Fernando Jose de Almeida Andrade

Sintetização de Séries Temporais de Atenuação por Chuvas em Enlaces Terrestres

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA ELÉTRICA
Programa de Pós-Graduação em
Engenharia Elétrica

Rio de Janeiro Novembro de 2010

Fernando Jose de Almeida Andrade

Sintetização de Séries Temporais de Atenuação por Chuvas em Enlaces Terrestres

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do grau de Doutor em Engenharia Elétrica.

Orientador: Prof. Luiz Alencar Reis da Silva Mello

Rio de Janeiro Novembro de 2010

Fernando José de Almeida Andrade

Sintetização de Séries Temporais de Atenuação por Chuvas em Enlaces Terrestres

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Luiz Alencar Reis da Silva Mello

Orientador

Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Marco Antônio Grivet Mattoso Maia

Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Gláucio Lima Siqueira

Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Erasmus Couto Brazil de Miranda

INPI/UCP

Prof. Rodolfo Saboia Lima de Souza

Inmetro

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 29 de novembro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Fernando Jose de Almeida Andrade

Graduou-se em Engenharia Elétrica com Ênfase em Eletrônica pela Universidade Federal do Rio de Janeiro em 1989. Possui Especialização em Engenharia de Redes e Sistemas de Telecomunicações pelo Instituto Nacional de Telecomunicações (2003) e Mestrado em Engenharia Elétrica na área de concentração de Eletromagnetismo Aplicado pela Pontifícia Universidade Católica do Rio de Janeiro (2006). Trabalhou durante 13 anos com automação comercial e sistemas de telecomunicações.

Ficha Catalográfica

Andrade, Fernando Jose de Almeida

Sintetização de séries temporais de atenuação por chuvas em enlaces terrestres / Fernando Jose de Almeida Andrade ; orientador: Luiz Alencar Reis da Silva Mello. – 2010.

176 f.: il. (color.); 30 cm

Tese (doutorado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2010.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Atenuação por chuvas. 3. Enlaces terrestres. 4. Sintetização de séries temporais. 5. Modelos estocásticos. 6. Radio propagação. 7. Radio meteorologia I. Luiz Alencar Reis da Silva Mello. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

Agradecimentos

Ao meu orientador, Professor Dr. Luiz Alencar Reis da Silva Mello, pela orientação e apoio;

Ao colega, e agora Doutor, Márcio Eduardo C. Rodrigues pela permanente colaboração;

Ao Dr. Rodolfo Saboia Lima de Souza pela ajuda relacionada aos dados experimentais utilizados neste trabalho;

Ao Dr. Sing H. Lin pela gentileza em enviar documentação técnica relacionada ao tema pesquisado;

A todos os meus familiares que souberam compreender as minhas ausências por causa da dedicação necessária à realização deste trabalho;

Aos colegas, professores e funcionários do CETUC e da PUC-Rio durante os anos 2006 a 2010;

À PUC-Rio pelo auxílio financeiro concedido através de bolsa de isenção de pagamentos durante o período de conclusão deste trabalho;

Ao CNPq pelo auxílio financeiro concedido para a realização de grande parte deste trabalho.

Resumo

Andrade, Fernando Jose de Almeida; Silva Mello, Luiz Alencar Reis da. **Sintetização de Séries Temporais de Atenuação por Chuvas em Enlaces Terrestres.** Rio de Janeiro, 2010. 176p. Tese de Doutorado — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

A atenuação por chuva é a causa principal de indisponibilidade em enlaces terrestres de rádio operando em frequências acima de 10 GHz. Devido às condições adversas de propagação, técnicas de mitigação de desvanecimentos são necessárias. Para desenvolver e otimizar estas técnicas, é preciso conhecer a distribuição cumulativa de atenuação por chuva e o comportamento dinâmico do canal de propagação, em termos das estatísticas de duração de desvanecimentos e de fade-slope. Esta necessidade é preenchida pelo uso de séries temporais que introduzem a deterioração da propagação nos sistemas de simulação. Estas séries podem ser de dados experimentais ou dados sintetizados que considerem as características climatológicas da região do enlace e os parâmetros geométricos e de propagação do mesmo. Três modelos para sintetização de séries temporais de longo prazo de atenuação por chuva são apresentados e testados neste trabalho utilizando dados medidos em cinco enlaces terrestres operando na faixa de frequência de 15 GHz. O primeiro modelo foi originalmente desenvolvido para enlaces satélite em climas temperados enquanto o segundo é uma versão modificada, proposta neste trabalho para enlaces terrestres em áreas tropicais. O terceiro modelo é proposto neste trabalho com base numa modelagem estatística da atenuação por chuva através da distribuição Gamma. Séries temporais foram sintetizadas pelos três modelos e suas estatísticas foram comparadas com as estatísticas dos dados experimentais. Os três modelos apresentam bons resultados em diversas situações analisadas, mas o terceiro modelo proporciona resultados significativamente melhores para distribuições de atenuação e *fade-slope*.

