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Option Valuation under Mixture GARCH models

This chapter is based in a working paper together with the Professors Ken Siu,

John Lau and Álvaro Veiga.

It has been documented that normal mixture GARCH models can pro-

vide a better description for the leptokurtosis behavior in financial returns

data compared with the GARCH models with normal innovations and the

student’s t-GARCH models (see Alexander and Lazar (2006) (1)). In this pa-

per, we shall consider the pricing of options under the class of discrete-time

mixture of GARCH models with innovations having a finite mixture of in-

finitely divisible distributions. The option valuation model can provide market

practitioners with a convenient and flexible way to price options under various

forms of mixture GARCH models, which can incorporate different degrees of

conditional skewness and conditional leptokurtosis of the distribution of the

asset returns. The market described by the discrete-time mixture GARCH

models is incomplete and, hence, there are infinitely many equivalent mar-

tingale measures. We shall employ the doubly stochastic Esscher transform

to determine an equivalent martingale measure for pricing. The pricing result

can be justified by a stochastic version of the power utility maximization. Em-

pirical results for comparing the call and put option prices obtained from the

mixture GARCH models with those from the standard Black-Scholes model

based on the recent 25-year S&P 500 data will be presented and discussed.

6.1
Asset Price Dynamics and Pricing Model

We consider a discrete-time financial model consisting of one risk-free bond

B and one risky stock S. We assume that the dynamics of the risky stock

is governed by a mixture GARCH model with innovations having a finite

mixture of infinitely divisible distributions. The mixture GARCH model

can incorporate various parametric forms of the mixture GARCH models,

such as the Normal-Mixture (NM) GARCH models in Alexander and Lazar

(2006)(1), the GARCH models with innovations having a finite mixture of

shifted gamma distributions and a finite mixture of shifted Inverse Gaussian
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distributions. It provides market practitioners with a great deal of flexibility

in modelling various empirical “stylised” behavior of asset price dynamics, like

the conditional skewed and leptokurtosis (or heavy-tailed) behaviors of the

asset returns. In the following, we present the setup of the model.

First, we describe the general mixture GARCH model. Let (Ω,F ,P) be

a complete probability space, where P is a real-world probability. Let T be the

time index set {0, 1, 2, . . . , T} of the financial model. Let S := {St}t∈T denote

a stochastic process defined on (Ω,F) with state space R+, where R+ is the

set of non-negative real numbers. For each t ∈ T , St represents the price of the

risky stock S at time t. Write FS := {FS
t }t∈T for the P-augmentation of the

natural filtration generated by the process S. For each t ∈ T , FS
t represents

the observable information about the prices of the risky stock S up to and

including time t. Let B := {Bt}t∈T denote the price process of the risk-free

bond B, which is assumed to be a deterministic process.

Let {ξt}t∈T denote a stochastic process defined on (Ω,F) taking values

on the real line R, with ξt ∼ D(0, ht) and ξ0 = 0, which represents the

random fluctuations of the returns from the risky asset S. For each t ∈ T ,

we call ξt the innovation of asset return at time t. For each k = 1, 2, . . . , K,

let hk := {hkt}t∈T \{0} denote a stochastic process on (Ω,F) with state space

R+, where R+ is the set of positive real numbers. For each k = 1, 2, . . . , K,

we assume that the dynamics of hk is governed by the following GARCH(p,

q) structure:

hkt = αk0 +

q∑

j=1

αkjξ
2
t−j +

K∑

i=1

p∑

l=1

βkilhi,t−1 , (6-1)

where p ≥ 1, q ≥ 1 and αk0 > 0, αkj ≥ 0, j ∈ {1, 2, . . . , q}, βkil ≥ 0,

l ∈ {1, 2, . . . , p} in order to ensure the positivity of hkt.

In the particular case of the GARCH(1, 1) that we are going to deal

with, for ensuring covariance stationarity of the GARCH(1, 1) structure for

each k = 1, 2, . . . , K, we further impose the condition that the matrix

α1p
T +B

has all the eigenvalues smaller than 1, where α1 = [α11, α21, ..., αK1]
T , p =

[p1, p2..., pK ]T and B = βki; k, i = 1, ..., K.

Write U := {Ut}t∈T for a sequence of independent and identically

distributed (i.i.d.) K-dimensional random vectors, which take values from the

state space U := {e1, e2, . . . , eK}, where ek := (0, 0, . . . , 1, . . . , 0, 0) ∈ RK is

a unit vector with one in the kth component and zero otherwise. We suppose
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that the common probability distribution of Ut is specified by:

P(Ut = ek) = pk , k = 1, 2, . . . , K , (6-2)

where pk ≥ 0 and
∑K

k=1 pk = 1.

Let H := {Ht}t∈T \{0} denote a stochastic process on (Ω,F) with

state space H := {h1t, h2t, . . . , hKt}. For each t ∈ T \{0}, let Ht :=

(h1t, h2t, . . . , hKt). Then, we can write Ht as follows:

Ht =< Ht, Ut >=
K∑

k=1

< Ht, ek >< Ut, ek > . (6-3)

Write FU
t for the information set generated by the values of the process U up

to and including time t. Write Ft for the enlarged information set FS
t−1 ∨ FU

t

generated by FS
t−1 and FU

t . We shall specify the distributional structure of the

process {ξt}t∈T .

F (x|0, Ht) =
K∑

k=1

F (x|0, < Ht, ek >) < Ut, ek >=
K∑

k=1

F (x|0, hkt) < Ut, ek > .(6-4)

Hence, the conditional distribution of ξt given the observable information set

FS
t−1 is given by the following finite mixture of infinitely divisible distributions:

Fξ(x|FS
t−1) =

K∑

k=1

pktF (x|0, hkt) , (6-5)

where F (· · · |0, hkt) is the mixing kernel of the mixture distribution.

