
2

Dependency Parsing

Dependency Parsing presents a number of advantages when compared to

constituent syntactic parsing. According to Covington [13], dependency parsing

has three main advantages. First, dependency links are close to semantic rela-

tionships needed for the next step of interpretation. Second, the dependency tree

contains one node per word, instead of mid-level nodes as in constituent trees,

making the task of parsing more straightforward, even lending itself to pure cor-

pus based approaches. At last, dependency parsing lends itself to word-at-a-time

operation, i.e., parsing can be done by accepting and attaching words, not need-

ing complete sentences for it.

Dependency Parsing presents other advantages, as transparency, since

the predicate-argument structure is directly encoded and even fragments of a

parsing output can be directly interpreted (in the case of labeled dependency

graphs). Also, when assuming non-projective graphs, dependency structure is

independent of word order and more suitable for free word order languages.

Finally, Dependency Parsing proved its usefulness in many applications

such as Question Answering [14, 15, 16, 17], Machine Translation [18, 19, 20],

Information Extraction [21, 22, 23] and Natural Language Generation [24, 25].

Additionally, Semantic Role Labeling greatly benefits from dependency parsing

as shown by Hacioglu [10].

In this chapter, we thoroughly present dependency parsing. First, the

characteristics that define its grammar and foundations are described. Then,

we describe data-driven approaches to solve dependency parsing, analyze their

advantages and limitations and the current state-of-the-art.

2.1

Basic Concepts

The roots of dependency grammar can be traced back to medieval theories

of grammar [26] or even to Panini’s grammar of Sanskrit [27], several centuries

before Christ. Although largely developed in Europe by traditional grammarians

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA



A Token Classification Approach to Dependency Parsing 15

as a form for syntactic representation [28], it is clear that the modern tradition of

dependency grammar starts with the work of Lucien Tesnière, a french linguist

of the beginning of the 20th century.

Tesnière presents his idea in the following way in his work [29]:

The sentence is an organized whole, the constituent elements of

which are words. Every word that belongs to a sentence ceases itself

to be isolated as in the dictionary. Between the word and its neigh-

bors, the mind perceives connections, the totality of which forms the

structure of the sentence. The structural connections establish de-

pendency relations between the word. Each connection in principle

unites a superior term and an inferior term. The superior term re-

ceives the name governor. The inferior term receives the name sub-

ordinate. Thus, in the sentence Alfred parle (...), parle is the gover-

nor and Alfred the subordinate.1

As stated by Tesniére, the core assumption shared by all theories and

formalisms of dependency grammar is that a syntactic structure consists of

lexical elements linked by binary asymmetrical relations called dependencies

[30].

Dependency grammar, thus, clearly deviates from the traditional phrase-

structure grammars by its lack of phrasal nodes. This can be noticed in figure

2.1 [30] that shows an example of a dependency structure in a English sentence,

whereas figure 2.2 shows the same sentence with its constituent structure. In this

case, the arcs go from each head to their dependents and are labeled with their

dependency relation type 2.

One of the central aspects of dependency grammars are the criteria for

establishing dependency relations and for distinguishing the head from the

dependent in these relations. These criteria have been greatly discussed in the

dependency grammar tradition and below are some of them that have been

proposed for identifying a syntactic relation between a head H and a dependent

D in a construction C.

1. H determines the syntactic category of C and can often replace C.

1In the original: La phrase est un ensemble organisé dont les éléments constituants sont

les mots. Tout mot qui fait partie d’une phrase cesse par luimême d’être isolé comme dans le

dictionnaire. Entre lui et ses voisins, l’esprit aperçoit des connexions, dont l’ensemble forme

la charpente de la phrase. Les connexions structurales établissent entre les mots des rapports

de dépendance. Chaque connexion unit en principe un terme supérieur à un terme inférieur. Le

terme supérieur reçoit le nom de régissant. Le terme inférieur reçoit le nom de subordonné. Ainsi

dans la phrase Alfred parle (...), parle est le régissant et Alfred le subordonné.
2Although Tesniére uses the terms governor and subordinate, alternative terms are head-

dependent and regent-modifier. In this work, we use the head-dependent forms.

