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Option Pricing under a Nonlinear and Nonnormal GARCH

This chapter is based in a paper written together with both my advisor

and my co-advisor, Professors Álvaro Veiga and Ken Siu respectively. We

investigate the pricing of options in a class of discrete-time Flexible Coefficient

Generalized Autoregressive Conditional Heteroskedastic (FC-GARCH) models

with non-normal innovations. A conditional Esscher transform was used to

select a price kernel for valuation in the incomplete market. This choice of the

pricing kernel can be justified by an economic equilibrium argument based on

maximizing the expected power utility. We provide a numerical study on the

pricing results when the GARCH innovations have a normal distribution or

a shifted-Gamma distribution and identify some key features of the pricing

results.

The conditional Esscher transform provides a convenient and flexible way

to determine a price kernel under nonlinear time series models. Here we exploit

this important tool in actuarial science to determine a price kernel for option

valuation.

5.1
Flexible Coefficient Generalized Autoregressive Conditional Heteroskedas-
tic (FC-GARCH) models for Asset Returns

We consider a discrete-time economy with a bond B and a share S. Let T de-

note the time index set {0, 1, 2, . . . , T} of the economy. To model uncertainty,

we fix a complete probability space (Ω,F ,P) where P is a real-world prob-

ability measure. To simplify our analysis, we assume that the continuously

compounded rate of interest from the bond is a constant, say r per period.

Consequently, the bond-price process {Bt|t ∈ T } evolves over time as:

Bt = Bt−1e
r , B0 = 1 . (5-1)

Let ǫ = {ǫt}t∈T be the return innovations of the share S, where

we take ǫ0 = 0 by convention. Suppose {ǫt|t ∈ T \{0}} are independent

and identically distributed, (i.i.d.), with common distribution D(0, 1), where

D(0, 1) represents a general distribution with zero mean and unit variance.
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Let S := {St}t∈T be the price process of the share S. Let Yt :=

ln(St/St−1), which is the continuously compounded rate of return from the

share S from time t − 1 and time t. Then we assume that the return

process Y := {Yt|t ∈ T } follows a first-order Flexible Coefficient Generalized

Autoregressive Conditional Heteroscedastic model with m = H + 1 limiting

regimes, henceforth, FC-GARCH (m, 1, 1):

Yt = µt + h
1/2
t ǫt ,

ht = G(wt;ψ) . (5-2)

Here G(wt;ψ) is a nonlinear function of a vector of variables wt :=

(Yt−1, ht−1, st)
′, (i.e. “′” represents the transpose of a matrix, or in particu-

lar a vector), defined by:

G(wt;ψ) := α0 + β0ht−1 + λ0Y
2
t−1 +

H∑

i=1

[αi + βiht−1 + λiY
2
t−1]f(st; γi, ci) ,

where

1. for each i = 1, 2, . . . , H, the logistic function

f(st, γi, ci) :=
1

1 + e−γi(st−ci)
;

2. the vector of parameters

ψ := (α0, β0, λ0, α1, · · · , αH , β1, · · · , βH , λ1, · · · , λH , γ1, · · · , γH , c1, · · · , cH)′ ∈ R3+5H ;

3. for each i = 1, 2, · · · , N , the parameter γi is the slope parameter and

is considered positive. When γi → ∞, the function becomes a step

function. Please refer to Medeiros and Veiga(2009)(36), for a complete

list of assumptions made on the parameters. Note that their restrictions

are for a simpler FC-GARCH in which the conditional mean is constant.

Here, we consider a simple case that st = Yt−1.

The class of FC-GARCH models provides the flexibility in incorporating

the asymmetric effect of the sign and the size of the previous return Yt−1

on the current variance level ht. It can also capture the heavy-tailedness of

return’s distribution and the slow decay of the autocorrelation of the squared

returns process {Y 2
t |t ∈ T }. In addition, the FC-GARCH model can capture

another important stylized empirical feature of returns data, namely, the

Taylor effect, first documented by Taylor (1986)(44). The Taylor effect refers
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to the strong autocorrelation of absolute daily returns data. This also relates to

the long-memory effect of volatility; that is, the decay of the autocorrelations

of volatility is too slow to be described by any short memory autoregressive

moving average time series models. In the empirical studies by Ding et al.

(1993) (16), it has been documented that the realized volatility decays in a

hyperparabolic rate.

When γi = 0, or αi, βi, λi = 0, i = 1, 2, · · · , H, the FC-GARCH model

reduces to the GARCH(1,1) model. The FC-GARCH model also nests other

important ARCH-type models in the literature. Some examples include the

LST-GARCH(1,1) model, the GJR-GARCH(1,1) model, the VS-GARCH(1,1)

model, the ANST-GARCH(1,1) model, the DT-ARCH(1,1) model, the DT-

GARCH(1,1) model, and others. For detail, interested readers may refer to

Medeiros and Veiga(2009)(36).

5.2
The Conditional Esscher Transform

In this section, we recall the method of the conditional Esscher transform

described in Siu et al. (2004) (43) to determine a pricing kernel for option

valuation. The method applies to determine a price kernel for a general FC-

GARCH model in the next section.

For each t ∈ T , write Ft for the P-completed, σ-field generated by the

share price process up to and including time t and write also F := {Ft|t ∈ T }.
We assume that under P ,

Yt = µt + ξt .

where ξt is an i.i.d innovation process having distribution D(0, ht) and µt and

ht are Ft−1-measurable.

