

Maurício Gruzman

Sistema de Acompanhamento de Alvos Montado em um Corpo em Movimento

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Mecânica.

Orientador: Prof. Hans Ingo Weber Co-Orientador: Prof. Luciano Luporini Menegaldo

Maurício Gruzman

Sistema de Acompanhamento de Alvos Montado em um Corpo em Movimento

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Hans Ingo Weber
Orientador
Departamento de Engenharia Mecânica – PUC-Rio

Prof. Luciano Luporini Menegaldo Co-Orientador Instituto Militar de Engenharia

Prof. Arthur Martins Barbosa BragaDepartamento de Engenharia Mecânica – PUC-Rio

Prof. Agenor de Toledo Fleury
Centro Universitário da FEI

Prof. Ricardo Teixeira da Costa Neto Instituto Militar de Engenharia

Dr. Pedro Cunha Campos Roquette Instituto de Pesquisas da Marinha

Prof. José Eugenio Leal
Coordenador Setorial do
Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 12 de abril de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Maurício Gruzman

Graduou-se em Engenharia Mecânica na Universidade Federal do Rio de Janeiro em 1998. Concluiu o Curso de Mestrado no Instituto Militar de Engenharia em 2003 onde elaborou uma dissertação na área de dinâmica de sistemas multi-corpos rígidos. Durante os estudos de Doutorado publicou junto com seu orientador e co-orientador um trabalho em revista internacional (Mathematical Problems in Engineering - Vol.2010), dois capítulos de livro (Proceedings of the 15th International Workshop on Dynamics and Control e ABCM Symposium Series in Mechatronics – Vol.4) e apresentou vários trabalhos em congressos nacionais e internacionais (DINAME, CILAMCE, COBEM e CONEM).

Ficha Catalográfica

Gruzman, Maurício

Sistema de acompanhamento de alvos montado em um corpo em movimento / Maurício Gruzman ; orientador: Hans Ingo Weber ; co-orientador: Luciano Luporini Menegaldo. – 2011.

170 f.: il.(color.); 30 cm

Tese (doutorado)—Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2011.

Inclui bibliografia

1. Engenharia mecânica — Teses. 2. Sistemas de acompanhamento de alvos. 3. Dinâmica de sistemas multi-corpos rígidos. 4. Controle. 5. Folga. 6. Atrito. I. Weber, Hans Ingo. II. Menegaldo, Luciano Luporini. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

Agradecimentos

Gostaria de agradecer a todas as pessoas que tornaram possível a elaboração deste trabalho, em especial:

Aos professores Hans Ingo Weber e Luciano Luporini Menegaldo pela confiança em mim depositada, orientação e todos os conhecimentos transmitidos.

A meu filho Guilherme que, apesar de sua pouca idade, sempre compreendeu a importância deste trabalho para mim.

A minha esposa, aos meus pais, irmãos e toda a minha família pelo apoio dado durante este curso de Doutorado.

Aos professores membros da banca, pelos comentários e sugestões feitas.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio, pelos momentos compartilhados e conselhos a nível acadêmico.

Aos colegas do Laboratório de Dinâmica e Vibrações do Departamento de Engenharia Mecânica da PUC-Rio, por todo o apoio e pelos momentos gratos.

Ao colega Wagner Epifânio da Cruz do Laboratório de Dinâmica e Vibrações da PUC-Rio pelo apoio na montagem da bancada de testes.

Ao professor Ney Bruno do Instituto Militar de Engenharia e ao engenheiro Leibich Gruzman, meu pai, pelo apoio na montagem dos circuitos eletrônicos utilizados.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Gruzman, Maurício; Weber, Hans; Luporini Menegaldo, Luciano. **Sistema de Acompanhamento de Alvos Montado em um Corpo em Movimento.** Rio de Janeiro, 2011. 170p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

