

Patricia Reynoso Quispe

Estudo de Aplicação do Ozônio para a Degradação do Paraquat

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais da PUC-Rio.

Orientador: Prof. Roberto José de Carvalho

Patricia Reynoso Quispe

Estudo de Aplicação do Ozônio para a Degradação do Paraquat

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela comissão Examinadora abaixo assinada.

Prof. Roberto José de Carvalho Orientador e Presidente Departamento de Engenharia Materiais – PUC - Rio

Prof. Wilfredo Milquiades Irrazabal Urruchi Instituto de Ciências Aplicadas Vale do Paraíba ICAVP

Prof. Ysrael Marrero Vera Fundação Coordenação de Projetos, Pesquisa e Estudos Tecnológicos - COPPETEC

Prof. José Eugênio Leal Coordenador Setorial de Pós-Graduação do centro Técnico Científico da PUC - Rio Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da Universidade, da autora e do orientador.

Patricia Reynoso Quispe

Graduou-se em Matemática na Universidade Santa Úrsula em 2007. Inicio seu mestrado na PUC-Rio em 2008, com pesquisa na área de tecnologia ambiental. Participou de diversos congressos na área de tratamento de efluentes e processos oxidâtivos avançados.

Ficha Catalográfica

Reynoso Quispe, Patricia

Estudo de aplicação do ozônio para degradação do Paraquat / Patricia Reynoso Quispe; orientador: Roberto José de Carvalho. – 2010.

106 f.: il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2010.

Inclui bibliografia

1. Engenharia de materiais – Teses. 2. Ozonização. 3. Paraquat. 4. Cinética. 5. Degradação. 6. Transferência de massa. I. Carvalho, Roberto José de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. III. Título.

CDD: 620.11

Esta dissertação é dedicada a vocês, meus amados pais, Martiniano Reynoso Lázaro e Eudocia Quispe Gutierrez.

Agradecimentos

Ao professor Roberto José de Carvalho, pela orientação e a confiança para me assinar um projeto.

Ao CNPq, Capes e a PUC-Rio, pelo apoio concedido para a realização deste trabalho.

Ao Deus infinitamente agradecida.

Ao Renzon Cosme e Rafaela Landeiro pela ajuda no desenvolvimento deste trabalho.

A minha melhor amiga Roxana Guillen e a minha prima Maria Esther Lázaro pela força ao longo destes dois anos e a vida toda.

Aos meus colegas da casa 21. Em especial, meus queridos Walter, Abiatar, Diego, Edson, por tudo que compartilhamos neste convívio: estudo, desafios, idéias, dúvidas, certezas, desabafos e risos.

Ao meu querido Lorgio, pela paciência, companhia, carinho e compreensão em todos os momentos.

Ao meu irmão Milton, minha cunhada Mercedes e minhas sobrinhas Milagros e Gabriela que me relembram sempre o significado de incentivo.

As minhas amigas Vanessa, Gabriela, Amanda em especial por suas valiosas contribuições, pela compreensão e enfim agradeço por sua amizade.

Ao meu amigo Jaime M. Ticona pelo carinho e sua amizade.

Aos amigos Percy, Patricia Denegri, Kurt, Cesar Eduardo, Miguel Angel, Ludwing, Kike, pelo constante incentivo e apoio mesmo a centos de kilometros de distância. Há amigos que são verdadeiros irmãos.

Ao meu adorado anjinho, por ter sido no ano 2009 minha grande força de motivação e descoberta de uma nova pessoa em mim. Sempre estará presente no meu coração.

Ao meu querido Johnnie, pelo carinho especial e a força nos momentos difíceis.

Ao Professor Dr. Wilfredo Irrazabal por compor a banca de defens minha dissertação e a sua esposa Lucy pelo carinho.

Ao Professor Dr. Ysrael Marrero Vera por compor a banca de defensa de minha dissertação.

Ao Professor Luiz Teixeira que transmitiu seus conhecimentos com clareza e carinho.

