de microondas. Embora a teoria de transformadores seja conhecida, os requisitos de ordem sistêmica têm levado os projetos de transformadores de guia de onda ao seu limite. Para tal nível de exigência, e considerando o número de variáveis no projeto de transformadores, técnicas numéricas de análise (tais como FDTD e expansão modal dentre outros), e otimização têm sido obrigatoriamente empregadas. Por outro lado, o número de variáveis de um transformador, acaba sendo um processo de alto consumo de tempo computacional, incoerente com o porte e objetivo de custo desses transformadores. Este trabalho propõe uma possibilidade alternativa para a análise mais rápida para essas estruturas, através do emprego de formulações fechadas derivadas de métodos varacionais. Um modelo heurístico é proposto para o caso de descontinuidades em dois planos, sejam para o caso de descontinuidades homogêneas ou para não-homogêneas.

Palayras-chave

Guias de onda; componentes passivos de microondas; estruturas de adaptação de impedância; transformadores; transformadores de quarto de onda.

Abstract

Abud Filho, Emilio; Bergmann, José Ricardo (Advisor). **Application of Variational Methods and Heuristic Formulations for analyzes and numerical synthesis of rectangular waveguide transformers**. Rio de Janeiro, 2009. 153p. MSc. Dissertation – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Waveguide transformers are widely used on antenna's feeder chains and other microwave devices. Although the theory of quarter wavelength transformers is well known, the current electrical performance of such microwave devices has been pushing the waveguide transformers design to its limit. For attending such level of requirements, and considering the number of existing variables on a waveguide transformer design, very accurate numerical techniques has been applied on its analyses, (such as FDTD, mode matching, etc), and optimization techniques as well. On the other hand, such numerical techniques are very memory and/or CPU/time consuming, which do not match with the cost objective of those simple concept transformers. This work proposes an alternative technique, based on close-form models derived from varational theory. A heuristic model is also proposed for attending the two plane transformer case, which can be easily applied for both homogeneous and inhomogeneous structures.

Keywords

Waveguide; passive microwave components; impedance matching; transformers; quarter wavelength transformers.

Sumário

1.Introdução	14
2.Síntese de Transformadores de Quarto de Onda 2.1Introdução 2.2Transformadores de uma Seção de Quarto de Onda 2.3Modelo para Pequenas Reflexões 2.4Modelo para Transformadores de Quarto de Onda de Múltiplas Seções 2.4.1Transformador Binomial 2.4.2Transformador Chebyshev	18 18 18 20 22 23 25
 3. Modelos de Impedância para Guias de Onda e Modos Superiores 3.1 Introdução 3.2 Modelos de Impedância para Guias de Onda 3.3 Modos Superiores em Guias de Onda Retangulares 	31 31 31 34
4.Modelos Teóricos para Análise de Transformadores Baseados em Modelos Simplificados de Impedância e de Elementos Concentrados 4.1Introdução 4.2Parâmetros de Espalhamento – Matriz "S" 4.3Parâmetros 'S' de alguns quadripolos 4.3.1Linha de transmissão sem perdas 4.3.2Admitância em paralelo 4.3.3Impedância em paralelo e linha de impedância arbitrária Z2 4.4Parâmetros de Transferência de Espalhamento – Matriz "T"	36 36 39 39 40 40 42
5.Confronto Teórico de Síntese de Transformadores Baseada em Modelos Simplificados de Impedância 5.1Introdução 5.2Seleção dos Guias 5.3Síntese do transformador no Plano H 5.4Síntese do transformador no Plano E	44 44 44 47 52
6.Modelos de Componentes Concentrados derivados de Técnicas Varacionais Aplicados na Análise de Transformadores em Guia (caso de 1 plano) 6.1Introdução 6.2Métodos Varacionais 6.3Junção simétrica de guias de onda retangulares com mudança de altura	57 57 57
6.4Junção simétrica de guias de onda com mudança de largura	60