Palavras-chave

Atenuação por chuvas; enlaces terrestres; sintetização de séries temporais; modelos estocásticos; rádio propagação; radio meteorologia.

Abstract

Andrade, Fernando Jose de Almeida; Silva Mello, Luiz Alencar Reis da (Advisor). **Rain Attenuation Time Series Synthesizers for Terrestrial Links.** Rio de Janeiro, 2010. 176p. Doctoral Thesis – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Rain attenuation is the main cause of unavailability in fixed terrestrial radio systems operating at frequency of above 10 GHz in tropical areas. Propagation impairments are expected to be quite severe in these regions. Due to these adverse propagation conditions, Fade Mitigating Techniques (FMT) are often needed. To design and optimize FMT, the knowledge of the cumulative distribution of rain attenuation and of the dynamic behavior of the propagation channel, as provided by fade durations and fade slope statistics, is required. This need can be fulfilled by the introduction of time series of propagation impairments in system simulation. If real data collected from propagation experiments are not available, typical fading time-series may be generated making use of climatologic characteristics as well as geometrical and radiowave parameters of the link. Three models for long-term rain attenuation time series synthesizers are presented and tested in this work using data measured in five terrestrial radio links operating at 15 GHz. The first one was originally developed for satellite systems in temperate climates whereas the second one is a modified version proposed in this work for terrestrial links in tropical areas. A third model is proposed in this work and is based on a different approach using the Gamma distribution. Time series were synthesized by the three models and stationary and dynamic statistics between synthesized and experimental data were compared. The first two models provide good results in some cases but the third model provides significantly better results for cumulative distributions of attenuation and fade-slope.

Keywords

Rain attenuation; terrestrial links; time series synthesizers; stochastic models; radio propagation; radio meteorology.

Sumário

1 Introdução	24
1.1. Caracterização do problema	24
1.2. Objetivo	25
1.3. Estado da arte na sintetização de séries temporais de atenuação	
por chuva	26
1.4 Contribuições	27
1.3. Estrutura deste trabalho	28
2 Modelos de sinterização de séries temporais de atenuação por	
chuva	30
2.1. Modelo Maseng-Bakken (MB)	30
2.2. Modelo <i>Enhanced</i> Maseng-Bakken (EMB)	31
2.3. Modelo Lacoste-Carrie 'event-on-demand'	35
2.4. Modelo Cadeia de Markov de N estados	35
2.5. Modelo Cadeia de Markov de 2 estados com eventos sob	
demanda (MKod)	36
3 Dados experimentais	37
3.1. Sistema de medidas	37
3.2. Distribuição geográfica dos enlaces	38
3.3. Seleção e pré-processamento dos dados	39
4 Análise dos dados de atenuação por chuvas	45
4.1. Estatísticas estacionárias da atenuação por chuvas	45
4.2. Estatísticas dinâmicas da atenuação por chuva	46
4.2.1. Taxa de variação da atenuação (fade-slope)	46
4.2.2. Duração dos desvanecimentos	54
5 Modelagem estatística da atenuação por chuva	59
5.1. Faixas de percentuais de tempo para análise estatística	59