We noticed while preparing that paper that the methodology is applied

not only to the FC-GARCH but also for any model that has a µt and ht

structure being Ft−1−measurable and noises given by a infinitely divisible

distribution having a moment generation function. As many of the GARCH

especifications has those properties, the Siu et al. methodology can be used

very broadly.

We now define the conditional Esscher transform. Let {θt|t ∈ T \{0}} be

an F -predictable, real-valued, process on (Ω,F ,P). It means we know in time

t − 1 its value in time t. Denote, for each t ∈ T \{0}, the moment generating

function of Yt given Ft−1 under P evaluated at z ∈ ℜ by MY (t, z); that is,

MY (t, z) := E[ezYt|Ft−1] .
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Here E is expectation under P . Assume that, for each t ∈ T \{0} and z ∈ ℜ,

MY (t, z) exists and consider an F -adapted process {Λt|t ∈ T } on (Ω,F ,P)

with Λ0 = 1, P-a.s., defined by:

Λt :=
t∏

k=1

eθkYk

MY (k, θk)
, t ∈ T \{0} .

Then, it is easy to check that {Λt}t∈τ is an (F,P)-martingale. So, E[ΛT ] = 1.

Now we define a new probability measure Pθ equivalent to P on FT by

setting

dPθ

dP

∣∣∣∣
FT

:= ΛT . (5-3)

We call Pθ the conditional Esscher transform associated with θ.

Let M θ
Y (t, z) be the moment generating function of the return Yt given

Ft−1 under the new measure Pθ. Write Eθ[·] for expectation under Pθ. Then,

by the Bayes’ rule, it is easy to check that

M θ
Y (t, z) =

MY (t, θt + z)

MY (t, θt)
. (5-4)

Indeed, by the Bayes’ rule (Theorem 45 in the Appendix),

M θ
Y (t, z) := Eθ[ezYt |Ft−1]

=
E[ezYtΛt|Ft−1]

E[Λt|Ft−1]

= E

[
Λt

Λt−1

ezYt |Ft−1

]

=
E[e(z+θt)Yt|Ft−1]

MY (t, θt)

=
MY (t, θt + z)

MY (t, θt)
. (5-5)

According to the fundamental theorem of asset pricing (see Harrsion

and Kreps(1979)(33) and Harrsion and Pliska (1981, 1983))(34) and (35), the

absence of arbitrage opportunities is “essentially” equivalent to the existence

of an equivalent martingale measure under which discounted price processes

are martingales. We call the latter a martingale condition. Please refer to Siu

et al.(43) for the economic argument to select the measure. A similar argument

will be shown in chapter 6.

Now we write S̃t := e−rtSt, which is the discounted asset price at time t,
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for each t ∈ T . Then in our case, the martingale condition is:

S̃u = Eθ[S̃t|Fu] , for all u, t ∈ T with u ≤ t . (5-6)

Here Eθ is expectation under Pθ.

The following proposition gives the necessary and sufficient condition for

the martingale condition. It is in Siu et al. (2004)(43).

Proposition 33 The martingale condition is satisfied if and only if there

exists an F -predictable process {θt|t ∈ T \{0}} such that

r = lnMY (t, θt + 1) − lnMY (t, θt) . (5-7)

Proof :

Let Yt = ln
(

St

St−1

)
, such that eYt = St

St−1
.

(⇐) First we prove that

S̃t−1 = Eθ[S̃t|Ft−1]

Indeed, if r = ln
(

MY (t,θt+1)
MY (t,θt)

)
, then

er =
MY (t, θt + 1)

MY (t, θt)
= MY (t, 1) = Eθ[eYt |Ft−1]. (5-8)

Then,

Eθ[e−rtSt|Ft−1] = St−1e
−rtEθ[eYt|Ft−1] (5-9)

= St−1e
−rtEθ[eYt|Ft−1] (5-10)

= St−1e
−rt E[eYt(θt+1)|Ft−1]

E[eYtθt|Ft−1]
(5-11)

= St−1e
−rtMY (t, θt + 1)

MY (t, θt)
(5-12)

= St−1e
−r(t−1) (5-13)

Now, we will show that for any u, t ∈ τ with u < t,

Eθ[e−rtSt|Ft−1] = e−ruSu, a.s. with respect to P.
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Eθ[e−rtSt|Fu] = Eθ[e−rtSt−1e
Yt |Fu] (5-14)

= Eθ[e−rtSt−1E
θ[eYt |Ft−1]|Fu] (5-15)

= Eθ[e−r(t−1)St−1e
−rEθ[eYt |Ft−1]|Fu] (5-16)

= Eθ[e−r(t−1)St−1|Fu] (5-17)

= ... (5-18)

= Eθ[e−r(u+1)Su+1|Fu] (5-19)

= e−ruSu (5-20)

almost surely with respect to P as desired.

(⇒) Now we are going to prove that if

S̃u = Eθ[S̃t|Fu] ∀u ≤ t (5-21)

then

r = ln

(
MY (t, θt + 1)

MY (t, θt)

)
.

In particular, the hypothesis is true at u = t− 1. Then

St−1e
−r(t−1) = Eθ[Ste

−rt|Ft−1]

⇒
e−r(t−1) = Eθ[

St

St−1

|Ft−1]

⇒
er = Eθ[eYt|Ft−1]

⇒
r = lnEθ[eYt |Ft−1]

⇒
r = ln

(
E[eYt(θt+1)|Ft−1]

E[eYtθt |Ft−1]

)

⇒
r = ln

(
MY (t, θt + 1)

MY (t, θt)

)
.

The existence and uniqueness of the process θ can be established using

some standard arguments.

�
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Consider an European-style option with payoff V (ST ) at maturity T .