We write ξt|FS
t−1 ∼ MID(p1, . . . , pK ;h1t, . . . , hKt), which represents the

finite mixture of infinitely divisible distributions. We shall introduce the price

dynamics of the risk-free bond B and the underlying risky asset S. Let rt be the

continuously compounded risk-free interest rate of the bond B over the time

interval [t − 1, t], where t ∈ T \{0}; λt the unit risk premium over the time

interval [t − 1, t]. We suppose that both rt and λt are deterministic functions

of time t. Then, we assume that, under P , the dynamics of the bond-price

process {Bt}t∈T and the stock-price process {St}t∈T satisfy:

Bt = Bt−1e
rt , B0 = 1 ,

St = St−1 exp(rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut > +ξt) , S0 = s ,(6-6)

for each t ∈ T \{0}.
For each t ∈ T \{0}, Yt denotes the continuously compounded one-period
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rate of return ln( St

St−1
) of the stock S. Clearly, Yt is measurable with respect

to the observable information set FS
t . Then, under P , the dynamics of Yt is

governed by the following GARCH(p, q) model with innovations having a finite

mixture of infinitely divisible distributions:

Yt = rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut > +ξt ,

ξt|FS
t−1 ∼ MID(p1, . . . , pK ;h1t, . . . , hKt) ,

hkt = αk0 +

q∑

j=1

αkjξ
2
t−j +

K∑

i=1

p∑

l=1

βkilhi,t−1 . (6-7)

The above model is called MID(K)-GARCH (p, q) model. It can in-

corporate the general form NM(K)-GARCH(p, q) specified by Haas, Mit-

tnik and Paolella (2002) (32) without explanatory variables and the NM(K)-

GARCH(1,1) examined by Alexander and Lazar (2006)(1). The model by

Haas, Mittnik and Paolella (2002)(32) can incorporate the cross dependence

of individual conditional variances by assuming the inter-dependent autore-

gressive evolution of the time series of conditional variances. Alexander and

Lazar (2006)(1) mentioned that the mixture GARCH model can be related to

other important GARCH models with non-normal innovations and the class

of Markov-Switching GARCH models. In fact, the MID(K)-GARCH (p, q)

model can be considered a particular case of a general class of regime-switching

GARCH(p, q) models with innovations having a finite mixture of infinitely di-

visible distributions and the GARCH dynamics driven by a hidden Markov

chain model. The MID(K)-GARCH (p, q) model is different from the one in

Alexander and Lazar (2006)(1) in two aspects. First, the proposed mixture

GARCH model here has a time-varying drift depending on the conditional

volatility of the return’s process while the mixture GARCH model in Alexan-

der and Lazar (2006)(1) has a constant drift. Second, the proposed mixture

GARCH model has a general mixing kernel, which is specified by an infinite

divisible distribution with a finite moment generating function. Hence, it is

flexible enough to incorporate the Normal-Mixture (NM) GARCH models in

Alexander and Lazar (2006)(1), the GARCH models with innovations having

a finite mixture of shifted gamma distributions and a finite mixture of shifted

Inverse Gaussian distributions, and others. This provides market practitioners

with a great deal of flexibility in modelling different empirical “stylised” behav-

iors of asset price dynamics, such the skewed behavior and the leptokurtosis

behavior of the distribution of asset’s returns.

We shall present the discrete-time doubly stochastic Esscher transform in

the sequel. The doubly stochastic Esscher transform is defined by the product
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of two stochastic processes. The idea is similar with the conditional Esscher

transform introduced in Bühlmann et al. (1996)(9). Elliott, Siu and Chan

(2006)(23) considered a similar type of doubly stochastic Esscher transform,

namely the regime-switching Esscher transform, in the context of a continuous-

time regime-switching Geometric Brownian Motion model. The discrete-time

version of the regime-switching Esscher transform has been adopted in Elliott,

Siu and Chan (2006)(23) for pricing options under a discrete-time Markov-

switching GARCH models.

First, we consider a real-valued stochastic process {Θt}t∈T \{0} defined

on (Ω,F). We assume that for each t ∈ T \{0}, Θt is measurable with respect

to FU
t .

Let MY (t,Θt) denote the moment generating function of Yt given FS
t−1

under P ; that is,

MY |FS
t−1

(t,Θt) := EP(eΘtYt |FS
t−1) . (6-8)

We assume that EP(eΘtYt |FS
t−1) < ∞, for t ∈ T \{0}. As in Bühlmann et al.

(1996)(9), we define a sequence {Λt}t∈T with Λ0 = 1 as follows:

Λt =
t∏

u=1

eΘuYu

MY (u,Θu)
, t ∈ T \{0} , (6-9)

where Λt is specified by a product of two stochastic processes {Θt}t∈T \{0} and

{Yt}t∈T \{0}.

Lemma 36 {Λt}t∈T is a (F ,P)-martingale.

Proof : From its definition, Λt is Ft+1-measurable, for each t ∈ T and that

EP

(
Λt

Λt−1

∣∣∣∣F
S
t−1

)

= EP

[
eΘtYt

EP(eΘtYt |FS
t−1)

∣∣∣∣F
S
t−1

]

= 1 , P − a.s. (6.1)

Hence, the result follows. �

Then, the doubly stochastic Esscher transform PΘ ∼ P on Ft with

respect to {Θ1,Θ2, . . . ,Θt−1} is given by:

dPΘ

dP

∣∣∣∣
Ft

:= Λt−1 , t = 2, 3, . . . , T + 1 . (6-2)
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Let MY (z, t; Θ) be the moment generating function of Yt given Ft under PΘ.

Then, we have the following lemma:

Lemma 37

MY (z, t; Θ) =
MY (t, z + Θt)

MY (t,Θt)
. (6-3)

Proof : The proof is adapted to the argument in Elliott, Siu and Chan

(2006)(23) in the case of mixture GARCH models. By Baye’s rule,

MY (z, t; Θ) = EPΘ
(ezYt |FS

t−1)

=
EP(Λte

zYt|FS
t−1)

EP(Λt|FS
t−1)

= EP

(
Λt

Λt−1

ezYt

∣∣∣∣F
S
t−1

)

=
EP(e(z+Θt)Yt |FS

t−1)

EP(eΘtYt |FS
t−1)

=
MY (t, z + Θt)

MY (t,Θt)
. (6-4)

Hence, the result follows. �

Harrison and Krep (1979) (33)and Harrison and Pliska (1981, 1983)(34,

35) provided a solid theoretical foundation to establish the relationship be-

tween the absence of arbitrage and the existence of an equivalent martingale

measure using the modern language of probability. They introduced the fun-

damental theorem of asset pricing which states that the absence of arbitrage is

equivalent to the existence of an equivalent martingale measure under which

the discounted asset price process is a martingale. The fundamental theorem of

asset pricing was then further extended by Dybyig and Ross (1987)(20), Back

and Pliska (1991)(2), Schachermayer (1992)(39) and Delbaen and Schacher-

mayer (1994)(15). Back and Pliska (1991)(2) has shown that the absence of

arbitrage is equivalent to the existence of an equivalent martingale measure in

a discrete-time and an infinite-state-space setting.

