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Introduction

Option valuation is one of the most important topics in financial eco-

nomics. The path-breaking work by Black and Scholes (1973)(6) and Merton

(1973)(37) provides the cornerstone for an explosive growth in the literature

describing the theory and practice of option pricing models. The key economic

insights behind the Black-Scholes-Merton model are the concept of perfect

hedging of an option, by constructing a replicating portfolio via trading the

underlying assets continuously, and pricing by the no-arbitrage principle. Cox,

Ross and Rubinstein (1979) (12) were the first to establish the relationship be-

tween the risk-neutral valuation and the no-arbitrage principle. Harrison and

Kreps (1979)(33), and Harrison and Pliska (1981, 1983)(34) (35) established

a solid mathematical foundation for the relationship between the no-arbitrage

principle and the notion of risk-neutral valuation using the language of proba-

bility theory. They also provide a solid theoretical foundation to the concept of

market incompleteness. If the securities market is complete, there is a unique

equivalent martingale measure, i.e., a unique risk neutral measure and, hence,

the unique price of any contingent claim is given by its expected discounted

payoff at expiry under the martingale measure. However, in an incomplete mar-

ket, there are infinitely many equivalent martingale measures and, so, a range

of no-arbitrage prices for a contingent claim can be found, and this complicates

the pricing and hedging issues.

Föllmer and Sondermann (1986)(29), Föllmer and Schweizer (1991)(28)

and Schweizer (1996)(40) determined the equivalent martingale pricing mea-

sure by minimizing the quadratic utility of the losses due to imperfect hedg-

ing. Davis (1997)(14) adopted a traditional valuation approach in economics,

namely the marginal rate of substitution, to determine a pricing measure by

solving a utility maximization problem. The seminal work by Gerber and Shiu

(1994)(31) provided a pertinent solution to the option pricing problem in an

incomplete market by using the Esscher transform, a time-honored tool in

actuarial science introduced by Esscher (1932)(25). Their model provided a

convenient and flexible way to price options under different parametric as-

sumptions on the stock returns within the class of infinitely divisible distribu-
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tions. They can justify the pricing result by considering a utility maximization

problem with respect to a power utility function. Their significant contribu-

tions highlighted the interplay between the financial and insurance pricing

in incomplete markets and its importantance is mentioned in Bühlmann et

al. (1996) (9) and Embrechts (2001) (24). Bühlmann et al. (1996) (9) devel-

oped the conditional Esscher transform by generalizing the classical Esscher

transform to stochastic processes in order to incorporate the richer theory of

semi-martingales under the no-arbitrage condition in the Gerber-Shiu option-

pricing model. Bühlmann et al. (1998) (10) investigated the use of Esscher

transforms in discrete finance models and established a solid foundation for its

use based on economic arguments. Siu, Tong and Yang (2001) (42) introduced

the concept of a random Esscher transform with a random Esscher parameter

and adopted the random Esscher transform to incorporate the uncertainty of

the probability measures for risk measurement. Elliott, Chan and Siu (2004)

(22) provided a modification of the random Esscher transform and developed

the regime switching random Esscher transform to identify a pricing measure

for option valuation under a Markov-modulated Geometric Brownian Motion

(MMGBM). Yao (2002) (46) adopted the Esscher Transform to specify the

forward-risk-adjusted measure and provided a general and consistent frame-

work for pricing derivatives on stocks, interest rates and currency rates.

Autoregressive conditional heteroskedastic (ARCH) models were pro-

posed by the Nobel Laureate Robert Engle as a tool to describe time-varying

volatility dynamics and other stylised empirical facts of many financial time

series. Bollerslev (1986) (7) and Taylor (1986) (44) generalized the idea of the

ARCH models and developed the generalized ARCH (GARCH) models inde-

pendently by assuming that the current level of the conditional variance not

only depends on the past values of the innovations but also the past values

of the conditional variances. For an excellent overview of ARCH-type models,

see Bollerslev, Chou and Kroner (1992)(8).

There has been a considerable interest in option valuation under GARCH

models in the finance literature. The seminal work by Duan (1995) (17) was

the pioneer to provide a solid theoretical foundation for option valuation in

the context of GARCH models. He generalized the concept of risk-neutral val-

uation and introduced the notion of locally risk-neutral valuation relationship

(LRNVR) which provides a sound economic argument to choose a particu-

lar equivalent martingale measure in the GARCH model with a conditionally

normal stock innovation. Under the preference assumptions and distributional

assumptions, Duan (1995) provided a rigorous theoretical foundation and eco-

nomic justification of the validity of LRNVR. Duan, Popova and Ritcken (2002)
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(19) developed a family of option pricing models where the underlying stock

price dynamics are modelled by a regime switching process in which the prices

stay in one volatility regime for a random amount of time before switching

over into a new regime. Barone-Adesi, Engle and Mancini (2008)(3) proposed

a new approach to compute option prices under the GARCH models in an in-

complete market framework. Their model allows the actual volatility of asset

returns to be different from the volatility of asset returns under the pricing

probability measure. Siu, Tong and Yang (2004) (43) proposed an alternative

method to price options under the GARCH models with infinitely divisible in-

novations by using the conditional Esscher transform proposed by Bühlmann

et al. (1996). Elliott, Siu and Chan (2004) introduced the use of a modified

version of the conditional Esscher transform, namely the Markov switching

conditional Esscher transform (MSCET), to determine an equivalent martin-

gale pricing measure under a Markov switching GARCH model. They justified

their pricing results by considering the stochastic power utility function with

Markov switching risk-aversion parameters.

The thesis extends the literature in two main points. First, we deal with

more general processes to perform option pricing than in Duan(1995) (17)

and Siu et al.(2004) (43), viz. the Flexible Coefficient GARCH model (FC-

GARCH) which is a nonlinear model and nests several well-known GARCH

specifications in the literature and the mixture of GARCHs. Second, we can

treat those two models in a variety of innovation distributions, not being

restricted to the normal case as in Duan(1995) (17). In particular in this

thesis we perform calculations and simulations for the Normal and Shifted-

Gamma cases. A minor contribution is that we include the possibility of a

negative innovation in the Shifted-Gamma case. This allow us to mimic the

small and negative skewness usually found in the empirical literature. This

contribution give the practitioners flexibility in choosing among the Normal,

the positive and negative Shifted-Gamma innovation cases according to the

sign and magnitude of the skewness.

Although the non-linearity of the FC-GARCH affects little the prediction

of the volatility, it considerably affects the option prices. We notice both in

the FC-GARCH and in the Mixture of GARCHs that the option prices vary

a lot in our experiments. We also noticed that the choice of the innovation

distribution is important for better describing the skewness of the series. We

deal with negative shifted-Gamma innovations to treat negative skewness data.

When using a different innovation, a significant difference in the option price

is also detected.

The document is structured as follows. First we make a review on the
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mathematical background knowledge, then in chapter three we talk about the

simplest ARCH models. In chapter 4, we briefly discuss the option pricing

methodologies. Chapters 5 and 6 contain the main results of the research. They

consist of two risk neutral option pricing papers, one assuming the FC-GARCH

as the underlying log-return process and the other a mixture of GARCHs. In

chapter 5, we develop the methodology in Siu et al.(2004) (43) to the FC-

GARCH. In chapter 6, we perform a similar methodology to the Mixture

of GARCHs. The theoretical results we achieved are the Theorems 35, 36,

41 and 42. In both these chapters we discuss the model, the methodology,

the calculations and simulation experiments. We finish the thesis with the

conclusions, future intent of work and a small appendix.

DBD
PUC-Rio - Certificação Digital Nº 0521377/CA