Then, a conditional price of the option at time t given Ft is determined as:

Vt = e−r(T−t)Eθ[V (ST )|Ft] . (5-22)

The expected value of V (ST ) is calculated via Monte Carlo simulation.

To obtain the results we also use some variance reduction techniques: control

variate (the Black and Scholes option price as the benchmark) and antithetic

variables (Normal case only).

5.3
Some Parametric Cases

In this section, we consider some parametric cases of our model when the

GARCH innovations have a normal distribution and a shifted gamma distri-

bution. The development in this section follows that of Siu et al. (2004)(43).

In this section two of the main theoretical results of our research will appear,

viz., Theorems 35 and 36.

5.3.1
Normal innovations

Firstly, under P , consider some Ft−1−measurable conditional mean µt

an the model below.

Yt = µt + ξt

ξt|Ft−1 = N(0, ht)

ht = α0 + β0ht−1 + λ0ξ
2
t−1 +

H∑

i=1

(αi + βiht−1 + λiξ
2
t−1)f(st; γi, ci),

where

f(st, γi, ci) :=
1

1 + e−γi(st−ci)
.

Then, under P , Yt|Ft−1 ∼ N(µt, ht), as µt depends only on information

available in Ft−1.

In order to find the Esscher parameter:
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r = ln(MYt|Ft−1(1, θt)) = ln

(
MYt|Ft−1(1 + θt)

MYt|Ft−1(θt)

)
(5-23)

= ln


e

µt(1+θt)+
(1+θt)

2ht
2

eµtθt+
θ2
t

ht
2


 = ln(eµt+htθt+

ht
2 ) = µt + htθt +

ht

2
(5-24)

i.e.,

r = µt + htθt +
ht

2

or

r − µt −
ht

2
= htθt

which gives us θt =
r−µt−ht

2

ht
. (The Esscher parameter)

Using that θt =
r−(µt+

ht
2 )

ht
in the relation

MYt|Ft−1(z, θt) =
MYt|Ft−1(z + θt)

MYt|Ft−1(θt)
,

we have

MYt|Ft−1(z, θt) =
eµt(z+θt)+

(z+θt)
2ht

2

eµtθt+
θ2
t

ht
2

(5-25)

= eµtz+zθtht+
z2ht

2 (5-26)

= eµtz+z(r−(µt+
ht
2 ))+

z2ht
2 (5-27)

= ez(r−ht
2 )+

z2ht
2 , (5-28)

which is the mgf of a normal, i.e.,

Yt|Ft−1 ∼ NPθ

(
r − ht

2
, ht

)

under Pθ. By the dynamics

Yt = µt + ξt; ξt = h
1/2
t ǫt,

we have

Eθ
P [ξt|Ft−1] = Eθ

P [Yt|Ft−1] − µt = r − µt −
ht

2
.
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V arθ
P [ξt|Ft−1] = V arθ

P [Yt|Ft−1] = ht = V arP[ξt|Ft−1].

Note that the variance does not change but the mean does and we want a

zero mean variable. So make ǫt := ξt−r+µt+
ht

2
such that ǫt|Ft−1 ∼ N θ

P(0, ht).

Then, we can write the model under measure Pθ as

Yt = r − ht

2
+ ǫt, (5-29)

where

ht = α0 + β0ht−1 + λ0

(
ǫt−1 + r − µt −

ht−1

2

)2

(5-30)

+
H∑

i=1

[
αi + βiht−1 + λi

(
ǫt−1 + r − µt −

ht−1

2

)2
]
f(st; γi, ci)(5-31)

If we take µt = r+λ
√
ht− 1

2
ht to be the conditional mean as Duan(1995),

we would have to consider

ǫt : = ξt − r + r + λ
√
ht −

1

2
ht +

ht

2
(5-32)

= ξt + λ
√
ht (5-33)

so that ǫt|Ft−1 ∼ N θ
P(0, ht). And then we would conclude for this particular

case that under Pθ:

Yt = r − ht

2
+ ǫt, (5-34)

where

ht = α0 + β0ht−1 + λ0(ǫt−1 − λ
√
ht)

2 (5-35)

+
H∑

i=1

[
αi + βiht−1 + λi(ǫt−1 − λ

√
ht)

2
]
f(st; γi, ci) (5-36)

We summarize the discussion above in the following Theorem:
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Theorem 34 Let

Yt = r + λ
√
ht −

1

2
ht + ξt

ξt|Ft−1 = N(0, ht)

ht = α0 + β0ht−1 + λ0ξ
2
t−1 +

H∑

i=1

(αi + βiht−1 + λiξ
2
t−1)f(st; γi, ci) ,

be the model under P, where

f(st, γi, ci) :=
1

1 + e−γi(st−ci)
.

Then, under the risk neutral measure the model is

Yt = r − 1

2
ht + ǫt

ǫt|Ft−1 ∼ N θ
P(0, ht)

ht = α0 + β0ht−1 + λ0(ǫt−1 − λ
√
ht)

2

+
H∑

i=1

[
αi + βiht−1 + λi(ǫt−1 − λ

√
ht)

2
]
f(st; γi, ci)

5.3.2
Shifted-Gamma Innovations

Some authors (Gerber and Shiu(1994) (31) and Siu et al. (2004)(43) )

have been using shifted-gamma innovations to model log-returns in order to

handle the skewness that real financial series usually exhibits. However, the

skewness of the Gamma distribution is strictly positive whilst financial time

series can present both signs. In practice, before adopting the shifted-gamma

model, one may check if there is any skewness to be modeled. Otherwise,

the Normal model should suffice. Then, one should check for the sign of the

skewness so as to select an appropriate formulation of the shifted-gamma

innovations. The positive case is similar and for the GARCH case it has already

documented in Siu et al.(2004) (43). In the following, we develop a model to

incorporate negative skewness.