7.Confronto Teórico da Aplicação dos Métodos Varacionais na Síntese e Análise de Transformadores em Guia de Onda Homogêneos (caso de 1 plano) 7.1Introdução 7.2Análise do Transformador no Plano H através da Formulação Varacional, (com Elementos de Reatância Concentrados) 7.3Análise do Transformador no Plano E através da Formulação Varacional (com Elementos de Reatância Concentrados)	64 64 64
8 .Otimização Numérica (Método do Gradiente) de Transformadores através do Modelo de Impedância combinado com o Modelo de Reatância Concentrada 8.1Introdução 8.2Método de Otimização "Gradient Descent" 8.3Síntese dos Transformadores Plano H e Plano E pelo método de Otimização	69 69 69 71
9.Aplicação do Modelo de Impedância em Descontinuidades de Guia de Onda (caso de 2 Planos) 9.1Introdução 9.2Síntese de Transformadores Homogêneos através de Modelos de Impedância simplificados – Confronto Teórico	75 75 75
10.Métodos Varacionais aplicados ao modelamento de Descontinuidades em Guia em dois planos 10.1Introdução 10.2Métodos Varacionais aplicados ao Modelamento de Descontinuidades Homogêneas em Guia – Abordagem Heurística 10.3Métodos Varacionais aplicados ao Modelamento de Descontinuidades Não-Homogêneas em Guia – Abordagem Heurística	81 81 81
11.Confronto Teórico da Aplicação do Método Varacional Modificado na Síntese e Análise de Transformadores em Guia de Onda Homogêneos (caso de 2 Planos) 11.1Introdução 11.2Análise do Transformador Homogêneo através do Método Varacional Modificado 11.3Exemplo de Análise de Descontinuidade Não-Homogênea através do Método Varacional Modificado	89 89 89
12.Síntese Numérica de Transformadores em Guia através do Método Varacional Modificado (Heurístico) e Otimização Numérica (Método do Gradiente) combinados – Caso Geral 12.1Introdução 12.2Metodologia e Parametrização Adotados para a Otimização	94 94 94
13 Conclusões	qq

14.Referências Bibliográficas	100
Apêndice 1 - Macro-Fluxograma TRAFOWG	102
Apêndice 2 – Tabela de Guias de Onda Retangulares Comerciais	103
Apêndice 3 – Listagem do caso do transformador binomial, Plano H $-$ somente Impedância	104
Apêndice 4 – Listagem do caso do transformador Chebyshev, Plano H – somente Impedância	110
Apêndice 5 – Listagem do caso do transformador Binomial, Plano E – somente Impedância	113
Apêndice 6 – Listagem do caso do transformador binomial, Plano H – Impedância combinado com Reatância	119
Apêndice 7 – Listagem do caso do transformador binomial, Plano E – Impedância combinado com Reatância	122
Apêndice 8 – Listagem do caso do transformador binomial, WR159-WR137 – somente Impedância	125
Apêndice 9 – Listagem do caso do transformador binomial, WR159-WR137 – Impedância combinado com Reatância	131
Apêndice 10 – Listagem do caso do transformador binomial, WR159-WR137 – com otimização	134
Apêndice 11 – Listagem do caso do transformador binomial, não- homogêneo	144

Lista de Figuras

Figura 1– Descontinuidade genérica	21
Figura 2 – Curva típica de ρ para o caso binomial	24
Figura 3 - Dependência de p em função do número de seções	25
Figura 4 – Dependência de ρ em função do número de seções para	
Chebyshev	28
Figura 5 – Guia de Onda	32
Figura 6 – Geometria do guia retangular	33
Figura 7 – Modos superiores excitados por descontinuidades	
assimétricas	34
Figura 8 – Modos superiores excitados por descontinuidades	
simétricas	35
Figura 9 – Quadripolo	37
Figura 10 – Modelo de linha de transmissão	39
Figura 11 – Modelo de admitância em paralelo	40
Figura 12 – Modelo de admitância	41
Figura 13 – Perda de retorno na junção WR137-WR159 por FDTD	46
Figura 14 – Acoplamento entre guia WR137 e WR159	47
Figura 15 – Perda de retorno por FDTD da descontinuidade no plano H	48
Figura 16 – Perda de retorno da descontinuidade no plano H obtida por	
FDTD e pelo modelo de impedância	49
Figura 17 – Transformador de 2 seções plano H	49
Figura 18 – Perda de retorno do transformador de 2 seções no	
plano H, binomial, obtida por FDTD e pelo modelo de impedância	50
Figura 19 – Campo magnético no transformador de 2 seções, binomial,	
no plano H, obtido por FDTD	51
Figura 20 – Perda de retorno do transformador de 2 seções, Chebyshev	
no plano H, obtida por FDTD e pelo modelo de impedância	52
Figura 21 – Transformador de 2 seções plano E	53
·	53
Figura 23 – Perda de retorno da descontinuidade no plano E obtida por	
· · · · · · · · · · · · · · · · · · ·	54
Figura 24 – Perda de retorno do transformador de 2 seções, binomial,	
plano E, por FDTD	54
Figura 25 – Perda de retorno do transformador de 2 seções no plano E,	
binomial, obtida por FDTD e pelo modelo de impedância	55
Figura 26 – Campo elétrico no transformador de 2 seções, binomial,	
no plano H, obtido por FDTD	55
Figura 27 – Descontinuidade no plano E – seção transversal	58
Figura 28 – Descontinuidade no plano E	58
Figura 29 – Circuito equivalente da descontinuidade no plano E	59
Figura 30 – Descontinuidade no plano H – seção transversal	61
•	61
Figura 32 – Circuito equivalente da descontinuidade no plano H	61