Ao Professor Coordenador do Programa da Pós-graduação Francisco Moura, pelos valiosos ensinamentos repassados em sala e fora dela traduzidos pela competência e compreensão com a qual conduz o Programa.

Aos professores, funcionários e colegas do Departamento de Engenharia Materiais e de Processos Químicos e Metalúrgicos.

Resumo

Reynoso Quispe, Patricia; Carvaho, Roberto. **Estudo de Aplicação do Ozônio para degradação do Paraquat**. Rio de Janeiro, 2010. 106p. Dissertação de Mestrado — Departamento de Engenharia Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

A utilização de pesticidas na agricultura é uma prática utilizada para o controle de pragas, doenças, plantas daninhas, etc. Com esta prática atingem-se altos índices de produtividade desta forma atende-se à demanda crescente de alimentos. Alguns dos pesticidas aplicados podem apresentar propriedades físicoquímicas perigosas, seja ao ambiente, sejam aos demais seres vivos, incluindo o homem. O uso extensivo dos pesticidas leva à sua presença, juntamente com seus metabólicos, nos corpos d'água naturais. O herbicida Paraquat foi objeto de estudo nesta dissertação devido à sua grande utilização na agricultura, observando-se um processo de contaminação nas águas subterrâneas. A necessidade do desenvolvimento de novos processos de tratamento de efluentes que garantam o efetivo tratamento destas substâncias se mostra emergencial, reduzindo assim os níveis de contaminação dos recursos naturais. Neste contexto o ozônio apresenta-se como o melhor agente oxidante para a degradação do Paraquat. Este trabalho aborda a cinética do processo de ozonização do pesticida Paraquat, a transferência de massa do ozônio de fase gasosa para a fase líquida e a modelagem do processo; também o análise da influência da concentração do ozônio dissolvido, pH, vazão volumétrica do oxigênio e a velocidade rotacional do agitador. Foi comprovado que a vazão de gás foi o fator que mais afetou a transferência de massa do ozônio. Quanto menor a vazão de gás, maior a concentração de ozônio na fase líquida.

Palavras-chave

Ozonização; Paraquat; Cinética; Degradação; Transferência de massa.

Abstract

Reynoso Quispe, Patricia; Carvalho, Roberto (Advisor). **Study of the Paraquat degradation by Ozone**. Rio de Janeiro, 2010. 106p. MSc. Dissertation — Departamento de Engenharia Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Pesticides are used in agriculture to control pests, plant diseases, weeds, etc. Thus, it is possible to achieve high productivity and to meet the growing demand for food. Some of the pesticides applied may have dangerous physical and chemical properties, either to the environment, or to other living beings, including man. The extensive use of pesticides, together with their metabolites leads to its presence in natural water bodies. The Paraquat herbicide was the object of study in this work because of its wide use in agriculture, observing a process of groundwater pollution. So, there is still a need for develop of new processes for wastewater treatment to ensure the effective treatment of these, thus reducing the levels of contamination of natural resources. Against this background, the ozonation itself presents as the best oxidant agent for the degradation of Paraquat. This work shows the kinetics model, the mass transfer of ozone from gas phase to liquid phase and modeling of the ozonation process; also the analysis of the influence of the concentration of dissolved ozone, pH, flow rate of oxygen and stirred. It was proven that the gas flow rate was the factor which affected the mass transfer of ozone. Then to lower rate of gas, ozone concentrations become higher of in the liquid phase.

Keywords

Ozonation; Paraquat; Kinetics; Degradation; mass transfer.