Suppose that for each t ∈ T \{0}, Xt ∼ Ga(a, b), where Ga(a, b)

represents a Gamma distribution with shape parameter a and scale parameter

b. We now suppose that under P the innovation at time t is given by:

ξt := −
√
ht

(
Xt − a/b√

a/b2

)
, (5-37)
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so we write ξt|Ft−1 ∼ −SGa(0, ht).

Then, under P ,

Yt = r + λ
√
ht −

1

2
ht + ξt , (5-38)

ht = α0 + β0ht−1 + λ0ξ
2
t−1 +

H∑

i=1

(αi + βiht−1 + λiξ
2
t−1)f(st; γi, ci) ,(5-39)

where

f(st, γi, ci) :=
1

1 + e−γi(st−ci)
.

The return process Y can be expressed as:

Yt = r + λ
√
ht −

1

2
ht +

√
aht − b

√
ht

a
Xt .

Note that b
√

ht

a
Xt ∼ Ga(a,

√
a
ht

), and that if W ∼ Ga(a, b) is a Gamma

random variable, the moment generation function of −W is M−W (t) =
(

b
b+θ

)a
.

Then the moment generation function of Yt|F is given by

MYt|Ft−1(θt) =

( √
a
ht√

a
ht

+ θt

)a

e(r+λ
√

ht− 1
2
ht+

√
aht)θt (5-40)

provided that θt +
√

a
ht
> 0.

Applying the formula

M θt

Y (z, θt) =
MY (t, θt + z)

MY (t, θt)
, (5-41)

we have

MYt|Ft−1(z, θt) =

( √
a
ht√

a
ht

+θt+z

)a

e(r+λ
√

ht− 1
2
ht+

√
aht)(θt+z)

( √
a
ht√

a
ht

+θt

)a

e(r+λ
√

ht− 1
2
ht+

√
aht)θt

(5-42)

=

( √
a
ht

+ θt√
a
ht

+ θt + z

)a

e(r+λ
√

ht− 1
2
ht+

√
aht)z (5-43)

as long as z <
√

a
ht

+ θt.

By this formula and the relation

r = lnMYt|Ft−1(1, θ
q
t )
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we have:

er = er+λ
√

ht− 1
2
ht+

√
aht

( √
a
ht

+ θq
t√

a
ht

+ θq
t + 1

)a

(5-44)

or equivalently

1 = e
λ
√

ht−
1
2 ht+

√
aht

a

( √
a
ht

+ θq
t√

a
ht

+ θq
t + 1

)
(5-45)

Note that

√
a
ht

+ θq
t√

a
ht

+ θq
t + 1

= 1 − 1√
a
ht

+ θq
t + 1

(5-46)

Then,

1 − e
λ
√

ht−
1
2 ht+

√
aht

a = −e
λ
√

ht−
1
2 ht+

√
aht

a

√
a
ht

+ θq
t + 1

(5-47)

⇐⇒

√
a

ht

+ θq
t + 1 = − e

λ
√

ht−
1
2 ht+

√
aht

a

1 − e
λ
√

ht−
1
2 ht+

√
aht

a

(5-48)

⇐⇒

θq
t = − e

λ
√

ht−
1
2 ht+

√
aht

a

1 − e
λ
√

ht−
1
2 ht+

√
aht

a

−
√

a

ht

− 1 (5-49)

⇐⇒

θq
t = − 1

1 − e
λ
√

ht−
1
2 ht+

√
aht

a

−
√

a

ht

(5-50)

⇐⇒

θq
t =

1

e
λ
√

ht−
1
2 ht+

√
aht

a − 1
−
√

a

ht

(5-51)

Consequently, the martingale condition implies that

θq
t =

1

e
λ
√

ht−
1
2 ht+

√
aht

a − 1
−
√

a

ht

(5-52)
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Now if we take bt :=
√

a
ht

and bθt := 1

e
λ
√

ht−
1
2 ht+

√
aht

a −1

, then

bθt = θt + bt .

Let ∼ be “equal in distribution”. Under Pθ,

Yt|Ft−1 ∼ −SGa(a, bθt ,−r − λ
√
ht +

1

2
ht −

√
aht) . (5-53)

Then, we can write

Yt ∼ r + λ
√
ht −

1

2
ht +

√
aht +Xθ

t .

Here Xθ
t ∼ − 1

bθ
t

Ga(a, 1) 1, and

ht = α0 + β0ht−1 + λ0(X
θ
t−1 +

√
aht−1)

2

+
H∑

i=1

[αi + βiht−1 + λi(X
θ
t−1 +

√
aht−1)

2]f(st; γi, ci) .

From the discussion above we have achieved:

Theorem 35 Let the model under P be

Yt = r + λ
√
ht −

1

2
ht + ξt,

ξt|Ft−1 ∼ −SGa(0, ht),

ht = α0 + β0ht−1 + λ0ξ
2
t−1 +

H∑

i=1

(αi + βiht−1 + λiξ
2
t−1)f(st; γi, ci),

where

f(st, γi, ci) :=
1

1 + e−γi(st−ci)
.

1We write Gamma(a, 1) a Gamma random variable with shape parameter a and the
scalar parameter 1.
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Then, under the risk neutral measure, the model is

Yt ∼ r + λ
√
ht −

1

2
ht +

√
aht +Xθ

t

Xθ
t ∼ − 1

bθt
Ga(a, 1)

ht = α0 + β0ht−1 + λ0(X
θ
t−1 +

√
aht−1)

2

+
H∑

i=1

[αi + βiht−1 + λi(X
θ
t−1 +

√
aht−1)

2]f(st; γi, ci) .