We shall determine an equivalent martingale measure using the doubly

stochastic Esscher transform PΘ. The sufficient condition on Θt for PΘ to be

an equivalent martingale measure is presented in the following proposition.

Proposition 38 (Martingale Condition) Suppose Θt satisfies the following

condition:

MY (t,Θt + 1)

MY (t,Θt)
= ert . (6-5)
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Then, the discounted price process {exp(−∑t
u=1 ru)St}t∈T is a (F ,PΘ)-

martingale.

Proof :

EPΘ

(
e−

∑t
u=1 ruSt

∣∣∣∣F
S
t−1

)

= e−
∑t−1

u=1 ruSt−1EPΘ
(eYt−rt|FS

t−1)

= e−
∑t−1

u=1 ruSt−1EP

[(
Λt

Λt−1

)
eYt−rt

∣∣∣∣F
S
t−1

]

= e−
∑t−1

u=1 ruSt−1e
−rt

EP(e(Θt+1)Yt |FS
t−1)

EP(eΘtYt|FS
t−1)

= e−
∑t−1

u=1 ruSt−1e
−rt

MY (t,Θt + 1)

MY (t,Θt)

= e−
∑t−1

u=1 ruSt−1 , P − a.s. (6-6)

Hence, the result follows.

�

Note that the existence and uniqueness of Θt satisfying the condition

in Proposition 2.3 can be proved by following the arguments in Chan and

van-der Hoek (2003) (11). The martingale condition with respect to the

enlarged filtration {Ft}t∈T is stronger than that with respect to the observable

information structure {FS
t }t∈T . In other words, if there exists a probability

measure PΘ satisfying the martingale condition with respect to {Ft}t∈T , PΘ

also satisfies the martingale condition with respect to {FS
t }t∈T . This can be

verified easily by the double expectation formula for conditional expectations.

Then, given Ft := FS
t−1 ∨ FU

t , the price of a European-style contingent

claim written on the underlying stock S with payoff V (ST ) at maturity T is

given by:

V (t− 1, T |Ft) = EPΘ

[
exp

(
−

T∑

u=t

ru

)
V (ST )

∣∣∣∣Ft

]
. (6-7)

Given the observable information FS
t−1, the price of the option can be deter-

mined as follows:

V (t− 1, T |FS
t−1) = EPΘ

[V (t− 1, T |Ft)|FS
t−1]

= EPΘ

[
exp

(
−

T∑

u=t

ru

)
V (ST )

∣∣∣∣F
S
t−1

]
.

In order to compute the option price V (t − 1, T |FS
t−1) under a given para-
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metric distribution for the innovations, we first need to estimate the unknown

parameters of the mixture GARCH model using the observed market price

data for S under P and then simulate the terminal stock prices from the mix-

ture GARCH model under PΘ for approximating V (t − 1, T |FS
t−1) via Monte

Carlo simulation coupled with its control variates technique. Due to the struc-

ture of the mixture GARCH model, its likelihood function can be determined

completely given the observed market price data FS
t−1. Hence, we do not need

to use information from the values of the hidden mixing process {Ut}t∈T \{0}

for the estimation part. However, in the Monte Carlo simulation, we need to

generate the values of the process {Ut}t∈T \{0} and the values of the innova-

tions process {ξt}t∈T \{0} for simulating the terminal stock prices. In section 4,

we shall discuss in some detail the estimation and simulation procedures for

computing the prices of a European call option under two parametric mixture

GARCH models described in Section 3.

We shall justify the pricing result by a power utility maximization

problem with respect to Ft. For each t ∈ T \{0}, let ζt denote a random

variable measurable with respect to Ft. Then, for each t ∈ T \{0}, we consider

a power utility function ut with the stochastic risk-averse parameter ζt; that

is, for each t ∈ T \{0},

ut(x) =

{
x1−ζt

1−ζt
if ζt 6= 1,

ln x if ζt = 1.

Equivalently, the power utility function can be written as:

ut(x) =
x1−ζt

1 − ζt
I{ζt 6=1} + (lnx)I{ζt=1} . (6-8)

We call the above power utility function a stochastic power utility function. We

assume that an economic agent can adjust the stochastic risk-averse parameter

ζt based on Ft. For each t ∈ T \{0}, following Gerber and Shiu (1994) (31),

we impose the following assumptions:

1. The economic agent has mt units of stock S and ηt units of the option

from time t− 1 to time t, where mt, ηt ∈ Ft.

2. Ṽ (t− 1, T |Ft) represents the economic agent’s equilibrium price at time

t− 1 of the option with maturity at time T so that it is optimal for the

agent not to buy or sell any units of the option at time t− 1.

For each t ∈ T \{0}, the conditional expected utility function Ut on the
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economic agent’s wealth at time t given Ft under P is given by:

Ut(ηt)

= EP

{
ut

(
mtSt + ηt

[
Ṽ (t, T |Ft+1) − ertṼ (t− 1, T |Ft)

])∣∣∣∣Ft

}
, (6-9)

where ηt is the choice variable.

The following proposition justifies the pricing result by the doubly

stochastic Esscher transform.

Proposition 39 For each t ∈ T \{0},

V (t− 1, T |Ft) = Ṽ (t− 1, T |Ft) , (6-10)

and

ζt = −Θt . (6-11)

Proof : We follow the argument in Gerber and Shiu (1994)(31). The optimal

condition of the conditional expected utility function on the economic agent’s

wealth is equivalent to that Ut(ηt) attains its maximum value when ηt = 0, for

each t ∈ T \{0}. Mathematically, this can be translated to:

Ut
′(ηt)|ηt=0 = 0 , (6-12)

where Ut
′ is the derivative of Ut with respect to ηt.

For simplicity, we write Ṽt−1 for Ṽ (t − 1, T |Ft). Then, the optimal

condition implies that

Ṽt−1 = e−rt
EP [Ṽtut

′(mtSt)|Ft]

E[ut
′(mtSt)|Ft]

, (6-13)

where ut
′ is the derivative of ut with respect to ηt.