Neste trabalho estuda-se um sistema de acompanhamento de alvos, também conhecido como sistema de rastreamento de alvos, do tipo "pan-tilt" atuado por motores de corrente contínua e fixo em um corpo em movimento. Para tanto é montada uma bancada de testes e implementa-se um programa de simulação. A modelagem para o programa é feita no domínio do tempo, permitindo a utilização de equações bastante complexas para representar o sistema, o que não é possível quando se utiliza modelos no domínio da fregüência. Apesar de se modelar o sistema com corpos rígidos, flexibilidades e amortecimentos estruturais devido aos redutores de velocidade são considerados. Erros nos sensores, folgas nos redutores, atritos seco e viscoso, limites de saturação para as correntes e tensões nas armaduras dos motores também são considerados. Um método para a inclusão dos atrasos de tempo para atualização dos sinais de controle e dados obtidos pelos sensores durante a integração numérica das equações de movimento é apresentado. Para controlar o sistema utilizam-se controladores que não requerem o modelo matemático da planta, tanto na bancada de testes como no programa de simulação. Três tipos diferentes de arquitetura de controle são propostas, chamadas neste trabalho de tipo 1, tipo 2 e tipo 3. A complexidade delas aumenta à medida que mais sensores estão disponíveis no sistema. A arquitetura do tipo 1 destina-se a sistemas onde se possui apenas sensores que fornecem os erros angulares de azimute e elevação do alvo. Se, além deste sensor, também houver sensores para medir as posições angulares relativas entre os elos do mecanismo usa-se a arquitetura do tipo 2. Se houver, ainda, sensores de velocidades angulares inerciais pode-se utilizar a arquitetura do tipo 3. Por fim são apresentados resultados de experimentos e simulações onde se compara o desempenho do sistema com cada tipo de arquitetura de controle.

Palavras - chave

Sistemas de Acompanhamento de Alvos; Dinâmica de Sistemas Multi-Corpos Rígidos; Controle; Folga; Atrito; Atrasos de Tempo no Controle.

Abstract

Gruzman, Maurício; Weber, Hans(Advisor); Luporini Menegaldo, Luciano(Co-advisor). **Target Tracking System Mounted in a Moving Body.** Rio de Janeiro, 2011. 170p. Doctorate Thesis - Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

A study on a pan-tilt type target tracking system actuated by permanent magnet DC motors and assembled in a moving body is presented in this work. To achieve such objective, an experimental test bed is constructed and a simulation program is implemented. The mechanical model is derived and simulated in time domain. This approach allows using accurate non-linear equations to represent system behavior, otherwise infeasible in frequency domain. Although the system is modeled with rigid bodies, flexibility and structural damping due to the gearboxes are considered. Sensor errors, backlash in the gearboxes, dry and viscous friction, saturation limits for armature current and tension of the motors are also considered. A method to include the time delays for the control signal updates, as well as time delays due to sensor dynamic response, during the numerical integration of the equations of motion, is presented. Controllers that require no mathematical model of the plant are employed in the experimental test bed and in the simulation program. Three different control architectures are proposed, called in this work type 1, type 2 and type 3. Their complexity increases depending on the number of available sensors. The type 1 is applied to systems with only one sensor that provides the targets angular azimuth and elevation errors. If, besides this sensor, sensors to measure the relative angular positions between the mechanism links are available type 2 architecture is used. In addition, if sensors to measure inertial angular speeds are also available, type 3 architecture can be used. Finally, experimental and numerical results, comparing system performance with each control architecture are presented.

Keywords

Target Tracking System; Rigid Multi-Body System Dynamics; Control; Backlash; Friction; Control Time Delays.

Sumário

1. Introdução	29
1.1. Configurações do mecanismo	30
1.2. Objetivos	33
1.3. Revisão bibliográfica	34
1.4. Terminologia	37
1.5. Descrição da tese	39
2. Equações de movimento do sistema	40
2.1. Introdução	40
2.2. Lagrangeano do sistema	42
2.2.1. Energias cinéticas dos corpos	46
2.2.2. Energias potenciais dos corpos	49
2.3. Obtenção dos termos à esquerda nas equações de Lagrange	52
2.4. Torques generalizados não conservativos	52
2.4.1. Torque eletromotriz	53
2.4.2. Torques devido aos acoplamentos entre os corpos <i>R1</i> e <i>1</i>	
e R2 e 2	56
2.4.3. Torques devido ao atrito viscoso	59
2.4.4. Torques devido ao atrito seco	59
2.5. Solução aproximada das equações de movimento	67
3. Controle	71
3.1. Introdução	71
3.2. Sistema apenas com sensor de visão	75
3.2.1. Arquitetura de controle	75
3.2.2. Controladores utilizados	76
3.2.2.1. Ajuste dos ganhos dos controladores	78
3.3. Sistema com sensor de visão e sensores para medir os	
ângulos α e β	80
3.3.1. Arquitetura de controle	80