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA



A Token Classification Approach to Dependency Parsing 16

Figure 2.1: An example of a dependency graph.

Figure 2.2: An example of a constituent grammar tree.

2. H determines the semantic category of C; D gives semantic specification.

3. H is obligatory; D may be optional.

4. H selects D and determines whether D is obligatory or optional.

5. The form of D depends on H (agreement or government).

6. The linear position of D is specified with reference to H.

This list comprehends syntactic and semantic criteria, leading some theo-

rists to suggest that some instances of dependency relations might not satisfy all

of the proposed criteria. Like this one, there are other open questions on which

the theorists diverge, hence giving birth to different grammar frameworks.

Some of these questions refer to whether the notion of dependency is

assumed as sufficient or not – and extra relations would be needed to properly

analyze a sentence syntax. In the same way, other theorists question if only one

layer of syntactic representation is enough (mono-stratal) or if several layers

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA



A Token Classification Approach to Dependency Parsing 17

are needed to correctly describe syntax (multi-stratal). And even though most

theorists agree that the lexical elements on which dependency relations are held

are words, some suggest that lemmas or even several words should be used

instead.

However, one of the most debated question regards whether dependency

relations build a linearly ordered structure, i.e., follow the order in which the

words appear in a sentence. This issue is deeply related to the projectivity

constraint.

2.1.1

Projectivity

According to Nivre and Nilsson [31] “an arc (i, j) is projective if and only

if all nodes occurring between i and j are dominated by i (where dominates is

the transitive closure of the arc relation)”. A simpler and less formal way of

presenting this is by describing that projectivity does not allow crossing-arcs

when representing dependency relation with arcs (considering that all arcs should

go over the sentence, but not below it). Figure 2.3 shows a Czech sentence with

a non-projective arc coming from jedna to Z [32].

Figure 2.3: An example of a non-projective arc.

Therefore, to assume the projectivity constraint or to define a projective

dependency grammar means to only accept relation arcs that are projective.

However, non-projective relations are needed in a dependency grammar to

account for long distance relations, as well as to better deal with free word order

languages [28]. Additionally, the inclusion of non-projective structures makes

the parsing problem more complex and compromises efficiency, accuracy and

robustness [31], what leads most transition-based parsers to only build projective

dependency graphs [33].

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA



A Token Classification Approach to Dependency Parsing 18

2.2

Data-driven Dependency Parsing

Dependency Parsing can be defined as outputting the dependency graph

of an input sentence according to a given dependency grammar. As seen in

the previous section, many questions regarding the criteria about dependency

relations gave birth to many different dependency grammars. Conversely, in

Natural Language Processing a common set of characteristics can be generally

assumed about the used grammars: the lexical items that define the nodes are

the word forms; the parsing is concerned with only one layer (mono-stratal) of

relations; and, finally, the dependency syntax is assumed to be sufficient.

Carrol and Charniak [34] propose the first dependency parsers to use

data in ther models, but their parser is, actually, grammar-driven. Their model

is based on a formal dependency grammar and uses the corpus data only to

solve disambiguations left by the grammar based model. In other words, this

parsing consists in the derivation of all analysis that are permissible according

to the grammar and the selection of the most probable analysis according to the

generative model.

Other parsers improve Carroll and Charniak’s results while still being

based on a formal dependency grammar in combination with a generative prob-

abilistic model, such as the work of Eisner [35] and Collins [36]. Samuelsson’s

probabilistic model goes on by allowing non-projective dependency graphs and

producing labeled dependencies [37]. However, only recently, models that are

not based on a formal grammar and are generated purely based on corpus data

have been proposed.