5.2. Extração dos parâmetros lognormais no modelo EMB	61
5.3. Modelo Terrestrial Maseng-Bakken (TMB)	63
5.4. Comparação entre a extração dos parâmetros lognormais pelos	
modelos EMB e TMB	65
5.5. Avaliação das estatísticas de atenuação para períodos diários	
de 8 horas	67
5.6. Ajuste através de outros tipos de distribuição	71
6 Modelo Gamma-Cetuc (GC)	77
6.1. Geração de ruído branco gaussiano	78
6.2. Geração da sequência gamma correlatada	79
6.3. Relação entre as autocovariâncias das sequências gaussiana	
e gamma	81
6.4. Geração da sequência gaussiana correlatada	85
7 Comparação de resultados e validação dos modelos	88
7.1. Parâmetros dos modelos	90
7.2. Resultados da CCDF de atenuação	91
7.3. Resultados das estatísticas de fade-slope	96
7.4. Resultados das estatísticas de duração de desvanecimentos	101
7.4.1. Número de desvanecimentos	101
7.4.2. Tempo relativo de desvanecimento	106
7.5. Resumo dos resultados	111
7.6. Sensibilidade dos modelos à variação do parâmetro dinâmico $\boldsymbol{\beta}$	112
7.7. Relação entre a distância do enlace e o valor do parâmetro	
dinâmico β	116
7.8. O uso do modelo EMB em outros trabalhos	124
8 Conclusões e sugestões de trabalhos futuros	126
9 Referências bibliográficas	130
APÊNDICE A Estatísticas dinâmicas da atenuação por chuva nos enlaces terrestres	135

APENDICE B Gráficos do ajuste lognormal pelos modelos EMB e TMB	141
APÊNDICE C Gráficos dos ajustes por outras distribuições	145
APÊNDICE D Gráficos das estatísticas das séries temporais sintetizadas	151
APÊNDICE E Tabelas e gráficos referentes às variáveis de teste das séries temporais sintetizadas	161
APÊNDICE F Gráficos da sensibilidade dos modelos às variações do parâmetro dinâmico	173

Lista de tabelas

Tabela 3.1 – Características dos enlaces terrestres	39
Tabela 3.2 – Períodos dos dados analisados e percentual relativo de	
dados válidos	44
Tabela 5.1 – Faixas de percentuais de tempo usadas nos ajustes dos	
enlaces terrestres	60
Tabela 5.2 – Erros RMS no ajuste lognormal através dos modelos	
EMB e TMB	66
Tabela 5.3 – Erros RMS da CCDF de atenuação (em dB) para ajustes	
através de cinco tipos diferentes de distribuições	76
Tabela 7.1 – Tempo de processamento da sintetização das séries	
temporais	89
Tabela 7.2 – Valores dos parâmetros dos modelos EMB e TMB	90
Tabela 7.3 – Valores dos parâmetros do modelo GC	90
Tabela 7.4 – Valores RMS da variável de teste da CCDF de	
atenuação de séries temporais sintetizadas	94
Tabela 7.5 – Percentuais de tempo máximos e valores de atenuação	
em que o modelo GC proporciona melhor desempenho na CCDF	
de atenuação	95
Tabela 7.6 – Valores RMS da variável de teste das estatísticas de	
fade-slope para cada nível de atenuação – Cenesp15	98
Tabela 7.7 – Valores RMS da variável de teste das estatísticas de	
fade-slope – resultados gerais por enlace	99
Tabela 7.8 – Valores RMS da variável de teste das estatísticas de	
fade-slope – resultados gerais por enlace para A ≥ 10 dB	99
Tabela 7.9 – Variação percentual dos valores RMS da variável de	
teste das estatísticas de fade-slope – resultados gerais por	
enlace	100
Tabela 7.10 – Variação percentual dos valores RMS da variável de	
teste das estatísticas de fade-slope – resultados gerais por	
enlace para A ≥ 10 dB	100

Tabela 7.11 – Valores RIVIS da variavel de teste das estatisticas de	
número de desvanecimentos para cada nível de atenuação –	
Cenesp15	103
Tabela 7.12 – Valores RMS da variável de teste das estatísticas de	
número de desvanecimentos – resultados gerais por enlace	104
Tabela 7.13 – Valores RMS da variável de teste das estatísticas de	
número de desvanecimentos – resultados gerais por enlace para	
A ≥ 10 dB	104
Tabela 7.14 – Variação percentual dos valores RMS da variável de	
teste das estatísticas de número de desvanecimentos -	
resultados gerais por enlace	105
Tabela 7.15 – Variação percentual dos valores RMS da variável de	
teste das estatísticas de número de desvanecimentos –	
resultados gerais por enlace para A ≥ 10 dB	105
Tabela 7.16 – Valores RMS da variável de teste das estatísticas de	
tempo relativo de desvanecimento para cada nível de atenuação	
- Cenesp15	108
Tabela 7.17 – Valores RMS da variável de teste das estatísticas de	
tempo relativo de desvanecimento – resultados gerais por enlace	109
Tabela 7.18 – Valores RMS da variável de teste das estatísticas de	
tempo relativo de desvanecimento – resultados gerais por enlace	
para <i>A</i> ≥ 10 dB	109
Tabela 7.19 – Variação percentual dos valores RMS da variável de	
teste das estatísticas de tempo relativo de desvanecimento -	
resultados gerais por enlace	110
Tabela 7.20 – Variação percentual dos valores RMS da variável de	
teste das estatísticas de tempo relativo de desvanecimento -	
resultados gerais por enlace para A ≥ 10 dB	110
Tabela 7.21 – Parâmetro β : valores extraídos x melhores valores	
para cada estatística	113
Tabela 7.22 – Comparação entre valores RMS obtidos nas	
estatísticas dinâmicas – resultados gerais	114
Tabela 7.23 – Comparação entre valores RMS obtidos nas	