Figura 33 – Perda de Retorno da descontinuidade no plano H obtida por FDTD e pelo modelo de impedância com reatâncias concentradas	65
Figura 34 – Perdas de retorno do transformador binomial no plano H, obtidas por FDTD, por modelo de impedância e por impedância com correção de reatância	65
Figura 35 – Perda de retorno do transformador de 2 seções no plano H, Chebyshev, obtida por FDTD, pelo modelo de impedância e por impedância com correção de reatância Figura 36 – Perda de retorno do transformador de 2 seções no plano E,	66
binomial, obtida por FDTD, pelo modelo de impedância e por impedância com correção de reatância	68
Figura 37 – Comparação de desempenho entre transformadores plano H, antes e após otimização Figura 38 - Comparação de desempenho entre transformadores	72
plano E, antes e após otimização Figura 39 - Junção WR137-WR159 Figura 40 – Perda de retorno da descontinuidade WR159-WR137	73 76
obtida por FDTD e pelo modelo de impedância Figura 41 – Transformador de 2 seções WR159-WR137 Figura 42 – Perda de retorno do transformador de 2 seções WR159-	78 78
WR137, binomial, obtida por FDTD e pelo modelo de impedância Figura 43 – Campos elétrico e magnético no transformador de 2 seções, binomial, WR137-WR159, obtido por FDTD	79 80
Figura 44 – Descontinuidade homogênea – seção transversal Figura 45 – Geometria da descontinuidade homogênea	82 82
Figura 46 – Circuito equivalente da descontinuidade homogênea Figura 47 – Circuito equivalente transformado da descontinuidade homogênea	83 85
Figura 48 – Geometria da descontinuidade não-homogênea Figura 49 – Circuito equivalente da descontinuidade não-homogênea Figura 50 – Circuito equivalente transformado da descontinuidade não-	86 86
homogênea Figura 51 – Perda de Retorno da descontinuidade WR150-WR137 obtida por FDTD e pelo modelo de impedância com reatâncias	88
concentradas Figura 52 – Perdas de retorno do transformador binomial	90
WR159-WR137, obtidas por FDTD, por modelo de impedância e por impedância com correção de reatância Figura 53 – Junção não-homogênea	90 91
Figura 54 – Curvas de perda de retorno da junção não-homogênea, obtidas por FDTD, por modelo de impedância e por impedância com correção de reatância	92
Figura 55 – Comparação de desempenho entre transformadores não- homogêneos, antes e após otimização Figura 56 – Transformador não-homogêneo otimizado	97 97
Figura 57 – Figura comparativa entre o modelo proposto e FDTD – caso não-homogêneo	98

Lista de Tabelas

Tabela 1 – Modos encontrados nos guias do transformador no	
plano H	48
Tabela 2 – Modos encontrados nos guias do transformador no	
plano E	53
Tabela 3 – Tabela comparativa - transformador plano H, binomial	66
Tabela 4 – Tabela comparativa – transformador plano H, Chebyshev	67
Tabela 5 – Tabela comparativa - transformador plano E	68
Tabela 6 – Tabela comparativa entre a otimização feita pelo programa	
TRAFOWG e por FDTD	71
Tabela 7 – Tabela comparativa da otimização para transformador	
Plano H	72
Tabela 8 – Tabela comparativa da otimização para transformador	
Plano E	73
Tabela 9 – Freqüências de corte dos modos superiores dos guias	
WR159 e WR137	76
Tabela 10 – Tabela comparativa - transformador WR159-WR137	91
Tabela 11 – Tabela comparativa da junção não-homogênea	92
Tabela 12 – Tabela comparativa entre a otimização feita pelo programa	ì
TRAFOWG e por FDTD para o transformador não-homogêneo	95
Tabela 13 – Tabela comparativa da otimização para transformador	
não-homogêneo	96
Tabela 14 – Dimensões do transformador não-homogêneo otimizado	97
Tabela 15 – Tabela comparativa entre o modelo proposto e	
FDTD – caso não-homogêneo	98
Tabela 16 – Belação de Guias de Onda Betangulares Comerciais	103