We notice that

ut
′(x) = x−ζtI{ζt 6=1} + (1/x)I{ζt=1} . (6-14)

Then,

Ṽt−1 = e−rt

{
E[Ṽt(mtSt)

−ζt|Ft]

E[(mtSt)−ζt|Ft]
I{ζt 6=1} +

E[Ṽt/(mtSt)|Ft]

E[1/(mtSt)|Ft]
I{ζt=1}

}

= e−rt
E[Ṽt(mtSt)

−ζt|Ft]

E[(mtSt)−ζt|Ft]
. (6-15)
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Since the above result applies for any option, it can be applied for the

underlying asset S. Hence,

St−1 = e−rt
E(S1−ζt

t |Ft)

E(S−ζt

t |Ft)

= e−rtSt−1
E(e(1−ζt)Yt|Ft)

E(e−ζtYt |Ft)

= e−rtSt−1
MY (t, 1 − ζt)

MY (t,−ζt)
. (6-16)

Then,

MY (t, 1 − ζt)

MY (t,−ζt)
= ert . (6-17)

Hence, by uniqueness of Θt satisfying the martingale condition,

ζt = −Θt , (6-18)

and

Ṽt−1 = Vt−1 . (6-19)

�

6.2
Parametric Cases

In this section, we deal with some parametric cases, namely the Normal-

Mixture (NM) GARCH model and the mixture GARCH model with innova-

tions having a finite mixture of shifted gamma distributions. We consider K-

component first-order mixture GARCH models in this section. The derivation

of the pricing result for the case when the innovations have a finite mixture

of shifted inverse Gaussian distributions is very similar to that of the finite

mixture of shifted gamma distributions. We are able to preserve the paramet-

ric forms of the distributions for the GARCH innovations under the change of

probability measures using the doubly stochastic Esscher tranform in Section

2.

6.2.1
Normal-Mixture (NM) GARCH models

First, we assume that under P , the conditional distribution of ξt given

FS
t−1 is a normal distribution N(0, < Ht, Ut >) with mean 0 and conditional
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variance < Ht, Ut >, for each t ∈ T \{0}. Then, the conditional distribution

of ξt given FS
t−1 under P is given by the following finite mixture of normal

distributions:

Fξ(x|FS
t−1) =

K∑

k=1

pkN(x|0, hkt) ,
K∑

k=1

pk = 1 . (6-20)

The conditional distribution of Yt given FS
t−1 under P is a normal distri-

bution N(rt + λt

√
< Ht, Ut > − 1

2
< Ht, Ut >,< Ht, Ut >) with mean

rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut > and variance < Ht, Ut >, where the distri-

bution of Ut is given by:

P (Ut = ek) = pk ,

and the dynamics of hk is governed by:

hkt = αk0 + αk1ξ
2
t−1 +

K∑

k=1

βki1hi,t−1 ,

for each k = 1, 2, . . . , K. Hence we have

Yt = rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut > +ξt ,

ξt|FS
t−1 ∼ NM(p1, . . . , pK ;h1t, . . . , hKt) ,

hkt = αk0 + αk1ξ
2
t−1 +

K∑

i=1

βki1hi,t−1 .

Then,

MYt|FS
t−1

(t,Θt) = exp

[
Θt

(
rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut >

)
+

1

2
Θ2

t < Ht, Ut >

]
.(6-21)

From the martingale condition proposition, the risk-neutralized stochastic

Esscher parameter Θt is given by:

Θt = − λt√
< Ht, Ut >

= −λt

K∑

k=1

1√
hkt

< Ut, ek > , t ∈ T \{0} . (6-22)

The moment generating function MYt|FS
t−1

(z, t; Θ) is given by:

M θ
Yt|FS

t−1
(z, t; Θ) = exp[z(r − 1

2
< Ht, Ut >) +

1

2
z2 < Ht, Ut >] .(6-23)

Hence, under PΘ, the conditional distribution of Yt given FS
t−1 is a normal
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distribution with conditional mean rt − 1
2
< Ht, Ut > and conditional variance

< Ht, Ut >, where

P (Ut = ek) = pk , (6-24)

and

hkt = αk0 + αk1ξ
2
t−1 +

K∑

i=1

βki1hi,t−1 . (6-25)

for each k = 1, 2, . . . , K.

Note that ξt|FS
t−1 ∼ N(−λt

√
< Ht, Ut >,< Ht, Ut >) under PΘ. Let ǫt−1 :=

ξt−1 + λt−1

√
< Ht−1, Ut−1 >. Then, under PΘ, ǫt|FS

t−1 ∼ N(0, < Ht, Ut >). We

can write the dynamics of hkt as follows:

hkt = αk0 + αk1(ǫt−1 − λt−1

√
< Ht−1, Ut−1 >)2 +

K∑

i=1

βki1hi,t−1 .(6-26)

We have just proved the following Theorem:

Theorem 40 Let

Yt = rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut > +ξt ,

ξt|FS
t−1 ∼ NM(p1, . . . , pK ;h1t, . . . , hKt) ,

hkt = αk0 + αk1ξ
2
t−1 +

K∑

i=1

βki1hi,t−1 .

be the model in the real world probability P. Then, the risk neutral version of

the model is:

Yt = rt −
1

2
〈Ht, Ut〉 + ǫt

ǫt|FS
t−1 ∼ N (0, 〈Ht, Ut〉)

hkt = αk0 + αk1

(
ǫt−1 − λt−1

√
〈Ht−1, Ut−1〉

)2

+
K∑

i=1

βki1hi,t−1

6.2.2
Shifted-Gamma-Mixture (SGM) GARCH models

We assume that the innovations for the general mixture GARCH model in

Section 2 follow a finite mixture of shifted gamma distributions. First, for each

k = 1, 2, . . . , K, we consider a sequence of i.i.d. random variables {X(k)
t }t∈T \{0}
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with common distribution being a gamma distribution Ga(ak, b) with shape

parameter ak and scale parameter b. For each t ∈ T \{0}, we define the random

variable ν
(k)
t by standardizing the gamma random variable Xt as follows:

ν
(k)
t :=

X
(k)
t − ak/b√
ak/b2

. (6-27)

Note that ν
(k)
t follows a standard shifted gamma distribution SGa(·|0, 1) with

zero mean and unit variance, for each k = 1, 2, . . . , K. For each t ∈ T \{0}, let

Vt := (ν1, ν2, . . . , νK) and νt be defined as follows:

νt :=< Vt, Ut >=
K∑

k=1

< Vt, ek >< Ut, ek >=
K∑

k=1

νk < Ut, ek > . (6-28)

Then, νt follows a standard shifted gamma distribution SGa(·|0, 1) with zero

mean and unit variance.