estatísticas dinâmicas – resultados gerais para A ≥ 10 dB	115
Tabela 7.24 – Valores do parâmetro dinâmico extraídos pelos	
modelos	117
Tabela 7.25 – Relação β x d – parâmetros do ajuste através de lei de	
potência	118
Tabela 7.26 – Relação β x d – parâmetros do ajuste exponencial	118
Tabela 7.27 – Relação β_{OT} x d – parâmetros do ajuste através de lei	
de potência	119
Tabela 7.28 – Relação $oldsymbol{eta}_{OT} \mathbf{x} \ d$ – parâmetros do ajuste exponencial	119
Tabela 7.29 – Parâmetro β: valores extraídos x valores por ajuste	
exponencial	122
Tabela 7.30 – Comparação entre valores RMS das estatísticas	
dinâmicas – parâmetros extraídos x parâmetros ajustados	122
Tabela 7.31 – Valores RMS das variáveis de teste das estatísticas	
de enlaces satélite no Brasil – modelo EMB [09]	125
Tabela E.1 – Valores RMS da variável de teste – fade-slope –	
Bradesco (Δt entre 20 e 60 s)	161
Tabela E.2 – Valores RMS da variável de teste – fade-slope –	
Cenesp15 (Δt entre 20 e 60 s)	162
Tabela E.3 – Valores RMS da variável de teste – fade-slope –	
Scania (Δt entre 20 e 60 s)	163
Tabela E.4 – Valores RMS da variável de teste – fade-slope –	
Barueri (Δt entre 20 e 60 s)	164
Tabela E.5 – Valores RMS da variável de teste – fade-slope –	
Paranapiacaba (Δt entre 20 e 60 s)	165
Tabela E.6 – Valores RMS da variável de teste das estatísticas de	
número de desvanecimentos para cada nível de atenuação -	
Bradesco	167
Tabela E.7 – Valores RMS da variável de teste das estatísticas de	
número de desvanecimentos para cada nível de atenuação -	
Scania	167
Tabela E.8 – Valores RMS da variável de teste das estatísticas de	
número de desvanecimentos para cada nível de atenuação –	

Barueri	168
Tabela E.9 – Valores RMS da variável de teste das estatísticas de	
número de desvanecimentos para cada nível de atenuação -	
Paranapiacaba	168
Tabela E.10 – Valores RMS da variável de teste das estatísticas de	
tempo relativo de desvanecimento para cada nível de atenuação	
- Bradesco	170
Tabela E.11 – Valores RMS da variável de teste das estatísticas de	
tempo relativo de desvanecimento para cada nível de atenuação	
- Scania	170
Tabela E.12 – Valores RMS da variável de teste das estatísticas de	
tempo relativo de desvanecimento para cada nível de atenuação	
– Barueri	171
Tabela E.13 – Valores RMS da variável de teste das estatísticas de	
tempo relativo de desvanecimento para cada nível de atenuação	
– Paranapiacaba	171