3.3.2. Cálculo de α_d e β_d	82
3.3.2.1. Controladores utilizados nas malhas internas	86
3.3.2.2. Ajuste dos ganhos dos controladores utilizados nas	
malhas internas	86
3.4. Sistema com sensor de visão, girômetros e sensores para	
medir α e β	87
3.4.1. Arquitetura de controle	87
3.4.2. Malha interna (malha de estabilização)	90
3.4.2.1. Ajuste dos ganhos da malha interna	90
3.4.3. Malha externa (malha de perseguição)	91
3.4.3.1. Ajuste dos ganhos utilizados para o controlador da malha	
externa	97
3.4.4. Arquitetura completa com malhas internas e externas	
detalhadas	99
3.5. Erros nos sensores	100
3.6. Considerações finais	103
4. Simulações	107
4.1. Introdução	107
4.2. Parâmetros utilizados nas simulações	107
4.2.1. Sistema de alimentação dos motores elétricos	107
4.2.2. Corpo 1	108
4.2.3. Corpo 2	108
4.2.4. Motor 1	108
4.2.5. Motor 2	109
4.2.6. Redutor entre o rotor 1 e o corpo 1	110
4.2.7. Redutor entre o rotor 2 e o corpo 2	110
4.2.8. Sensores de posição angular relativa e sensor de visão	110
4.2.9. Outras informações	111
4.3. Simulações	111
4.3.1. Situação 1: Corpo 0 e alvo fixos	111
4.3.2. Situação 2: Corpo 0 fixo e alvo movendo-se	112
4.3.3. Situação 3: Corpo 0 movendo-se e alvo fixo	113

4.3.4. Situação 4: Corpo u e aivo movendo-se	114
4.4. Resultados das simulações	115
4.4.1. Arquitetura de controle do tipo 1	115
4.4.1.1. Situação 1	115
4.4.1.2. Situação 2	119
4.4.1.3. Situação 3	120
4.4.1.4. Situação 4	122
4.4.2. Arquitetura de controle do tipo 2	122
4.4.2.1. Situação 1	122
4.4.2.2. Situação 2	126
4.4.2.3. Situação 3	128
4.4.2.4. Situação 4	128
4.4.3. Arquitetura de controle do tipo 3	129
4.4.3.1. Situação 1	129
4.4.3.2. Situação 2	130
4.4.3.3. Situação 3	131
4.4.3.4. Situação 4	131
4.4.4. Influência dos erros aleatórios nos sensores	132
4.4.4.1. Arquitetura de controle do tipo 1	133
4.4.4.2. Arquitetura de controle do tipo 2	134
4.4.4.3. Arquitetura de controle do tipo 3	134
4.4.4.3.1. Erros de medição apenas no sensor de visão	135
4.4.4.3.2. Erros de medição apenas nos girômetros	135
4.4.4.4. Comparação entre os controladores	136
4.5. Análise de resultados	137
5. Bancada de testes	139
5.1. Introdução	139
5.2. Componentes da bancada de testes	141
5.2.1. Alvo	141
5.2.2. Câmera digital	142
5.2.3. Encoders e tacômetros	142
5 2 4 Placa multifuncional	143

5.2.5. Motores/redutores do sistema de acompanhamento de	
alvos	143
5.2.6. Amplificadores de potência	144
5.2.7. Computador	144
5.2.8. Programa em Labview [®]	144
5.2.8.1. Arquitetura de controle do tipo 1	145
5.2.8.1.1. Ajustes do sensor de visão	145
5.2.8.1.2. Ajustes dos ganhos dos controladores PID	149
5.2.8.1.3. Delta T	150
5.2.8.1.4. Ligar motores	150
5.2.8.1.5. Dados de saída	150
5.2.8.2. Arquitetura de controle do tipo 2	150
5.2.9. Base	151
5.3. Testes	152
5.3.1. Introdução	152
5.3.2. Arquitetura de controle do tipo 1	153
5.3.2.1. Teste 1 – alvo fixo e corpo 0 fixo	153
5.3.2.2. Teste 2 – alvo móvel e corpo 0 fixo	155
5.3.2.3. Teste 3 – alvo fixo, corpo 0 fixo e ganhos dos	
controladores ajustados por Ziegler-Nichols	156
5.3.3. Arquitetura de controle do tipo 2	157
5.3.3.1. Teste 4 – alvo fixo, corpo 0 fixo e ganhos dos	
controladores ajustados por Ziegler-Nichols	157
5.4. Análise de resultados	158
6. Conclusões e sugestões para trabalhos futuros	159
6.1. Conclusões	159
6.2. Sugestões para trabalhos futuros	163
7 Referências hibliográficas	164