We assume that ξt := −√
< Ht, Ut >νt; then, ξt = −

∑K
k=1

√
hktν

(k)
t <

Ut, ek >. Hence, the conditional distribution of ξt given FS
t−1 under P is

minus a shifted gamma distribution SGa(·|0, < Ht, Ut >) with zero mean and

variance < Ht, Ut >=
∑K

k=1 hkt < Ut, ek >. Then, the conditional distribution

of ξt given FS
t−1 is given by the following finite mixture of shifted gamma

distributions:

Fξ(x|FS
t−1) =

K∑

k=1

pkSGa(x|0, hkt) ,
K∑

k=1

pk = 1 , (6-29)

where SGa(·|0, hkt) is the probability distribution of a shifted gamma distri-

bution with mean 0 and variance hkt.

We write ξt|FS
t−1 ∼ −MSGa(p1, . . . , pK ;h1t, . . . , hKt). Hence, under

P , the conditional distribution of Yt given FS
t−1 is minus a shifted gamma

distribution SGa(·|rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut >,< Ht, Ut >) with mean

rt + λt

√
< Ht, Ut > − 1

2
< Ht, Ut > and variance < Ht, Ut >. Then, under

P , the dynamics of Yt is governed by the following K-component first-order

mixture GARCH model with innovations having a finite mixture of shifted

gamma distributions:

Yt = rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut > +ξt ,

ξt|FS
t−1 ∼ −MSGa(p1, . . . , pK ;h1t, . . . , hKt) ,

hkt = αk0 + αk1ξ
2
t−1 +

K∑

i=1

βki1hi,t−1 . (6-30)
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Let A := (a1, a2, . . . , aK) and At be defined as follows:

At :=< A,Ut >=
K∑

k=1

ak < Ut, ek > . (6-31)

We can also write the dynamics of {Yt}t∈T \{0} under P as follows:

Yt =
K∑

k=1

(
rt + λt

√
< Ht, ek >− 1

2
< Ht, ek > +

√
< A, ek >< Ht, ek >

−b
√
< Ht, ek >

< A, ek >
X

(k)
t

)
< Ut, ek >

=
K∑

k=1

(
rt + λt

√
hkt −

1

2
hkt +

√
akhkt − b

√
hkt

ak

X
(k)
t

)
< Ut, ek > .(6-32)

Define Bt as
√

At

Ht
; that is,

Bt =
K∑

k=1

√
ak

hkt

< Ut, ek > . (6-33)

Then, the conditional distribution of Yt given FS
t−1 is minus a shifted gamma

distribution with shape parameter At, scale parameter Bt and shifted param-

eter −rt −λt

√
< Ht, Ut >+ 1

2
< Ht, Ut > −√

< A,Ut >< Ht, Ut >. Hence, the

moment generating function of Yt given FS
t−1 under P is given by:

MY |FS
t−1

(t,Θt) =

(
Bt

Bt + Θt

)At

e(rt+λt

√
Ht− 1

2
Ht+

√
AtHt)Θt , (6-34)

where 0 < Bt + Θt.

Hence, under PΘ, the moment generating function of Yt given FS
t−1 is

given by:

M θ
Y |FS

t−1
(t, z; Θt) =

(
Bt + Θt

Bt + Θt − z

)At

e(rt+λt

√
Ht− 1

2
Ht+

√
AtHt)z . (6-35)

From the martingale condition, the risk-neutralized stochastic Esscher param-

eter Θt is given by:

Θt =

[
e

λt
√

Ht−
1
2 Ht+

√
AtHt

At − 1

]−1

−Bt (6-36)
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Then, we define the parameter B̃t as follows:

B̃t := Bt + Θt

=

[
e

λt
√

Ht−
1
2 Ht+

√
AtHt

At − 1

]−1

=
K∑

k=1

[
e

(
λt
√

hkt−
1
2 hkt+

√
akhkt

ak

)

− 1

]−1

< Ut, ek > , t ∈ T \{0} .

Hence, under PΘ, Yt|FS
t−1 follows a minus shifted gamma distribution with

shape parameter At, scale parameter B̃t and shifted parameter −rt −
λt

√
< Ht, Ut >+ 1

2
< Ht, Ut > −√

< A,Ut >< Ht, Ut >, where

P (Ut = ek) = pk . (6-37)

Let Xq
t denote a random variable such that Xq

t |FS
t−1 ∼ − 1

B̃t
Ga(At, 1). Then,

hkt = αk0 + αk1

(
Xq

t−1 +
√
At−1Ht−1

)2

+
K∑

i=1

βki1hi,t−1 ,

where k = 1, 2, . . . , K.

From the discussion above we have:

Theorem 41 Let the model under P be:

Yt = rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut > +ξt ,

ξt|FS
t−1 ∼ −MSGa(p1, . . . , pK ;h1t, . . . , hKt)

hkt = αk0 + αk1ξ
2
t−1 +

K∑

i=1

βki1hi,t−1 .

Then, under the risk neutral measure the model becomes:

Yt = rt + λt

√
< Ht, Ut >− 1

2
< Ht, Ut > +

√
< A,Ut >< Ht, Ut >+Xq

t ,

Xq
t |FS

t−1 ∼ − 1

B̃t

Ga(At, 1)

hkt = αk0 + αk1

(
Xq

t−1 +
√
At−1Ht−1

)2

+
K∑

i=1

βki1hi,t−1 ,

Finally, we note that the scale parameter b does not appear in both the

real-world and the risk-neutral dynamics due to the structure of the mixture
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shifted-gamma model for the innovations.

6.3
Empirical Results and Discussion

In this section we conduct a simulation exercise in order to compare the

option prices induced by assuming different processes for the log-returns of the

underlying asset.

We consider the two-component mixture GARCH(1, 1) models with a

finite mixture of normal innovations and a finite mixture of shifted gamma

innovations for illustration. We employ the daily close values of S&P500 index

from November 7, 1980, to November 4, 2005, 25 years of data with 6,130

observations. The data were obtained from the database in Yahoo Finance.

We estimate the parameters underlying the option pricing models for empirical

studies using the 25-year S&P500 index data. We assume that the risk-free

interest rate r is zero and that the unit risk premium is a constant λ throughout

this section as in Duan (1995)(17) and Siu et al. (2004)(43).