5.4
Simulation Studies

In this section we conduct simulation experiments and compare both Call

and Put option prices arising from different processes for the log-returns of the

underlying asset.

We consider five pricing schemes for options with 90 days to maturity:

the classical Black and Scholes formulae assuming a GBM process and the

conditional Esscher transform method for GARCH and FC-GARCH processes,

each one with Normal and shifted-Gamma innovations.

In the Esscher transform approach, as noted in section 3, the expected

value in equation (3.20) is computed by Monte Carlo simulation. In simulation

experiments, we used a sample of size of 10000 for the Gamma models and

20000 for the Normal ones, due to the antithetic variables.

The five pricing schemes are applied to two artificial series produced

by a FC-GARCH model with Normal and Shifted-Gamma innovations with

3200 data points, obtained after a warm-up period of 1000 observations. The

FC-GARCH parameters used in the simulations are given in table 1. These

parameters, except for the a parameter and the risk-premium, are in Medeiros

and Veiga (2009)(36).

FC-GARCH Parameters
α [9.77 × 10−16, 5.14 × 10−7, 1.81 × 10−5]
β [1.21,−0.32,−0.25]
λ [0.06,−0.01,−0.04]
γ [2.52, 2.85]
c [−0.72, 1.56]

Risk Premium 0.0349
a (Gamma case) 100

Table 5.1: Parameters for the FC-GARCH including the values of α, β and λ
in the three different regimes.
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To evaluate the Black and Scholes prices we estimate the volatility

parameters by the sample variances, 4.0812 × 10−5, for the Normal data and

3.8244 × 10−5 for the Gamma data.

For the estimation of the GARCH parameters we use an iterated two-

stage method. Initially, we suppose ht a constant equal to the sample variance.

Then, we estimate the risk premium by weighted least squares (WLS). Then

we fit a GARCH(1,1) model to the residuals of the WLS by performing a Quasi

Maximum Likelihhod. We iterate these two steps until convergence is attained.

The estimated parameters are shown in table 2.

GARCH Parameters in Normal Case
α 7.4079 × 10−7

β 0.9375
λ 0.0445

Risk Premium 0.0288

Table 5.2: Estimated GARCH Parameters in the Normal Case

We estimated the parameters using the two stage procedure as described

before and then for finding a we used the method of moments estimate as in

Siu et al. (2004) (43) as follows:

â =

[
2
∑T

t=1 h
3/2
t∑T

t=1 ξ
3
t

]2

, (5-54)

which led us to the estimated parameters shown in table 3.

GARCH Parameters in Shifted-Gamma Case
α 5.4959 × 10−7

β 0.9461
λ 0.0397

Risk Premium 0.0363
a 79.4022

Table 5.3: Estimated GARCH Parameters in the Gamma Case

As discussed in section 4.2, one must check for the presence and the sign

of the skewness before selecting the Normal or Shifted-Gamma approaches.

The resulting prices are presented in the tables that follows. IV stands

for the initial volatility, here the ratio between the initial variance used for

simulation and the sample variance. For the case where IV = 1.0, after each

option price table there is another table with the ratios between the (FC)-

GARCH prices and the Black-Scholes prices for each model. A graph of these

comparative tables is also shown.
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Call Prices with IV=1.0 for Artificial Normal FCGARCH Series
K/S0 BS FC-Normal GARCH-Normal FC-Gamma GARCH-Gamma

0.80 20.0002 20.0009 19.9978 20.0149 20.0103
0.85 15.0063 15.0110 15.0079 15.0292 15.0238
0.90 10.0957 10.0939 10.1022 10.1216 10.1227
0.95 5.6537 5.5895 5.6292 5.6255 5.6565
1.00 2.4175 2.2812 2.3714 2.2757 2.3762
1.05 0.7397 0.6704 0.7163 0.6449 0.6845
1.10 0.1575 0.1515 0.1667 0.1362 0.1440
1.15 0.0234 0.0298 0.0310 0.0223 0.0294
1.20 0.0025 0.0049 0.0045 0.0032 0.0050

Table 5.4: Call Prices with IV=1.0 for Artificial Normal FCGARCH Series and
T=90. The parameters used for the FCGARCH are in table 1, and the table
with GARCH parameters are in table 2

K/S0 BS FC-Normal GARCH-Normal FC-Gamma GARCH-Gamma
0.8 1 1.0000 0.9999 1.0007 1.0005
0.85 1 1.0003 1.0001 1.0015 1.0012
0.9 1 0.9998 1.0006 1.0026 1.0027
0.95 1 0.9886 0.9957 0.9950 1.0005
1 1 0.9436 0.9809 0.9413 0.9829

1.05 1 0.9063 0.9684 0.8718 0.9254
1.1 1 0.9619 1.0584 0.8648 0.9143
1.15 1 1.2735 1.3248 0.9530 1.2564
1.2 1 1.9600 1.8000 1.2800 2.0000

Table 5.5: Call Prices ratios with IV=1.0 for Artificial Normal FCGARCH
Series and T=90

Call Prices with IV=1.2 for Artificial Normal FCGARCH Series
K/S0 BS FC-Normal GARCH-Normal FC-Gamma GARCH-Gamma