Lista de Figuras

Figura 1.1 -	Mecanismo com três graus de liberdade	31
Figura 1.2	Mecanismo com dois graus de liberdade	31
Figura 1.3	Mecanismo de 2 graus de liberdade e atuadores na	
	base (Antolovic [1])	32
Figura 1.4	Mecanismo de 3 graus de liberdade e atuadores na	
	base (Wagner et al [2])	32
Figura 1.5	Mecanismo de 3 graus de liberdade e atuadores na	
	base (Bang et al [3])	32
Figura 1.6	Mecanismo com dois graus de liberdade e 2	
	atuadores	33
Figura 2.1	Corpos que compõem o sistema	41
Figura 2.2	Sistemas de coordenadas utilizados	43
Figura 2.3	Vetores posição	44
Figura 2.4	Rotação entre os sistemas de coordenadas	44
Figura 2.5	Orientação do corpo 0	45
Figura 2.6	Plano de referência para cômputo da energia	
	potencial	49
Figura 2.7	Sistema em relação ao plano de referência	50
Figura 2.8	Motor C.C. de imã permanente controlado pela	
	tensão na armadura	53
Figura 2.9	Algoritmo para se incluir o efeito de saturação na	
	corrente da armadura	55
Figura 2.10 -	Modelo adotado para representar o redutor	57
Figura 2.11 -	Pontos de contato	57
Figura 2.12 -	Torque de atrito utilizado dependendo da velocidade	
	angular	61
Figura 2.13 -	Velocidade angular residual	62
Figura 2.14 -	Torque devido ao atrito seco	65
Figura 2.15 -	Atrito seco nos motores elétricos	66

Figura 3.1 -	Erros angulares e imagem capturada pelo sensor de	
	visão	72
Figura 3.2 -	Campo de visão do sensor	73
Figura 3.3 -	Vetor posição do alvo com respeito ao ponto <i>b</i>	73
Figura 3.4 -	Obtenção do vetor posição do alvo com respeito ao	
	ponto <i>b</i> durante a simulação	74
Figura 3.5 -	Arquitetura de controle do tipo 1	76
Figura 3.6 -	Controlador proporcional genérico	78
Figura 3.7 -	Ganho e período críticos	79
Figura 3.8 -	Sistema parado antes de se iniciar o procedimento	
	de Ziegler-Nichols	79
Figura 3.9 -	Sistema com sensor de visão e encoders	80
Figura 3.10 -	Arquitetura de controle do tipo 2	81
Figura 3.11-	Atrasos das malhas que devem ser considerados na	
	integração numérica	81
Figura 3.12 -	Entradas para o cálculo de α_d e β_d	82
Figura 3.13 -	Componentes do vetor ${\bf n}$ no sistema de coordenadas	
	solidário ao corpo 1	84
Figura 3.14 -	Sistemas de coordenadas 1' e 2'	84
Figura 3.15 -	Sensor com girômetros montado no corpo 2	87
Figura 3.16 -	Arquitetura de controle do tipo 3 em linhas gerais	88
Figura 3.17 -	Blocos de um controlador de lógica fuzzy	91
Figura 3.18 -	Entradas e saída do controlador fuzzy utilizado	92
Figura 3.19 -	Funções de pertinência	93
Figura 3.20 -	Utilização de ganhos para se evitar alterações nas	
	funções de pertinência.	93
Figura 3.21 -	Funções de pertinência normalizadas	94
Figura 3.22 -	Superfície de controle	94
Figura 3.23 -	Funções de pertinência de NiS	95
Figura 3.24 -	Representação esquemática da aproximação para a	
	derivada do erro	97
Figura 3.25 -	Visão do alvo em três instantes	98