Sumário

1 . Introdução	18
1.1. Objetivo do presente trabalho	19
1.1.1. Objetivos específicos	19
	0.4
2 Revisão Bibliográfica	21
2.1. Histórico	21
2.2. Intoxicação com pesticidas.	22
2.3. Comportamento de pesticidas no meio ambiente	23
2.4. Impacto Ambiental dos Pesticidas	25
2.5. Definição e classificação dos pesticidas	26
2.5.1. Quanto à ação dos agrotóxicos e aos grupos químicos.	27
2.5.2. Quanto a sua aplicação	30
2.5.3. Quanto à persistência	31
2.5.4. Quanto ao deslocamento	31
2.5.5. Quanto à toxicidade	32
2.5.6. Quanto á periculosidade ambiental.	32
2.6. Paraquat	33
2.6.1. Propriedades Físico-Químicas do Paraquat	35
2.6.2. Riscos toxicológicos causados por Paraquat	36
2.6.3. Processo de oxidação do Paraquat na planta	36
2.7. Valores máximos permitidos de pesticidas em Água	37
2.7.1. Legislação ambiental e limites do Paraquat	38
2.8. Tecnologias convencionais para tratamento de água e efluentes	
industriais	38
2.8.1. Métodos envolvendo transferência de fase.	39
2.8.2. Métodos oxidativos convencionais	39
2.9. Processos oxidativos avançados	40
2.9.1. A evolução dos POAs através da historia	40
2.9.2. Os sistemas típicos de POAs	42
2.9.3. Ozônio	43

2.9.3.1. Considerações Gerais	43
2.9.3.2. Propriedades e Características do Ozônio	45
2.9.3.3. Aplicações	46
2.9.3.4. Vantagens do uso do Ozônio	47
2.9.3.5. Decomposição de ozônio em radicais	47
2.9.4. Oxigênio Dissolvido	48
2.9.5. Geração de ozônio	49
2.9.5.1. Aplicação do ozônio no efluente	50
2.10. Cinética	51
2.11. Teoria de transferência de massa	52
2.11.1. Fatores físicos que afetam a eficiência da transferência	
de massa	55
2.11.1.1. Solubilidade	56
2.11.2. Tamanho das bolhas	57
2.11.3. Efeito da vazão de gás	57
2.11.4. Sistema de destruição de ozônio	57
2.12. Formação de subprodutos e toxicidade	58
2. Matariais a Mátadas	5 0
3 . Materiais e Métodos	59 50
3.1. Equipamentos de medição	59 59
3.1.1. Carbono orgânico total (COT) 3.1.2. pH-metro	60
·	61
3.1.3. Balança Analítica 3.1.4. Rotâmetro	61
3.1.5. Espectrofotômetro	61
3.2. Montagem do sistema de ozonização	62
3.2.1. Sistema de ozonização	62
3.2.2. Reator	62
3.2.3. Agitador magnético	63
3.2.4. Cilindro do oxigênio	63
3.2.5. Gerador de ozônio	63
3.2.6. Frasco Lavador	64
3.3. Seleção do pesticida	65
3.4. Quantificação Química do Paraquat	65

3.4.1. Determinação do Paraquat em solução aquosa	65
3.5. Efluente sintético	66
3.6. Arranjo experimental	66
3.6.1. Sistema de oxidação do Paraquat	66
3.7. Medição de ozônio na corrente gasosa	68
3.8. Medição do ozônio na corrente líquida	69
3.9. Planejamento experimental	70
3.9.1. Ozonização do Paraquat	70
3.9.2. Transferência de massa do ozônio	71
3.10. Determinação da mineralização do Paraquat	72
4 . Resultados e Discussão	73
4.1. Obtenção da curva de calibração	73
4.2. Sistema de ozonização	74
4.2.1. Produção de ozônio	74
4.3. Transferência de massa do ozônio	75
4.4. Influencia do pH na concentração de ozônio dissolvido	78
4.4.1. Influência do tempo de ozonização no pH	79
4.5. Mineralização do Paraquat	79
4.6. Cinética da ozonização do Paraquat	80
5 . Conclusões	83
6 . Recomendações	84
7 . Referências Bibliográficas	85
8 . Apêndice	96
8.1. Lista de reagentes usados neste trabalho	96
8.2. Determinação espectrofotométrica do Paraquat	96
8.3. Dados experimentais da calibração do Paraquat	98
8.4. Dados experimentais da solubilidade do ozônio em água	99