0.80 20.0006 20.0044 20.0013 20.1102 20.0202
0.85 15.0144 15.0151 15.0164 15.1265 15.0386
0.90 10.1509 10.1177 10.1298 10.2467 10.1584
0.95 5.8159 5.6726 5.7121 5.7923 5.7428
1.00 2.6481 2.4260 2.4961 2.4920 2.5059
1.05 0.9156 0.7588 0.8015 0.7778 0.8111
1.10 0.2359 0.1828 0.2016 0.1688 0.2072
1.15 0.0454 0.0354 0.0478 0.0267 0.0367
1.20 0.0066 0.0053 0.0096 0.0043 0.0078

Table 5.6: Call Prices with IV=1.2 for Artificial Normal FCGARCH Series
and T=90. The parameters used are in table 1, and the table with GARCH
parameters are in table 2
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Call Prices with IV=1.0 for Artificial Shifted-Gamma FCGARCH Series
K/S0 BS FC-Gamma GARCH-Gamma FC-Normal GARCH-Normal

0.80 20.0001 20.0149 19.8948 20.0009 20.0079
0.85 15.0045 15.0292 14.9062 15.0110 15.0176
0.90 10.0803 10.1216 9.9955 10.0939 10.1031
0.95 5.6017 5.6255 5.5110 5.5895 5.6136
1.00 2.3402 2.2757 2.2413 2.2812 2.3280
1.05 0.6831 0.6449 0.6171 0.6704 0.6907
1.10 0.1349 0.1362 0.1209 0.1515 0.1537
1.15 0.0180 0.0223 0.0227 0.0298 0.0314
1.20 0.0017 0.0032 0.0041 0.0049 0.0049

Table 5.7: Call Prices with IV=1.0 for Artificial Shifted-Gamma FCGARCH
Series and T=90. The parameters used are in table 1, and the table with
GARCH parameters are in table 3

K/S0 BS FC-Gamma GARCH-Gamma FC-Normal GARCH-Normal
0.80 1.0000 1.0007 0.9947 1.0000 1.0004
0.85 1.0000 1.0016 0.9934 1.0004 1.0009
0.90 1.0000 1.0041 0.9916 1.0013 1.0023
0.95 1.0000 1.0042 0.9838 0.9978 1.0021
1.00 1.0000 0.9724 0.9577 0.9748 0.9948
1.05 1.0000 0.9441 0.9034 0.9814 1.0111
1.10 1.0000 1.0096 0.8962 1.1231 1.1394
1.15 1.0000 1.2389 1.2611 1.6556 1.7444
1.20 1.0000 1.8824 2.4118 2.8824 2.8824

Table 5.8: Call Prices with IV=1.0 for Artificial Shifted-Gamma FCGARCH
Series

Call Prices with IV=1.2 for Artificial Shifted-Gamma FCGARCH Series
K/S0 BS FC-Gamma GARCH-Gamma FC-Normal GARCH-Normal

0.80 20.0004 20.1102 20.0946 20.0044 20.0052
0.85 15.0109 15.1265 15.1095 15.0151 15.0163
0.90 10.1290 10.2467 10.2206 10.1177 10.1205
0.95 5.7553 5.7923 5.7780 5.6726 5.6910
1.00 2.5635 2.4920 2.4712 2.4260 2.4512
1.05 0.8499 0.7778 0.7554 0.7588 0.7742
1.10 0.2052 0.1688 0.1839 0.1828 0.1851
1.15 0.0362 0.0267 0.0375 0.0354 0.0340
1.20 0.0047 0.0043 0.0073 0.0053 0.0069

Table 5.9: Call Prices with IV=1.2 for Artificial Shifted-Gamma FCGARCH
Series and T=90. The parameters used are in table 1, and the table with
GARCH parameters are in table 3
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Figure 5.1: Graphs of Call Prices ratios with IV=1.0 for Artificial
Normal FCGARCH Series

Figure 5.2: Graphs of Call Prices ratios with IV=1.0 for Artificial
Shifted-Gamma FCGARCH Series
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Put Prices with IV=1.0 for Artificial Normal FCGARCH Series
K/S0 BS FC-Normal GARCH-Normal FC-Gamma GARCH-Gamma

0.80 0.0002 0.0001 0.0008 0.0024 0.0010
0.85 0.0063 0.0083 0.0097 0.0169 0.0107
0.90 0.0957 0.0893 0.0940 0.1095 0.1041
0.95 0.6537 0.5753 0.6230 0.6088 0.6523
1.00 2.4175 2.2835 2.3685 2.3003 2.3666
1.05 5.7397 5.6568 5.7088 5.5981 5.6728
1.10 10.1575 10.1466 10.1593 10.0596 10.1118
1.15 15.0234 15.0281 15.0358 14.9438 14.9701
1.20 20.0025 20.0059 20.0135 19.9292 19.9468

Table 5.10: Put Prices with IV=1.0 for Artificial Normal FCGARCH Series
and T=90. The parameters used are in table 1, , and the table with GARCH
parameters are in table 2

K/S0 BS FC-Normal GARCH-Normal FC-Gamma GARCH-Gamma
0.8 1 0.5 4 12 5
0.85 1 1.31746 1.539683 2.68254 1.698413
0.9 1 0.933124 0.982236 1.144201 1.087774
0.95 1 0.880067 0.953037 0.931314 0.997858
1 1 0.944571 0.979731 0.95152 0.978945

1.05 1 0.985557 0.994616 0.97533 0.988344
1.1 1 0.998927 1.000177 0.990362 0.995501
1.15 1 1.000313 1.000825 0.994702 0.996452
1.2 1 1.00017 1.00055 0.996335 0.997215