Figura 3.26 -	completa	99
Figure 3.27 -	Curva de probabilidade de uma variável aleatória	00
rigula 3.27 -	uniforme	100
Figura 3 28 -	Curva de probabilidade de uma variável aleatória	100
1 Igula 5.20 -	gaussiana	101
Figura 3.29 -	Encoder ótico incremental com 8 fendas	101
Figura 3.30 -	Ângulos verdadeiros (curvas azuis) e ângulos	
J	medidos (curvas vermelhas)	103
Figura 4.1 -	Alvo e corpo 0 fixos	111
Figura 4.2 -	Movimento do alvo	112
Figura 4.3 -	Alvo fixo, corpo 0 em movimento	113
Figura 4.4 -	Alvo e corpo 0 em movimento	114
Figura 4.5 -	Simulação 1:Erros angulares de azimute e elevação	
	em função do tempo	115
Figura 4.6 -	Simulação 2:Erros angulares de azimute e elevação	
	em função do tempo	116
Figura 4.7 -	Simulação 3:Erros angulares de azimute e elevação	
	em função do tempo	117
Figura 4.8 -	Simulação 4:Erros angulares de azimute e elevação	
	em função do tempo	118
Figura 4.9 -	Simulação 5:Erros angulares de azimute e elevação	
	em função do tempo	118
Figura 4.10 -	Simulação 6:Erros angulares de azimute e elevação	
	em função do tempo	118
Figura 4.11 -	Simulação 7:Erros angulares de azimute e elevação	
	em função do tempo	119
Figura 4.12 -	Simulação 8:Erros angulares de azimute e elevação	
	em função do tempo	119
Figura 4.13 -	Simulação 9:Erros angulares de azimute e elevação	
	em função do tempo	120
Figura 4.14 -	Simulação 10:Erros angulares de azimute e elevação	
	em função do tempo	121

Figura 4.15 -	Simulação 11:Erros angulares de azimute e elevação	
	em função do tempo	121
Figura 4.16 -	Simulação 12:Erros angulares de azimute e elevação	
	em função do tempo	122
Figura 4.17 -	Simulação 13:Erros angulares de azimute e elevação	
	em função do tempo	123
Figura 4.18 -	Simulações 14 e 15:Erros angulares de azimute e	
	elevação em função do tempo	124
Figura 4.19 -	Simulação 16:Erros angulares de azimute e elevação	
	em função do tempo	125
Figura 4.20 -	Simulação 17:Erros angulares de azimute e elevação	
	em função do tempo	125
Figura 4.21 -	Simulação 18:Erros angulares de azimute e elevação	
	em função do tempo	126
Figura 4.22 -	Simulação 19:Erros angulares de azimute e elevação	
	em função do tempo	126
Figura 4.23 -	Simulações 20 e 21:Erros angulares de azimute e	
	elevação em função do tempo	127
Figura 4.24 -	Simulações 22 e 23:Erros angulares de azimute e	
	elevação em função do tempo	127
Figura 4.25 -	Simulação 24:Erros angulares de azimute e elevação	
	em função do tempo	128
Figura 4.26 -	Simulação 25:Erros angulares de azimute e elevação	
	em função do tempo	128
Figura 4.27 -	Simulação 26:Erros angulares de azimute e elevação	
	em função do tempo	130
Figura 4.28 -	Simulação 27:Erros angulares de azimute e elevação	
	em função do tempo	130
Figura 4.29 -	Simulação 28:Erros angulares de azimute e elevação	
	em função do tempo	131
Figura 4.30 -	Simulação 29:Erros angulares de azimute e elevação	
	em função do tempo	132

Figura 4.31 -	Simulação 30:Erros angulares de azimute e elevação	
	em função do tempo	133
Figura 4.32 -	Simulação 31:Erros angulares de azimute e elevação	
	em função do tempo	134
Figura 4.33 -	Simulação 32:Erros angulares de azimute e elevação	
	em função do tempo	135
Figura 4.34 -	Simulação 33:Erros angulares de azimute e elevação	
	em função do tempo	136
Figura 4.35 -	Simulações 34, 35 e 36:Erros angulares de azimute e	
	elevação em função do tempo	137
Figura 5.1 -	Fotografia da bancada de testes, constituída pelo	
	sistema de acompanhamento de alvos, base de	
	acrílico e quadros de alumínio	139
Figura 5.2 -	Fotografia da bancada de testes com ângulos de	
	"pitch", "yaw" e "roll" diferentes de zero	140
Figura 5.3 -	Fotografia do sistema de acompanhamento de alvos	
	montado na base de acrílico	140
Figura 5.4 -	Esquema experimental do sistema de	
	acompanhamento de alvos	141
Figura 5.5 -	Desenho esquemático do dispositivo para	
	movimentação do alvo	142
Figura 5.6 -	Fotografia do alvo preto fixo no disco branco à frente	
	da cartolina branca	142
Figura 5.7 -	Fotografia do conjunto encoder/tacômetro conectado	
	ao corpo 1	143
Figura 5.8 -	Amplificador de potência, fonte CC, motor CC e placa	
	multifuncional	144
Figura 5.9 -	Painel frontal do programa implementado em	
	Labview [®]	145
Figura 5.10 -	Conversão de pixels para radianos	147
Figura 5.11 -	Conversão de pixels para radianos com	
	compensação de distorção	1/17