2.2.1

Transition-based Models

In Transition-based models (or Deterministic Discriminative parsing) a

deterministic parser is used to construct dependency structures by having the

next action of the parser predicted by a classifier trained in the available data. In

this case, no formal grammar is used when inducing the parser model.

In [38], [39] and [40] Support Vector Machines classifiers [41] predict the

next action of a parser in order to build an unlabeled dependency structure. In

these systems the parsing is done according to a shift-reduce model. In shift-

reduce parsing, the parser is considered to be initially located at the beginning of

the sentence and, at each step, chooses from three different actions. Let the target

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA



A Token Classification Approach to Dependency Parsing 19

words be wi – the word before the parser – and wi+1 – the word after the parser,

the possible parser actions are the following 3.

1. Shift: The parser simply moves one word along the sentence, adding no

dependency relation. The target words change from wi and wi+1 to wi+1

and wi+2.

2. Right: Builds a dependency relation between words wi and wi+1 with the

right word wi+1 as head of the left word wi; reduces the target words into

wi+1, making wi−1 and wi+1 the new target words.

3. Left: Builds a dependency relation between words wi and wi+1 with the

left word wi as head of the right word wi+1; reduces the target words into

wi, making wi−1 and wi the new target words.

The processing of a sentence consists in passing it from left to right until

no more dependency relations can be added. Since each passing may use up to n

steps and up to n−1 passes may be required, the worst time complexity isO(n2).

This deterministic discriminative dependency parsing achieves an accuracy near

to the state-of-the-art when evaluated in the Wall Street Journal section of the

Penn Treebank [40].

Additionally, the framework of inductive parsing proposed by Nivre et al.

[43, 44] enhances this approach with three main differences. First, this frame-

work builds labeled dependency graphs, i.e., the dependency arcs have types

according to what kind of dependency relation they represent. It also constructs

the complete dependency graph in only a single pass over the data. Finally, in-

stead of using Support Vector Machines, Nivre et al. [43] uses Memory-Based

Learning in its classifiers.

Pseudo-Projective Parsing

One of the major drawbacks in Transition-based models is its inability of

dealing with non-projective arcs. Given the way the parser is structured, only

arcs between neighboring words or reduced words can be created, thus limiting

it to arcs under a transitive closure, or projective arcs. Nevertheless, a pseudo-

projective approach can be applied to overcome this limitation [31].

In pseudo-projective parsing, a preprocess step turns every non-projective

arcs into projective ones. Additionally, when doing this, the information regard-

ing the non-projectivity is added in the label of the arc, generating a new label.

3Some works present four possible actions, splitting the reduce and arc creation into two

different parser actions [42]. Other works use only Shift and Right actions when applying it to

Japanese, since it is a strictly head-final language [38, 39].

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA



A Token Classification Approach to Dependency Parsing 20

This new label allows the new projective arc to be turned back to the original

non-projective arc. As a result, when the parsing classifier learns to correctly la-

bel the arcs, it will also learn to predict the new pseudo-projective labels. There-

fore, after a pseudo-projective parser is applied, a post-process step changes the

pseudo-projective arcs back into their corresponding non-projective arcs.

This pseudo-projective approach significantly improves overall parsing

accuracy for non-projective corpus [42], obtaining the best reported performance

for robust non-projective parsing of Czech [31].

Finally, there are several powerful system that use transition-based models,

with or without the pseudo-projective approach [45, 46, 47, 48, 49, 50].

2.2.2

Graph-based Models

Another type of models that do not use a formal grammar as basis in their

parsing are Graph-based models. However, while transition-based models try to

locally find the best dependency relations, Graph-based models learn a model of

the globally best dependency graph given an input sentence.

Generally, Graph-based models define a scoring or probability function

over a set of all possible parsers. First, during the learning step, the set of

parameters of this function is estimated. Later, during the parsing step, the graph

that maximizes the score given by this function is built, therefore building the

dependency graph.

Most systems that use Graph-based models differ mainly in the type

and structure of the scoring function, the method to estimate the function’s

parameters and the search algorithm that infers the best parse given a score.