Table 5.11: Put Prices ratios with IV=1.0 for Artificial Normal FCGARCH
Series

Put Prices with IV=1.2 for Artificial Normal FCGARCH Series
K/S0 BS FC-Normal GARCH-Normal FC-Gamma GARCH-Gamma

0.80 0.0006 0.0015 0.0015 0.0045 0.0016
0.85 0.0144 0.0147 0.0162 0.0248 0.0174
0.90 0.1509 0.1143 0.1325 0.1369 0.1444
0.95 0.8159 0.6534 0.7193 0.6856 0.7842
1.00 2.6481 2.4055 2.4884 2.4509 2.6057
1.05 5.9156 5.7375 5.8160 5.8001 5.9466
1.10 10.2359 10.1780 10.2118 10.2156 10.3430
1.15 15.0454 15.0418 15.0502 15.0689 15.1735
1.20 20.0066 20.0087 20.0134 20.0372 20.1402

Table 5.12: Put Prices with IV=1.0 for Artificial Normal FCGARCH Series
and T=90. The parameters used are in table 1, and the table with GARCH
parameters are in table 2
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Put Prices with IV=1.0 for Artificial Shifted-Gamma FCGARCH Series
K/S0 BS FC-Gamma GARCH-Gamma FC-Normal GARCH-Normal

0.80 0.0001 0.0024 0.0009 0.0001 0.0002
0.85 0.0045 0.0169 0.0099 0.0083 0.0085
0.90 0.0803 0.1095 0.0946 0.0893 0.0948
0.95 0.6017 0.6088 0.5760 0.5753 0.6149
1.00 2.3402 2.3003 2.2122 2.2835 2.3398
1.05 5.6831 5.5981 5.4999 5.6568 5.6952
1.10 10.1349 10.0596 9.9490 10.1466 10.1505
1.15 15.0180 14.9438 14.8426 15.0281 15.0213
1.20 20.0017 19.9292 19.8236 20.0059 19.9995

Table 5.13: Put Prices with IV=1.0 for Artificial Shifted-Gamma FCGARCH
Series and T=90. The parameters used are in table 1, and the table with
GARCH parameters are in table 3

K/S0 BS FC-Gamma GARCH-Gamma FC-Normal GARCH-Normal
0.8 1.0000 24.0000 9.0000 1.0000 2.0000

0.85 1.0000 3.7556 2.2000 1.8444 1.8889
0.9 1.0000 1.3636 1.1781 1.1121 1.1806

0.95 1.0000 1.0118 0.9573 0.9561 1.0219
1 1.0000 0.9830 0.9453 0.9758 0.9998

1.05 1.0000 0.9850 0.9678 0.9954 1.0021
1.1 1.0000 0.9926 0.9817 1.0012 1.0015

1.15 1.0000 0.9951 0.9883 1.0007 1.0002
1.2 1.0000 0.9964 0.9911 1.0002 0.9999

Table 5.14: Put Prices ratios with IV=1.0 for Artificial Shifted-Gamma FC-
GARCH Series

Put Prices with IV=1.2 for Artificial Shifted-Gamma FCGARCH Series
K/S0 BS FC-Gamma GARCH-Gamma FC-Normal GARCH-Normal

0.80 0.0004 0.0045 0.0008 0.0015 0.0008
0.85 0.0109 0.0248 0.0184 0.0147 0.0121
0.90 0.1290 0.1369 0.1357 0.1143 0.1086
0.95 0.7553 0.6856 0.7007 0.6534 0.6632
1.00 2.5635 2.4509 2.4390 2.4055 2.4242
1.05 5.8499 5.8001 5.7436 5.7375 5.7507
1.10 10.2052 10.2156 10.1765 10.1780 10.1735
1.15 15.0362 15.0689 15.0415 15.0418 15.0329
1.20 20.0047 20.0372 20.0196 20.0087 20.0058

Table 5.15: Put Prices with IV=1.2 for Artificial Shifted-Gamma FCGARCH
Series and T=90. The parameters used are in table 1, and the table with
GARCH parameters are in table 3
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Figure 5.3: Graphs of Put Prices ratios with IV=1.0 for Artificial
Normal FCGARCH Series

Figure 5.4: Graphs of Put Prices ratios with IV=1.0 for Artificial
Shifted-Gamma FCGARCH Series
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We can see that Calls and Puts have a different behavior. In tables 5.11

and 5.14, the put option price ratios have their largest values deep in the money.

The more pronounced effect is in the FC-Gamma scheme. The values are larger

than those in other schemes. Tables 5.5 and 5.8, on the other hand, show their

largest values deep out the money, although its effect is not as significant as in

the put case. For call options, the Normal models overprice the other models

whilst in the put options, the Shifted-Gamma models do. This behavior may

be explained by the negative asymmetry we introduced changing the signs of

the innovations, in the Shifted-Gamma case.

To illustrate the changes in the option prices when we change the

measures, we simulated prices under both the physical and risk neutral

measures in all schemes. Then we checked for the proportions of scenarios

where the options were exercised, which then give an estimate of the real-

world probability of exercising an option. We chose S0 = 100 and K = 100 to

perform this exercise. We notice that in all schemes presented in table 5.16,

the prices under the risk neutral measure are less likely to exceed the strike

price than the prices under the physical measure.