Lista de tabelas

Tabela 1 - Principais fatores que determinam a degradação e	
mobilidade dos pesticidas	23
Tabela 2 – Classificação dos agrotóxicos quanto a sua aplicação	30
Tabela 3 - Classificação dos pesticidas pelo grau de toxicidade	32
Tabela 4 - Classificação dos agrotóxicos em função dos	
riscos ao ambiente.	33
Tabela 5 – Valores máximos permitidos para Pesticidas em água.	38
Tabela 6 – Potencial redox de alguns oxidantes	42
Tabela 7 – Solubilidade do ozônio em água em função da	
temperatura e da concentração de ozônio no gás de alimentação	56
Tabela 8 – Condições empregadas para o cálculo de k₋a	72
Tabela 9 – Valores dos coeficientes A e B e dos coeficientes	
de correlação para cada configuração experimental de ozonização	77
Tabela 10 – Valores de k∟a para diferentes configurações	
experimentais	78
Tabela 11 – Medições da Curva de calibração, pH=3,7	98
Tabela 12 - Medições da Curva de Calibração, pH=6,5	98
Tabela 13 - Medições da Curva de Calibração, pH=12,5	98
Tabela 14 – Concentração de ozônio dissolvido versus tempo	
- condições experimentais (Vazão de $O_2 = 9 \text{ Lh}^{-1}$; T = 25° C; 100 RPM)	99
Tabela 15 - Concentração de ozônio dissolvido versus tempo	
- condições experimentais (Vazão de $O_2 = 12L/h$; T = 25^0 C; 100 RPM)	100
Tabela 16 - Concentração de ozônio dissolvido versus tempo	
condições experimentais (Vazão de O ₂ = 21L/h; T = 25 ⁰ C; 100 RPM)	101
Tabela 17 - Concentração de ozônio dissolvido versus tempo	
condições experimentais (pH = 3,7; Vazão de O_2 = 9 L/h; T = 25 0 C)	102
Tabela 18 – Concentração de ozônio dissolvido versus tempo	
condições experimentais (pH = 3,7; vazão de O_2 =12 Lh^{-1} ; T = $25^{0}C$)	103
Tabela 19 – Concentração de ozônio dissolvido versus temp	
diferentes pHs – condições experimentais	104
(vazão de $O_2 = 9 \text{ Lh}^{-1}$; T = 25 $^{\circ}$ C; 100 RPM)	104

Tabela 20 – Influencia do tempo de ozonização no pH - condições experimentais (Vazão de O_2 = 9Lh⁻¹; 100 RPM; T = 25 0 C). 105 Tabela 21 – Concentração do Paraquat versus tempo (pH = 3,7; vazão de O_2 = 9Lh⁻¹; 100 RPM; T = 25 0 C) 105 Tabela 22 - Mineralização do Paraquat – condições experimentais (Vazão de O_2 = 9 L/h; 100 RPM; T = 25 0 C) 106

Lista de figuras

Figura 1 - Diagrama esquemático mostrando os prováveis mecanismos	
pelos quais o conteúdo de água no solo influência a atividade do pesticida	25
Figura 2 – Consumo de Pesticidas ao nível mundial em Kg/há.	27
Figura 3- Consumo Mundial Médio, segundo sua aplicação, 2007.	31
Figura 4 – Estrutura molecular do Paraquat.	33
Figura 5 – Ilustração da estrutura molecular do Paraquat.	34
Figura 6 - Processo de oxidação do Paraquat na planta.	37
Figura 7 - Esquema simplificado do principio de funcionamento	
do sistema de geração de ozônio baseado no método de efeito corona.	49
Figura 8 – Geração principal do ozônio.	50
Figura 9 – Principio de funcionamento do gerador de ozônio.	50
Figura 10 – Analisador de COT, modelo TOC-VCPN- Shimadzu	60
Figura 11- pH-metro da marca Analyser, modelo 300M	60
Figura 12 - Balança analítica AL500C da marca Marte	61
Figura 13 – Rotâmetro marca Dwyer	61
Figura 14 – Espectrofotômetro	62
Figura 15 – Reator tubular	63
Figura 16 - Agitador magnético	63
Figura 17 – Ozonizador	64
Figura 18 – Lavador de gás de vidro	64
Figura 19 – Indicação da quantidade do Paraquat pelo método de coloração	66
Figura 20 - Arranjo experimental utilizado na degradação do Paraquat	67
Figura 21 – Lavagem da corrente gasosa que deixa o gerador de	
ozônio em solução de iodeto de potássio	68
Figura 22 – Titulação da solução de iodeto de potássio na corrente gasosa.	69
Figura 23 – Reagentes índigos usados para o método colorimétrico	70
Figura 24 – Curvas de calibração do Paraquat obtidas a partir da	
solução padrão em pH=3,7; pH=6,5; pH=12,5	73
Figura 25 – Concentração de ozônio em diferentes vazões de	
entrada de O_{2} , pH=3,7	74
Figura 27 – Curva ajustada dos dados experimentais do ozônio	