Lista de figuras

Figura 1.1 – Atenuação específica por chuvas, gases atmosféricos e	
vapor de água	24
Figura 2.1 – Modelo <i>Enhanced</i> Maseng-Bakken (EMB)	31
Figura 2.2 – Primeira etapa para estimação do parâmetro $oldsymbol{eta}$	34
Figura 2.3 – Representação do modelo Cadeia de Markov de N	
estados [10]	36
Figura 3.1 – Sistema de aquisição de dados do Cetuc [15]	37
Figura 3.2 – Distribuição geográfica dos enlaces terrestres	39
Figura 3.3 – Períodos dos dados analisados	40
Figura 3.4 – Edição de série temporal de potência (exemplo 1)	41
Figura 3.5 – Edição de série temporal de potência (exemplo 2)	41
Figura 3.6 – Edição de série temporal de potência (exemplo 3)	42
Figura 3.7 – Calibração de série temporal de potência (exemplo 1)	43
Figura 3.8 – Calibração de série temporal de potência (exemplo 2)	43
Figura 3.9 – Exemplo de série temporal de atenuação de um dia	44
Figura 4.1 – CCDF de atenuação por chuva dos enlaces terrestres	45
Figura 4.2 – Ilustração do fade-slope	47
Figura 4.3 – Distribuição de <i>fade-slope</i> – Cenesp15 (Δt = 30 s)	49
Figura 4.4 – Distribuições de fade-slope para diferentes níveis de	
atenuação e tempos de amostragem – Paranapiacaba (Δt = 30 s)	50
Figura 4.5 – Distribuições de fade-slope para diferentes níveis de	
atenuação e tempos de amostragem – Paranapiacaba (Δt = 20 s)	51
Figura 4.6 – Distribuições de fade-slope para diferentes níveis de	
atenuação e tempos de amostragem – Paranapiacaba (Δt = 40 s)	51
Figura 4.7 – Distribuições de fade-slope para diferentes níveis de	
atenuação e tempos de amostragem – Paranapiacaba (Δt = 50 s)	52
Figura 4.8 – Distribuições de fade-slope para diferentes níveis de	
atenuação e tempos de amostragem – Paranapiacaba (Δt = 60 s)	52
Figura 4.9 – Distribuições de fade-slope dos enlaces terrestres de SP	
(níveis de atenuação iguais a 10 e 20 dB, Δt = 30 s)	53

Figura 4.10 – Ilustração da duração de desvanecimento	54
Figura 4.11 – Distribuições de número de desvanecimentos –	
Cenesp15	55
Figura 4.12 – Distribuições de tempo relativo de desvanecimento –	
Cenesp15	55
Figura 4.13 – Distribuições de número de desvanecimentos para	
diferentes níveis de atenuação e tempos de amostragem -	
Paranapiacaba	56
Figura 4.14 – Distribuições de tempo relativo de desvanecimentos	
para diferentes níveis de atenuação e tempos de amostragem -	
Paranapiacaba	56
Figura 4.15 – Distribuição de número de desvanecimentos dos	
enlaces terrestres de SP	57
Figura 4.16 – Distribuição de tempo relativo de desvanecimento dos	
enlaces terrestres de SP	58
Figura 5.1 – CCDF de atenuação por chuva dos enlaces terrestres	60
Figura 5.2 – Ajuste lognormal do modelo EMB – Bradesco (0,01 a	
10%)	61
Figura 5.3 – Resultado do ajuste lognormal do modelo EMB –	
Bradesco (0,01 a 10%)	62
Figura 5.4 – Resultado do ajuste lognormal do modelo EMB –	
Bradesco (0,05 a 10%)	62
Figura 5.5 – Resultado do ajuste lognormal dos modelos EMB e	
TMB – Bradesco (0,01 a 10%)	66
Figura 5.6 – Comparação entre ajustes dos modelos EMB e TMB –	
Bradesco	67
Figura 5.7 – CCDF de atenuação para períodos de 8 horas –	
Bradesco	68
Figura 5.8 – CCDF de atenuação para períodos extremos de	
intensidade de atenuação – Bradesco	69
Figura 5.9 – CCDF de atenuação para períodos extremos de	
intensidade de atenuação – Cenesp15	69
Figura 5.10 – Ajuste lognormal EMB da distribuição de atenuação	