Figura 5.12 -	Variação da relação pixels/rad em função das	
	coordenadas do centróide	148
Figura 5.13 -	Inclinação (a) e ponto onde a reta cruza o eixo	
	vertical (b)	149
Figura 5.14 -	Desenho esquemático do conjunto de quadros	151
Figura 5.15 -	Desenho esquemático do motor do quadro externo	152
Figura 5.16 -	Ângulos α (gráfico da esquerda) e β (gráfico da	
	direita) obtidos no teste 1	153
Figura 5.17 -	Ângulos α (gráfico da esquerda) e β (gráfico da	
	direita) obtidos na simulação relativa ao teste 1	154
Figura 5.18 -	Sobreposição dos resultados numéricos (em azul) e	
	experimentais (em vermelho).	154
Figura 5.19 -	Ângulos α (gráfico da esquerda) e β (gráfico da	
	direita) obtidos no teste 2	155
Figura 5.20 -	Ângulos α (gráfico da esquerda) e β (gráfico da	
	direita) obtidos na simulação relativa ao teste 2	155
Figura 5.21 -	Sobreposição dos resultados numéricos (em azul) e	
	experimentais (em vermelho)	156
Figura 5.22 -	Erros angulares de azimute (gráfico da esquerda) e	
	elevação (gráfico da direita) obtidos no teste 3.	157
Figura 5.23 -	Erros angulares de azimute (gráfico da esquerda) e	
	elevação (gráfico da direita) obtidos no teste 4.	158

Lista de Tabelas

Tabela 3.1.	Ganhos do controlador PID (ou PI ou P) em função de	
	k_{crit} e T_{crit}	79
Tabela 3.2.	Base de regras para o FLC com duas entradas (\hat{e} , $\dot{\hat{e}}$)	93
Tabela 3.3.	Base de regras para o FLC com três entradas (entrada	
	1, entrada 2, <i>NiS</i>)	96
Tabela 4.1.	Ganhos do controlador PID (ou PI ou P)	117
Tabela 4.2.	Ganhos do controlador PID (ou PI ou P)	123
Tabela 4.3.	Ganhos do controlador PID (ou PI ou P)	125
Tabela 5.1.	Coordenada X_{cen} do centróide para diferentes posições	
	do alvo	148
Tabela 5.2.	Coordenada Z _{cen} do centróide para diferentes posições	
	do alvo	148

 $_{a}d_{b}$

Lista de Símbolos

Símbolos Romanos

Origem do sistema de coordenadas solidário ao corpo 0. aInclinações das retas obtidas pelo método dos mínimos a(az) a(el)quadrados (retas utilizadas para ajuste do número de pixels por radiano em função do número de pixels). Arco tangente. atan Ponto de interseção dos eixos de elevação, de rotação e h central. Pontos onde as retas obtidas pelo método dos mínimos b(az) b(el)quadrados (retas para ajuste do número de pixels por radiano em função do número de pixels) interceptam o eixo vertical. Origem do sistema de coordenadas solidário ao corpo 1. С Coeficiente de atrito viscoso no corpo 1. c_1 Coeficiente de atrito viscoso no corpo 2. c_2 C.C. Corrente contínua. Coeficiente utilizado no termo de amortecimento numérico C_{numérico,i} para um corpo i. Cosseno. cos Coeficiente de atrito viscoso no rotor R1. c_{RI} Coeficiente de atrito viscoso no rotor *R2*. c_{R2} Coeficiente de amortecimento estrutural resultante do C_S redutor. Coeficiente de amortecimento estrutural resultante do c_{s1} redutor utilizado entre o rotor R1 e o corpo 1. Coeficiente de amortecimento estrutural resultante do c_{s2} redutor utilizado entre o rotor R2 e o corpo 2. d Origem do sistema de coordenadas solidário ao corpo 2. $d_{x_2} d_{y_2} d_{z_2}$ Componentes do vetor posição do alvo com respeito ao ponto b escrito em coordenadas do sistema solidário ao

Vetor posição de um ponto b com respeito a um ponto a,

quando não se especifica o sistema de coordenas no qual ele

corpo 2.

é escrito.