We shall discuss the estimation procedures and the estimation results for

the two-mixture GARCH models in the sequel. Tong (1990)(45) and Fan and

Yao (2003)(27) mentioned that the conditional maximum likelihood estimation

enjoys some desirable sampling and asymptotic properties. For estimating

the two-component mixture GARCH model with a finite mixture of normal

innovations, we employ the conditional maximum likelihood estimation. For

estimating the two-component mixture GARCH models with a finite mixture of

shifted gamma distributions, we use a two-stage estimation procedure adopted

in Siu et al. (2004) (43). In the first-stage, the quasi-maximum likelihood

estimation (QMLE) is used to estimate the mixture GARCH parameters,

namely pk, αk0, αk1, βk11 and βk21, where k = 1, 2. The QMLE is an

approximation to the exact MLE by assuming that the innovations of a time

series model follow a normal distribution even though the “true” innovations

may not be normally distributed. In the QMLE, the exact likelihood is replaced

by the normal likelihood. Franses and van Dijk (2000) (30) mentioned that if

it is not sure whether the specified parametric assumption for the GARCH

innovations is correct, the QMLE can be employed for estimation. Fan and

Yao (2003) (27) pointed out that one does not know the “true” distribution

for the innovations in practice and, hence, the QMLE can provide a practical

way to estimate the parameters in a GARCH model. In fact, the QMLE

method can provide market practitioners with a convenient way to estimate

non-normal GARCH models since many standard computing and statistical

packages have included the conditional MLE for GARCH models with normal
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innovations. One undesirable feature of the QMLE is that the standard errors

of the estimates are larger than those obtained by the exact MLE in the

finite sample case. However, the QMLE also enjoys some desirable asymptotic

properties and the standard errors of the estimates from the QMLE can be

reduced by estimating the model using a large data set. In the second-stage

of our estimation, we adopt the method of moments approach to estimate

the unknown parameters in the finite mixture of shifted gamma distributions.

Tong (1990) (45) mentioned that the method of moments is one of the common

approaches to estimate parametric non-linear time series models. Gerber and

Shiu (1994)(31) employed the method of moments approach to estimate the

unknown parameter in the shifted gamma distribution underlying their option

pricing model. Taylor (1986)(44) pioneered the use of the method of moments

approach for estimating stochastic volatility models. Here, given the observed

market data of the logarithmic returns {Y1, Y2, . . . , YN} and the values of

the estimated parameters p̂k, α̂k0, α̂k1, β̂k11 and β̂k21 (k = 1, 2), we can

employ the three realized time series {ξ1, ξ2, . . . , ξN}, {h11, h12, . . . , h1N} and

{h21, h22, . . . , h2N} to evaluate the method of moments estimators for the

shifted gamma parameters, namely â1 and â2. By using the method of moments

approach for the mixture GARCH model and matching the theoretical and

the empirical third moments of the shifed-gamma innovations, we provide the

following formula for the method of moments estimators â1 and â2:

â1 =
1

(
B+
√

1−p1

p1

(
A − B2

))2 and â2 =
1

(
B+
√

p1

1−p1

(
A − B2

))2

where

B =
1

2

∑N
t=1 ξ

3
t∑N

t=1 h
3/2
t

and A =
1

6

∑N
t=1 ξ

4
t∑N

t=1 h
2
t

− 1

2

and

ξ3
t = p1

[
Yt −

(
λ
√
h1,t −

1

2
h1,t

)]3

+ (1 − p1)

[
Yt −

(
λ
√
h2,t −

1

2
h2,t

)]3

h
3/2
t = p1h

3/2
1,t + (1 − p1)h

3/2
2,t

ξ4
t = p1

[
Yt −

(
λ
√
h1,t −

1

2
h1,t

)]4

+ (1 − p1)

[
Yt −

(
λ
√
h2,t −

1

2
h2,t

)]4

h2
t = p1h

2
1,t + (1 − p1)h

2
2,t

The first table below, displays the estimation results for the mixture

GARCH parameters pk, αk0, αk1, βk11 and βk21 (k = 1, 2) using the QMLE in

the first-stage of the estimation procedure. Both the estimation results based
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on the 25-year S&P 500 index data are presented. The estimation results were

obtained using R package “rgenoud” to search for an optimum of the log-

likelihood.

We consider five pricing schemes for options with 90 days to maturity: the

classical Black and Scholes formulae assuming a GBM process and the discrete-

time doubly stochastic Esscher transform method for GARCH and Mixture of

GARCHs (henceforth MGARCH) processes, each one with Normal and shifted-

Gamma innovations(henceforth NMGARCH and SGMGARCH respectively).

In the Normal and Gamma codes we simulated 10000 times but as in the

Normal case we used the antithetic method we actually have 20000 prices. In

both cases the control variate technique was used.

The five pricing schemes are applied to two artificial series produced by a

Mixture of GARCH model with Normal and Shifted-Gamma innovations with

3200 data points, obtained after a warm-up period of 1000 observations. The

MGARCH parameters are given in the table 6.1.

Mixture of GARCHs Parameters
α [1.275531 × 10−4, 0.433127; 1.965270 × 10−9, 4.315862 × 10−2]
β [0.383459, 0.182873; 3.035471 × 10−3, 0.935921]
λ 7.715479 × 10−2

p [0.068147, 0.9319]
a (Gamma case) [0.0964, 6.0256]

Table 6.1: Parameters for the Mixture of GARCHs. Each line in the matrices
α, β contains the parameters of a regime.

In order to find the Black and Scholes price we only need the volatility

estimated by the sample variance, 2.0186 × 10−4, for the Normal data and

6.0211 × 10−5 for the Gamma data. because the drift is not required by the

Black Scholes formulae.

For the estimation of the GARCH parameters we use an iterated two-

stage method. Initially, we suppose ht a constant equal to the sample variance.

Then, we estimate the risk premium by weighted least squares(WLS). Next,

we fit a GARCH(1,1) model to the residuals of the WLS by performing a Quasi

Maximum Likelihhod. We iterate these two steps until convergence is attained.

The estimated parameters are shown in table 6.2.

GARCH Parameters in Normal Case
α 5.1325 × 10−6

β 0.9114
λ 0.0673

Risk Premium 0.1343

Table 6.2: Estimated GARCH Parameters in the Normal Case
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We estimated the parameters using the two stage procedure as described

before and then for finding a we used the method of moments as in Siu et

al(2004)(43) to obtain the expression:

â =

[
2
∑T

t=1 h
3/2
t∑T

t=1 ξ
3
t

]2

(6-38)

which led us to the parameters shown in table 6.3.