branda – Bradesco	70
Figura 5.11 – Ajuste lognormal EMB da distribuição de atenuação	
média – Bradesco	70
Figura 5.12 – Ajuste lognormal EMB da distribuição de atenuação	
intensa – Bradesco	70
Figura 5.13 – Ajuste da CCDF de atenuação através da distribuição	
Pareto – Cenesp15	74
Figura 5.14 – Ajuste da CCDF de atenuação através da distribuição	
Gamma – Cenesp15	75
Figura 5.15 – Ajuste da CCDF de atenuação através da distribuição	
Weibull – Cenesp15	75
Figura 6.1 – Diagrama de blocos do modelo Gamma-Cetuc (GC)	77
Figura 6.2 – Modelo GC (1ª etapa): geração de ruído branco	
gaussiano	78
Figura 6.3 – Modelo GC (3ª etapa): geração da sequência com	
distribuição Gamma e correlação especificada	80
Figura 6.4 – Detalhes da etapa de geração da sequência com	
distribuição Gamma e correlação especificada	80
Figura 6.5 – Gráfico da ACF gamma como função da ACF gaussiana	83
Figura 6.6 – Gráfico da ACF gaussiana como função da ACF gamma	
Cenesp15	84
Figura 6.7 – ACF Gamma experimental e ACF Gaussiana desejada –	
Cenesp15	84
Figura 6.8 – Modelo GC (2ª etapa): geração da sequência gaussiana	
colorida	85
Figura 6.9 – Ajuste de curva para extração do parâmetro β –	
Cenesp15	86
Figura 7.1 – CCDF de atenuação das séries temporais sintetizadas –	
Cenesp15	91
Figura 7.2 – Erro absoluto da CCDF de atenuação das séries	
temporais sintetizadas – Cenesp15	92
Figura 7.3 – CCDF de atenuação de múltiplas séries temporais	
sintetizadas – Cenesp15	92

Figura 7.4 – Distribuições de <i>fade-slope</i> experimental e sintetizadas	
Cenesp15	96
Figura 7.5 – Valores da variável de teste das estatísticas de fade-slop	e
Cenesp15	98
Figura 7.6 – Distribuições de número de desvanecimentos experiment	:al
e sintetizadas – Cenesp15	102
Figura 7.7 – Valores da variável de teste – número de	
desvanecimentos – Cenesp15	103
Figura 7.8 – Distribuições de tempo relativo de desvanecimento	
experimental e sintetizadas – Cenesp15	106
Figura 7.9 – Valores da variável de teste – tempo rel. de	
desvanecimento – Cenesp15	108
Figura 7.10 – Sensibilidade das estatísticas de <i>fade-slope</i> à variação	
do parâmetro dinâmico – Cenesp15	116
Figura 7.11 – Sensibilidade das estatísticas de duração de	
desvanecimentos à variação do parâmetro dinâmico –	
Cenesp15	116
Figura 7.12 – Relação entre distância do enlace e valores dos	
parâmetros dinâmicos	118
Figura 7.13 – Relação distância dos enlaces x valores dos	
parâmetros dinâmicos – EMB	120
Figura 7.14 – Relação distância dos enlaces x valores dos	
parâmetros dinâmicos – TMB	120
Figura 7.15 – Relação distância dos enlaces x valores dos	
parâmetros dinâmicos – GC	121
Figura A.1 – Distribuições de $fade$ -slope – Bradesco (Δt = 30 s)	135
Figura A.2 – Distribuições de <i>fade-slope</i> – Scania (Δt = 30 s)	135
Figura A.3 – Distribuições de <i>fade-slope</i> – Barueri (Δt = 30 s)	136
Figura A.4 – Distribuições de fade-slope – Paranapiacaba	
$(\Delta t = 30 \text{ s})$	136
Figura A.5 – Distribuições de número de desvanecimentos –	
Bradesco	137
Figura A.6 – Distribuições de tempo relativo de desvanecimento –	

Bradesco	137
Figura A.7 – Distribuições de número de desvanecimentos – Scania	138
Figura A.8 – Distribuições de tempo relativo de desvanecimento –	
Scania	138
Figura A.9 – Distribuições de número de desvanecimentos – Barueri	139
Figura A.10 – Distribuições de tempo relativo de desvanecimento –	
Barueri	139
Figura A.11 – Distribuições de número de desvanecimentos –	
Paranapiacaba	140
Figura A.12 – Distribuições de tempo relativo de desvanecimento –	
Paranapiacaba	140
Figura B.1 – Ajuste lognormal EMB – Cenesp15	141
Figura B.2 – Ajuste lognormal EMB – Scania	141
Figura B.3 – Ajuste lognormal EMB – Barueri	142
Figura B.4 – Ajuste lognormal EMB – Paranapiacaba	142
Figura B.5 – Ajustes lognormais EMB e TMB – Cenesp15	142
Figura B.6 – Ajustes lognormais EMB e TMB – Scania	143
Figura B.7 – Ajustes lognormais EMB e TMB – Barueri	143
Figura B.8 – Ajustes lognormais EMB e TMB – Paranapiacaba	143
Figura B.9 – Ajuste lognormal EMB da distribuição de atenuação	
branda – Cenesp15	144
Figura B.10 – Ajuste lognormal EMB da distribuição de atenuação	
média – Cenesp15	144
Figura B.11 – Ajuste lognormal EMB da distribuição de atenuação	
intensa – Cenesp15	144
Figura C.1 – Ajuste da CCDF de atenuação – distribuição Pareto –	
Bradesco	145
Figura C.2 – Ajuste da CCDF de atenuação – distribuição Pareto –	
Scania	145
Figura C.3 – Ajuste da CCDF de atenuação – distribuição Pareto –	
Barueri	146
Figura C.4 – Ajuste da CCDF de atenuação – distribuição Pareto –	
Paranapiacaba	146