${}^{\mathrm{C}}_{\mathbf{a}}\mathbf{d}_{\mathbf{b}}$	Vetor posição de um ponto <i>b</i> com respeito a um ponto <i>a</i> , escrito em um sistema de coordenadas solidário a um referencial (ou corpo) C.
${}^{\mathrm{C}}_{a}d_{b}^{\mathrm{T}}$	Vetor ${}^{\rm C}_{\rm a}{f d}_{\rm b}$ transposto.
E	Eixo sem inércia utilizado no modelo do redutor.
e	Origem do sistema de coordenadas solidário ao rotor R1.
e	Sinal de erro.
e_{I}	Sinal de erro para o controlador do motor 1.
e_2	Sinal de erro para o controlador do motor 2.
ê	Erro angular.
$\dot{\hat{e}}$	Derivada do erro angular.
\hat{e}_{az}	Erro angular de azimute.
\hat{e}_{el}	Erro angular de elevação.
e_{fcem}	Força contra-eletromotriz.
\hat{e}_M	Constante utilizada para normalização das funções de pertinência do erro angular empregada no FLC.
$\dot{\hat{e}}_{_{M}}$	Constante utilizada para normalização das funções de pertinência da derivada do erro angular empregada no FLC.
e_{ξ}	Erro de medição.
$e_{\xi_{AL}}$	Erro de medição aleatório.
e_{ξ_OFF}	Erro de medição sistemático (também chamado de "offset" ou "bias" do sensor).
f	Origem do sistema de coordenadas solidário ao rotor R2.
F	Vetor cujas componentes são funções não lineares das coordenadas independentes, suas derivadas primeira em relação ao tempo, dos movimentos prescritos do corpo 0, torques de atrito viscoso, torques devido aos acoplamentos e torques devido às forças eletromotrizes.
fdp	Função distribuição de probabilidade.
f_i	Função não linear das coordenadas independentes, suas derivadas primeira em relação ao tempo e dos movimentos prescritos do corpo 0.
FLC	Controlador de lógica fuzzy ("fuzzy logic controller").
G	Referencial inercial.
g	Módulo da aceleração da gravidade.
\boldsymbol{g}	Vetor aceleração da gravidade.
h_i	Distância do centro de massa de um corpo <i>i</i> ao plano <i>S</i> , medida perpendicularmente a este plano.

 k_{s2}

i Corrente na armadura. Valor máximo da corrente na armadura. i_L Valor máximo da corrente na armadura do motor 1. $i_{L,R1}$ Valor máximo da corrente na armadura do motor 2. $i_{L.R2}$ i_{RI} Corrente na armadura do motor 1. Corrente na armadura do motor 2. i_{R2} $^{A}II_{A}$ Tensor de inércia de um corpo rígido A escrito em coordenadas de um sistema solidário ao próprio corpo A. Função não linear das coordenadas independentes, suas $J_{i,j}$ derivadas primeira em relação ao tempo e dos movimentos prescritos do corpo 0. k Instante de tempo discreto. K Energia cinética total do sistema. Vetor unitário perpendicular ao plano S. k Energia cinética do corpo 1. K_1 K_2 Energia cinética do corpo 2. Ganho crítico observado durante o experimento de Ziegler k_{crit} Nichols Ganho derivativo. k_d Ganho derivativo utilizado no controlador do motor 1. $k_{d,R1}$ Ganho derivativo utilizado no controlador do motor 2. $k_{d,R2}$ Constante de força contra-eletromotriz. k_{fcem} Constante de força contra-eletromotriz do motor 1. $k_{fcem.R1}$ Constante de força contra-eletromotriz do motor 2. $k_{fcem,R2}$ k_i Ganho integral. Ganho integral utilizado no controlador do motor 1. $k_{i.RI}$ Ganho integral utilizado no controlador do motor 2. $k_{i.R2}$ Ganho proporcional. k_p Ganho proporcional utilizado no controlador do motor 1. $k_{p,R1}$ Ganho proporcional utilizado no controlador do motor 2. $k_{p,R2}$ K_{RI} Energia cinética do rotor *R1*. K_{R2} Energia cinética do rotor *R2*. Coeficiente de flexibilidade resultante do redutor. k_{s} Coeficiente de flexibilidade resultante do redutor utilizado k_{s1}

entre o rotor R1 e o corpo 1.

entre o rotor R2 e o corpo 2.

Coeficiente de flexibilidade resultante do redutor utilizado

 k_{torque} Constante de torque do motor. $k_{torque, RI}$ Constante de torque do motor I.