GARCH Parameters in Shifted-Gamma Case
α 3.7707 × 10−6

β 0.8631
λ 0.0702

Risk Premium 0.0798
a 22.5253

Table 6.3: Estimated GARCH Parameters in the Gamma Case

Some authors (Gerber and Shiu(1994) (31) and Siu et al. (2004) (43)

) have been using shifted-gamma innovations to model log-returns in order

to handle the skewness that real financial series usually exhibits as can be

seen in Medeiros and Veiga (2009)(36). However, the skewness of the Gamma

distribution is strictly positive whilst financial time series can present both

signs. In practice, before adopting the shifted-gamma model, one may check

if there is any skewness to be modeled. The sign of the asymmetry in the

data, has to be taken into consideration too. Then, one should check for the

sign of the skewness so as to select an appropriate formulation of the shifted-

gamma innovations. In Section 4, we develop a model to incorporate negative

skewness. The positive case is similar, and for the GARCH case it has already

been documented in Siu et al.(2004) (43) but accounts for positive skewness

only. Here, in the Shifted-Gamma case, we perform an experiment consisting of

using a mixture of positive and negative noises. The fisrt regime, will provide

positive innovations whilst the second negative ones.

The resulting prices are presented in tables that follows. We show both

Call and Put option prices. After each option price table there is another table

with the ratio between the price and the the Black Scholes price for each model.

A graph of these comparative tables is also shown.
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Artificial MGARCH Call Prices (Normal data)

K/S0 BS NMGARCH GARCH-Normal SGMGARCH GARCH-Gamma

0.80 20.2451 20.0396 20.3704 20.6131 19.9422
0.85 15.6879 15.1600 15.8647 16.3017 15.0241
0.90 11.5852 10.5621 11.7831 12.4678 10.3457
0.95 8.1130 6.6096 8.3018 9.2143 6.3225
1.00 5.3731 3.6432 5.5584 6.6011 3.3357
1.05 3.3638 1.7641 3.5860 4.6039 1.5130
1.10 1.9930 0.7591 2.2336 3.1507 0.5988
1.15 1.1203 0.3048 1.3582 2.1351 0.2060
1.20 0.5994 0.1208 0.8043 1.4586 0.0720

Table 6.4: Artificial MGARCH Call Prices, and T=90. The parameters used
are in table 1

Table 6.5: Artificial MGARCH Call Price ratios (Normal data)

K/S0 BS NMGARCH GARCH-Normal SGMGARCH GARCH-Gamma
0.8 1.0000 0.9898 1.0062 1.0182 0.9850

0.85 1.0000 0.9663 1.0113 1.0391 0.9577
0.9 1.0000 0.9117 1.0171 1.0762 0.8930

0.95 1.0000 0.8147 1.0233 1.1357 0.7793
1 1.0000 0.6780 1.0345 1.2285 0.6208

1.05 1.0000 0.5244 1.0661 1.3687 0.4498
1.1 1.0000 0.3809 1.1207 1.5809 0.3005

1.15 1.0000 0.2721 1.2124 1.9058 0.1839
1.2 1.0000 0.2015 1.3418 2.4334 0.1201

Call Option ratio (Normal data)

Figure 6.1: Graph of the ratio of Call options
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Artificial MGARCH Call Prices (Gamma data)

K/S0 BS SGMGARCH GARCH-Gamma NMGARCH GARCH-Normal

0.80 20.0023 20.6131 20.0617 20.0396 19.9935
0.85 15.0324 16.3017 15.0553 15.1600 15.0185
0.90 10.2388 12.4678 10.0617 10.5621 10.1955
0.95 6.0304 9.2143 5.3346 6.6096 5.9153
1.00 2.9361 6.6011 1.8991 3.6432 2.7815
1.05 1.1469 4.6039 0.4111 1.7641 1.0286
1.10 0.3553 3.1507 0.0464 0.7591 0.3053
1.15 0.0875 2.1351 0.0042 0.3048 0.0724
1.20 0.0174 1.4586 0.0010 0.1208 0.0157

Table 6.6: Artificial MGARCH Call Prices, and T=90. The parameters used
are in table 1

Table 6.7: Artificial MGARCH Call Price ratios (Gamma data)

K/S0 BS SGMGARCH GARCH-Gamma NMGARCH GARCH-Normal
0.8 1.0000 1.0305 1.0030 1.0019 0.9996

0.85 1.0000 1.0844 1.0015 1.0085 0.9991
0.9 1.0000 1.2177 0.9827 1.0316 0.9958

0.95 1.0000 1.5280 0.8846 1.0960 0.9809
1 1.0000 2.2483 0.6468 1.2408 0.9473

1.05 1.0000 4.0142 0.3584 1.5381 0.8969
1.1 1.0000 8.8677 0.1306 2.1365 0.8593

1.15 1.0000 24.4011 0.0480 3.4834 0.8274
1.2 1.0000 83.8276 0.0575 6.9425 0.9023
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Call Option ratio (Gamma data)

Figure 6.2: Graph of the ratio of Call options
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Artificial MGARCH Put Prices (Normal data)

K/S0 BS NMGARCH GARCH-Normal SGMGARCH GARCH-Gamma

0.80 0.2451 0.0487 0.3486 0.4922 0.0259
0.85 0.6879 0.1752 0.8335 1.0361 0.0844
0.90 1.5852 0.5728 1.7654 2.0291 0.3973
0.95 3.1130 1.5923 3.3021 3.6551 1.3615
1.00 5.3731 3.6200 5.5684 5.9864 3.3947
1.05 8.3638 6.7476 8.5754 8.9910 6.6014
1.10 11.9930 10.7743 12.2063 12.5913 10.7275
1.15 16.1203 15.3253 16.3190 16.6484 15.3697
1.20 20.5994 20.1390 20.7742 21.0324 20.2601

Table 6.8: Artificial MGARCH Put Prices, and T=90. The parameters used
are in table 1

Table 6.9: Artificial MGARCH Put Price ratios (Normal data)

K/S0 BS NMGARCH GARCH-Normal SGMGARCH GARCH-Gamma
0.8 1.0000 0.1987 1.4223 2.0082 0.1057

0.85 1.0000 0.2547 1.2117 1.5062 0.1227
0.9 1.0000 0.3613 1.1137 1.2800 0.2506

0.95 1.0000 0.5115 1.0607 1.1741 0.4374
1 1.0000 0.6737 1.0363 1.1141 0.6318

1.05 1.0000 0.8068 1.0253 1.0750 0.7893
1.1 1.0000 0.8984 1.0178 1.0499 0.8945

1.15 1.0000 0.9507 1.0123 1.0328 0.9534
1.2 1.0000 0.9776 1.0085 1.0210 0.9835
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Put Option ratio (Normal data)

Figure 6.3: Graph of the ratio of Put Options
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Artificial MGARCH Put Prices (Gamma data)