Scoring Function

The simplest type of scoring function is referred to as first-order model or

edge-factored model. This type of function sums a set of local attachment scores.

Each local score is calculated based on the dot product of a weight vector and a

feature representation of the attachment. Several systems use first-order models

[51] [52] [53] [54] [55].

A second-order model extends the first model to incorporate a sum over

scores for pairs of adjacent arcs in the tree [56] and can even take head-

grandchild relations into account [57].

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA



A Token Classification Approach to Dependency Parsing 21

Usually, the scoring function is decomposed into functions that score local

properties, like arcs or pairs of adjacent arcs, but global properties of the graph

can also be taken into account, like children of nodes and its siblings [58].

Estimation of Parameters

The estimation of function’s parameters is actually the learning step of

Graph-based models. In this case, inference-based methods are commonly used

to set those parameters so the scoring function can output the correct dependency

graph. Inference-based methods include passive-aggressive learning [52] [51],

averaged perceptrons [56] andMargin Infused Relaxed Algorithm [53]. Another

common method to estimate parameters of the scoring function is the maximum

conditional likelihood [58] [54].

Parsing Inference

The inference of the correct dependency parsing is done by searching for

the highest scoring graph given the scoring of the functions in the first step.

Therefore, it depends on the chosen factorization and whether the treebank

allows non-projective or only projective dependency graphs.

First-order models that allow non-projective relations simply use Maxi-

mum Spanning Tree algorithms like the works of [52] [53] [54], while projective

cases use a dynamic programming algorithm proposed by Eisner [59], as the

works of [51].

Finally, Carreras [56] extends Eisner’s algorithm to infer the best graph in

his second-order model.

2.2.3

Conference on Computational Natural Language Learning Shared

Task

Each year the Conference on Computational Natural Language Learning

features a shared task, in which participants train and test their systems on exactly

the same data set, in order to better compare systems. In 2006 and 2007, the

CoNLL shared tasks were strictly on Multilingual Dependency Parsing, aiming

to define and extend the state-of-the-art in this task.

Ideally, a parser should be trainable for any language, possibly by adjusting

a small number of hyper-parameters, therefore the use of different languages on

the evaluation of the proposed systems.

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA



A Token Classification Approach to Dependency Parsing 22

In this work we evaluate our tagging style on three corpora of the CoNLL

2006 shared task that are publicly available, namely Danish, Dutch and Por-

tuguese. Table 2.1 presents the results of every participating team by the occa-

sion of the conference. The metric presented is the Unlabeled Attachment Score,

i.e., the accuracy of the systems in predicting the correct head of the tokens.

Team Danish Dutch Portuguese

Canisius et al.[60] 82.93 77.79 85.61

Attardi[61] 78.84 68.93 85.03

Wu[62] 83.39 71.75 85.57

Carreras et al.[63] 85.67 71.39 87.76

Yuret[64] 78.16 66.17 79.46

Bick[65] 80.54 74.47 84.29

Nivre et al.[66] 89.80 81.35 91.22

Schiehlen[67] 81.94 75.59 81.27

Ma[68] 79.90 64.07 77.10

Dreyer et al.[69] 77.45 68.33 82.41

O’Neil 88.78 81.73 89.70

Xuan Do 86.85 76.25 88.60

Johansson[70] 86.59 76.01 88.40

McDonald et al.[71] 90.58 83.57 91.36

Riedel et al.[72] 89.66 82.91 89.42

Sagae 86.53 80.71 89.78

Shimizu[73] 81.72 – –

Corston-Oliver[74] 87.94 74.83 88.96

Cheng[75] 88.64 75.49 90.30

Average of All Teams 84.52 75.07 86.46

Standard Deviation 4.29 5.78 4.17

Table 2.1: Unlabeled Attachment Score of CoNLL 2006 Systems.

DBD
PUC-Rio - Certificação Digital Nº 0812541/CA