dissolvido na solução em função do tempo de ozonização.	//
Figura 28 – Influencia do pH na concentração de ozônio dissolvido	
no reator. Condições experimentais: de O ₂ 9Lh ⁻¹ ; velocidade	
de agitação 100RPM; T=25°C.	78
Figura 29 – Variação do pH em função do tempo de ozonização de água	
destilada em pHs iniciais, pH=3,7; pH=6,8; pH=12,5; Condições	
experimentais: vazão de O ₂ de 9Lh ⁻¹ , velocidade de agitação	
de 100RPM, $T=25^{\circ}C$.	79
Figura 30 – Linearização para a obtenção do valor de $kO3'$	81
Figura 31. Curva ajustada a partir dos dados experimentais da	
concentração do Paraquat. Condições experimentais:	
Vazão de O ₂ 9Lh ⁻¹ ; velocidade de agitação de 100RPM; T=25 ⁰ C; pH=3,7.	82

LISTA DE ABREVIATURAS

AOAC - Association of official analytical chemists.

ANVISA – Agência Nacional de Vigilância Sanitaria

DOE - Washington State Department of Ecology

EPA – Environmental Protection Agency

INPA – Instituto Nacional de Prevenção Ambiental

IUPAC – União Internacional de Química Pura e Aplicada

OPAS - Organização Panamericana de Saúde

OMS – Organização Mundial da Saúde

PARA – Programa de Análise de Resíduos de Agrotóxicos em Alimentos

SINDAG – Sindicato Nacional da Indústria de Produtos para Defesa Agrícola

SUCEN - Superintendência de Controle de Endemias

USEPA - United States Environmental Protection Agency

VMP – Valores Máximos Permitidos

LISTA DE SÍMBOLOS

O₃ – Ozônio

H₂O₂ – Peróxido de Hidrogênio

UV - Ultravioleta

DL₅₀ – Dose letal ao 50%

N_{O3} - fluxo efetivo de transferência do ozônio

r – taxa de reação

k – constante cinética de primeira ordem

 $\mathbf{k_L}$ – coeficiente individual de transferência de massa na fase líquida

 $\mathbf{k}_{g/l}$ – coeficiente total de transferência de massa gás-líquido

k_La - coeficiente volumétrico de transferência de massa

C_L^{sat} – concentração de saturação de ozônio no líquido

C_L - concentração de ozônio na solução

 \mathbf{k}_{d} – constante cinética de autodecomposição de ozônio

t – tempo de ozonização.

C_P – concentração de Paraquat

 $k_{\mbox{\scriptsize O}_{3}}$ - constante cinética da reação direta,

OH* - Radicais hidroxila

k_{OH*} - constante cinética da reação com o radical,

 $C_{O_{3,0}}$ é a concentração inicial de ozônio molecular dissolvido

 C_{O_3} - concentração de ozônio molecular dissolvido

C_{OH*} - concentração dos radicais OH*.

 $C_{O_3}^g$ - concentração de ozônio na fase gasosa de entrada

 $C_{o_3}^*$ - concentração de ozônio na interface - gás / líquido.

CI – Carbono Inorgânico

COT – Carbono Orgânico Total

CT - Carbono Total