K/S0 BS SGMGARCH GARCH-Gamma NMGARCH GARCH-Normal

0.80 0.0023 0.4922 0.0097 0.0487 0.0030
0.85 0.0324 1.0361 0.0122 0.1752 0.0305
0.90 0.2388 2.0291 0.0489 0.5728 0.2198
0.95 1.0304 3.6551 0.4256 1.5923 0.9632
1.00 2.9361 5.9864 2.0676 3.6200 2.8462
1.05 6.1469 8.9910 5.5272 6.7476 6.0732
1.10 10.3553 12.5913 10.1236 10.7743 10.3267
1.15 15.0875 16.6484 15.0670 15.3253 15.0818
1.20 20.0174 21.0324 20.0585 20.1390 20.0158

Table 6.10: Artificial MGARCH Put Prices, and T=90. The parameters used
are in table 1

Table 6.11: Artificial MGARCH Put Price ratios (Gamma data)

K/S0 BS SGMGARCH GARCH-Gamma NMGARCH GARCH-Normal
0.8 1.0000 214.0000 4.2174 21.1739 1.3043

0.85 1.0000 31.9784 0.3765 5.4074 0.9414
0.9 1.0000 8.4971 0.2048 2.3987 0.9204

0.95 1.0000 3.5473 0.4130 1.5453 0.9348
1 1.0000 2.0389 0.7042 1.2329 0.9694

1.05 1.0000 1.4627 0.8992 1.0977 0.9880
1.1 1.0000 1.2159 0.9776 1.0405 0.9972

1.15 1.0000 1.1035 0.9986 1.0158 0.9996
1.2 1.0000 1.0507 1.0021 1.0061 0.9999
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Put Option ratios (Gamma data)

Figure 6.4: Graph of the ratio of Put options
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We can see that Calls and Puts have a different behavior. In tables 6.9 and

6.11, the put option price ratios have their largest values deep in the money.

The more pronounced effect is in the SGMGARCH scheme. The values are

larger than those in other schemes. Tables 6.5 and 6.7, on the other hand,

show their largest values deep out the money. The more pronounced effect is

again in the SGMGARCH scheme. The values of the SGMGARCH scheme are

much more drastic when the data is generated by Shifted-Gamma noises than

with Normal noises as we can see in the figures. The second largest values

alternates between the NMGARCH scheme for Shift-Gamma data and the

GARCH-Normal for Normal data. The smallest values appears in the GARCH-

Gamma scheme.

To illustrate the changes in the option prices when we change the

measures, we simulated prices under both the physical and risk neutral

measures in all schemes. Then we checked for the proportions of scenarios

where the options were exercised, which then give an estimate of the real-

world probability of exercising an option. We chose S0 = 100 and K = 100 to

perform this exercise. We notice that in all schemes presented in table 6.12,

the prices under the risk neutral measure are less likely to exceed the strike

price than the prices under the physical measure. Note also that the difference

is more pronounced than in the FC-GARCH schemes in chapter 5.

Table 6.12: Average rate of exercising

Model/rate Risk Neutral Measure Physical Measure

NMGARCH 0.4824 0.7720
SGMGARCH 0.4665 0.7620

Gamma GARCH 0.4832 0.7652
Normal Garch 0.4692 0.8872

GARCH-Gamma with Normal data 0.4827 0.8813
GARCH-Normal with Gamma data 0.4856 0.7639
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6.4
Sensitivity Analysis

Now we are going to check how the option prices change when some

of the parameters are disturbed. We performed simulations imposing a small

variation around the values of the parameters.

Proceeding with this exercise we capture the importance of each param-

eter in the option prices. We perform this analysis with the MGARCH models

having Normal and Shifted-Gamma innovations.

6.4.1
Normal innovations

If we increase the value of α12, by steps of 0.05 the option price does not

change significantly. We made 5 variations in steps of 0.01 for α22 and as we

increase its value, the option value also increases.

We made β11 with increments of 0.05, and for β21 in steps of 0.001 and

the option price slightly increased. For β12 the effect is not clear. On the other

hand for the β22 with 0.05 increments, we can clearly see the increase effect on

option prices.

The p parameter increases the value of the option as is shown in figure

11. We performed 5 varations from 0.0081 to 0.1281 in steps of 0.03.

The risk premium didn’t show any clear effect. The graphics shows five

variations of the risk premium with steps of 0.05 and 0.1. It seems having an

increasing trend, but this increase is very slightly even performing steps of 0.1.

6.4.2
Shifted Gamma innovations

If we increase the value of α12 and α22 , by steps of 0.05 and 0.01

respectively the option price does not have a monotonic pattern.

We made for β11 increments of 0.05, and the option price does not have

a monotonic pattern. For β12, β21 and β22 the effect is not clear too.

We performed 5 varations of the p parameter from 0.0081 to 0.1281 in

steps of 0.03. No clear effect was noticed.

The a1 parameter doesn’t have a clear effect on the option prices. a1

was varied swith increments of 0.01 and 0.03. In any of the cases there was

a monotonic pattern. a2 started from its value having increments of 0.03 and

also varied but without a monotonic clear effect.

The risk premium has no clear monotonic pattern influence on the option

prices. We simulated with increments of 0.03 and also steps of 0.1,
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In summary, in the Gamma case, maybe due to the mixture of signs

in the noises, even when the prices varied significantly, no monotonic pattern

could be detected.

6.5
Summary and discussion

In this paper we adopted the discrete-time doubly stochastic Esscher

transform to find a pricing kernel for the MGARCH models with two dif-

ferent parametric distributions for innovations, the Normal and the shifted-

Gamma cases. We also performed simulations and showed tables comparing

the Black Scholes prices and the GARCH prices to our simulation results of the

MGARCH models as well as we performed a sensitivity analysis to understand

how changes in some parameters affect the option valuation results.

In the tables and graphs of section 5, we noticed large values for the

SGMGARCH scheme and small values for the GARCH schemes. In the

sensitivity analysis, we noticed that the GARCH parameters β22 and p were

the most sensitive to perturbations of these model parameters in the Normal

case, while the other parameters and the risk premium have little or no impact

on option prices. In the Gamma case, maybe due to the mixture of signs in the

noises, we could not measure the importance of any of the parameters. Even

when the prices varied significantly, no monotonic pattern could be detected.

The MGARCH models can capture features that some other models

cannot like the high kurtosis, so the option prices are more precise if calculated

in the way we did in this paper. Here we performed simulations with a mixture

of 2 regimes but the model can mimic an economy with many regimes.

DBD
PUC-Rio - Certificação Digital Nº 0521377/CA