Table 5.16: Average rate of exercising

Model/rate Risk Neutral Measure Physical Measure

FCGARCH Normal 0.4881 0.6197
FCGARCH Gamma 0.5032 0.6198

Gamma GARCH 0.4940 0.6338
Normal Garch 0.4885 0.5939

GARCH-Gamma with Normal data 0.4805 0.5994
GARCH-Normal with Gamma data 0.4870 0.6238

Then we focus on the GARCH-Gamma case using parameters estimated

from artificial FC-GARCH Gamma data to produce the numerical results

presented in the table below. The choice of this scheme is justified by its largest

difference in the estimates above between the two measures. We considered

S0 = 100 and varied the strike price. Note that for every strike price, the risk

neutral prices have a smaller chance of exceeding the strike price than the

prices in the physical measure.
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Average rate of exercising (Gamma GARCH)
K/S0 Risk Neutral measure Physical measure

0.80 0.9991 1.0000
0.85 0.9932 0.9978
0.90 0.9491 0.9784
0.95 0.7922 0.8885
1.00 0.4908 0.6336
1.05 0.2004 0.2991
1.10 0.0552 0.0862
1.15 0.0095 0.0162
1.20 0.0015 0.0023

Table 5.17: Average rate of exercising for Artificial Shifted-Gamma GARCH
Series and T=90. The parameters used are in table 1, and the table with
GARCH parameters are in table 3
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Figure 5.5: Histogram of ST in the physical measure
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Figure 5.6: Histogram of ST in the risk neutral measure
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5.5
Sensitivity Analysis

Now we are going to check how the option prices change when some

of the parameters are perturbed. We performed simulations imposing a small

variation around the values of the parameters.

In some cases, it is important to bear in mind the stationarity condition.

We note that putting the parameters so that the stationarity condition is close

to 2 makes the effect on the option prices more pronounced. The stationarity

condition for the Normal case, what is going to be used as a benchmark, once

we don’t have a stability condition for the Gamma case, is given by:

2λ1 + 2β1 + β2 + λ2 + β3 + λ3 < 2.

Proceeding with this exercise we capture the importance of each pa-

rameter in the option prices. We perform this analysis with the FC-GARCH

models having Normal and Shifted-Gamma innovations. Graphs are shown in

the appendix to illustrate such analysis.

5.5.1
Normal innovations

As we increase the value β1 by steps of 0.05, the option price also

increases. Note that a larger value of β1 has a deeper impact than the others.

This is because the last β1 are closer to the stationarity condition. Then we

increase the value of β2 by the same increment, we have the same effect. After

that, we notice that changing β3 doesn’t affect much the option price. When

we repeated the experiment with steps of 0.1, even then the graph was the

same, but we can see a slightly increasing pattern in the output numbers.

For the λ1 and λ2 graphs we can see a slightly increase in the option

prices. For the λ3, although a slight increase occurs it is not obviously shown

in the graph even when we performed with increments of 0.05. Running

γ ∗ σ = 1, 6, 11, 16 and 21, no changes are seen in both cases γ1 and γ2.

For the effect of c1, we noticed that the option value increases with an

increase in c1. On the other hand there is no clear effect of changing c2.

The risk premium didn’t show any clear effect. The graphic shows five

variations of the risk premium with steps of 0.05. It seems having an increasing

trend, but it is not clear even performing steps of 0.1.
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5.5.2
Shifted Gamma innovations

For the Gamma case, we chose 0.05 to be the increment of β1. The option

value increases with an increase in the value of β1 as in the Normal case. Note

that in the last curve, when the stationarity condition exceeds 2, the increase

in option prices has a more pronounced effect. Again, with steps of 0.05 we

perturbed β2 and the option values were also increased. We can see that as β2

is closer to 2 the bigger its impact on the option price. In the analysis of β3 we

can not see the same behavior. It may be attributed to the insignificant effect

of the last regime.

The a parameter doesn’t have a clear effect on the option prices. It varied

from 10 to 190 in steps of 45.

An increase in λ1 and λ2 with increments of 0.01 increases the option

prices. We performed the analysis of λ3 with increments 0.01,0.05 and 0.1. No

significant effect is noticed in any of the cases.

For the c1, with 0.1 increments, we see a slight increase of the price of the

option. The c2 has no significant effect on prices. For the Gamma parameter,

running γ ∗σ = 1, 6, 11, 16 and 21 no changes are seen in both cases γ1 and γ2.

The risk premium has no clear monotonic pattern influence on the option

prices. We simulated with increments of 0.05 and also steps of 0.1, that are

relatively large relative to the initial value 0.0363.

5.6
Discussion of the results

In the tables and graphs of section 5, we noticed that the prices obtained

from the FC-GARCH models are slightly higher than the Black Scholes prices,

but the FC-GARCH option prices are lower than the GARCH option prices in

both the Normal and Gamma cases for the calls, but for the puts this effect is

only noticed in the normal case.

In the sensitivity analysis, we noticed that the GARCH parameters for

the regime zero and the first regime were the most sensitive to perturbations

of these model parameters while the GARCH parameters of the third regime,

the logistic parameter γ, and the risk premium λ have little or no impact on

option prices.

5.7
Conclusions

In this chapter we adopted the method of Siu et al. (2004) (43) to find

a pricing kernel for the FC-GARCH models with two different parametric
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distributions for innovations, the Normal and the shifted-Gamma cases. We

also performed simulations and showed tables comparing the Black Scholes

prices and the GARCH prices to our simulation results of the FC-GARCH

models as well as we performed a sensitivity analysis to understand how

changes in some parameters affect the option valuation results.

The FC-GARCH models can capture features that some other models

cannot, like the high kurtosis with low first-order autocorrelation of the squared

observations, so that the option prices are more precise if calculated in the way

we did in this chapter. Here we performed simulations with 3 regimes but the

model can mimic an economy with many regimes. A further research would be

developing tests to find the optimal number of regimes for each situation.
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