147
147
148
148
149
149
150
150
151
151
152
152
153
153
154
154

sintetizadas – Bradesco	155
Figura D.10 – Distribuições de fade-slope experimental e	
sintetizadas – Scania	155
Figura D.11 – Distribuições de fade-slope experimental e	
sintetizadas – Barueri	156
Figura D.12 – Distribuições de fade-slope experimental e	
sintetizadas – Paranapiacaba	156
Figura D.13 – Distribuições de número de desvanecimentos	
experimental e sintetizadas – Bradesco	157
Figura D.14 – Distribuições de número de desvanecimentos	
experimental e sintetizadas – Scania	157
Figura D.15 – Distribuições de número de desvanecimentos	
experimental e sintetizadas – Barueri	158
Figura D.16 – Distribuições de número de desvanecimentos	
experimental e sintetizadas – Paranapiacaba	158
Figura D.17 – Distribuições de tempo relativo de desvanecimento	
experimental e sintetizadas – Bradesco	159
Figura D.18 – Distribuições de tempo relativo de desvanecimento	
experimental e sintetizadas – Scania	159
Figura D.19 – Distribuições de tempo relativo de desvanecimento	
experimental e sintetizadas – Barueri	160
Figura D.20 – Distribuições de tempo relativo de desvanecimento	
experimental e sintetizadas – Paranapiacaba	160
Figura E.1 – Valores da variável de teste das estatísticas de	
fade-slope – Bradesco	166
Figura E.2 – Valores da variável de teste das estatísticas de	
fade-slope – Scania	166
Figura E.3 – Valores da variável de teste das estatísticas de	
fade-slope – Barueri	166
Figura E.4 – Valores da variável de teste das estatísticas de	
fade-slope – Paranapiacaba	166
Figura E.5 – Valores da variável de teste – número de	
desvanecimentos – Bradesco	169

Figura E.6 – Valores da variável de teste – número de	
desvanecimentos – Scania	169
Figura E.7 – Valores da variável de teste – número de	
desvanecimentos – Barueri	169
Figura E.8 – Valores da variável de teste – número de	
desvanecimentos – Paranapiacaba	169
Figura E.9 – Valores da variável de teste – tempo rel. de	
desvanecimento – Bradesco	172
Figura E.10 – Valores da variável de teste – tempo rel. de	
desvanecimento – Scania	172
Figura E.11 – Valores da variável de teste – tempo rel. de	
desvanecimento – Barueri	172
Figura E.12 – Valores da variável de teste – tempo rel. de	
desvanecimento – Paranapiacaba	172
Figura F.1 – Sensibilidade das estatísticas de fade-slope à variação	
do parâmetro dinâmico – Bradesco	173
Figura F.2 – Sensibilidade das estatísticas de duração de	
desvanecimentos à variação do parâmetro dinâmico – Bradesco	173
Figura F.3 – Sensibilidade das estatísticas de fade-slope à variação	
do parâmetro dinâmico – Scania	174
Figura F.4 – Sensibilidade das estatísticas de duração de	
desvanecimentos à variação do parâmetro dinâmico – Scania	174
Figura F.5 – Sensibilidade das estatísticas de fade-slope à variação	
do parâmetro dinâmico – Barueri	175
Figura F.6 – Sensibilidade das estatísticas de duração de	
desvanecimentos à variação do parâmetro dinâmico – Barueri	175
Figura F.7 – Sensibilidade das estatísticas de fade-slope à variação	
do parâmetro dinâmico – Paranapiacaba	176
Figura F.8 – Sensibilidade das estatísticas de duração de	
desvanecimentos à variação do parâmetro dinâmico –	
Paranapiacaba	176

O caos é uma ordem por decifrar.

José Saramago, O Homem Duplicado