 $k_{torque, R2}$ Constante de torque do motor 2.

l Distância do ponto b ao alvo ao longo do eixo central.

 $\begin{array}{lll} L & & Lagrangeano \ do \ sistema. \\ L_1 & & Lagrangeano \ do \ corpo \ \emph{1}. \\ L_2 & & Lagrangeano \ do \ corpo \ \emph{2}. \\ L_{R1} & & Lagrangeano \ do \ rotor \ \emph{R1}. \end{array}$

 L_{R2} Lagrangeano do rotor R2.

L Indutância da armadura.

 L_{RI} Indutância da armadura do motor I. L_{R2} Indutância da armadura do motor 2.

 m_1 Massa do corpo 1.

M1 M2 M3 Ganhos utilizados no FLC.

 $M1_{R1}$ $M2_{R1}$ $M3_{R1}$ Ganhos utilizados no FLC do controlador do motor 1. $M1_{R2}$ $M2_{R2}$ $M3_{R2}$ Ganhos utilizados no FLC do controlador do motor 2.

 m_2 Massa do corpo 2. m_{R1} Massa do rotor R1. m_{R2} Massa do rotor R2.

n Vetor unitário sob a linha que une o ponto b ao alvo.

N Negativo.

N Relação de redução no redutor.

 N_1 Relação de redução no redutor acoplado ao motor I. N_2 Relação de redução no redutor acoplado ao motor 2.

 N_F Número de fendas no disco ótico do encoder.

NG Negativo grande.

NiS Nível de saturação da tensão do motor. NiS_{R1} Nível de saturação da tensão do motor I. NiS_{R2} Nível de saturação da tensão do motor 2.

NM Negativo médio.NP Negativo pequeno.

 $n_{x_1} n_{y_1} n_{z_2}$ Componentes do vetor **n** escrito em coordenadas do sistema

solidário ao corpo 1.

$n_{x'_1} n_{y'_1} n_{z'_1}$	Componentes do vetor n escrito em coordenadas do sistema x'_{I} y'_{I} z'_{I} .
$n_{x'_2} n_{y'_2} n_{z'_2}$	Componentes do vetor n escrito em coordenadas do sistema x'_2 y'_2 z'_2 .
O	Origem do sistema de coordenadas solidário ao referencial inercial.
P	Positivo.
P	Resolução do encoder.
PG	Positivo grande.
PID	Proporcional-Integral-Derivativo.
PM	Positivo médio.
PP	Positivo pequeno.
P_{α}	Resolução do encoder utilizado para medir o ângulo α .
P_{eta}	Resolução do encoder utilizado para medir o ângulo β .
$p(e_{\xi_{AL}})$	Probabilidade de uma variável aleatória.
q ₁ q ₂ q ₃ q ₄ q ₅ q ₆ q ₇ q ₈	Coordenadas generalizadas do mecanismo.
R	Resistência da armadura.
r	Sinal de referência.
R1	Rotor $R1$ (também chamado de corpo $R1$, rotor I ou rotor do motor I).
r_1	Sinal de referência utilizado para ajustar os ganhos do controlador do motor <i>I</i> pelo método de Ziegler-Nichols.
R2	Rotor <i>R2</i> (também chamado de corpo <i>R2</i> , rotor 2 ou rotor do motor 2).
r_2	Sinal de referência utilizado para ajustar os ganhos do controlador do motor <i>2</i> pelo método de Ziegler-Nichols.
R_{RI}	Resistência da armadura do motor 1.
R_{R2}	Resistência da armadura do motor 2.
S	Plano de referência da energia potencial.
S	Saída da planta.
sen	Seno.
t	Tempo.
t_0	Instante inicial de simulação.
t_f	Instante final de simulação.

 T_{acopl} Torque devido ao acoplamento entre dois corpos.

 T_E

$T_{acopl,1}$	Torque devido ao acoplamento entre os corpos I e RI , que atua no corpo I na direção z_I .
$T_{acopl,2}$	Torque devido ao acoplamento entre os corpos 2 e $R2$, que atua no corpo 2 na direção x_2 .
$T_{acopl,RI}$	Torque devido ao acoplamento entre os corpos l e Rl , que atua em Rl na direção z_{Rl} .
$T_{acopl,R2}$	Torque devido ao acoplamento entre os corpos 2 e $R2$, que atua em $R2$ na direção x_{R2} .
$T_{acopl,carga}$	Torque devido ao acoplamento entre um rotor de um motor e uma carga, que atua na carga.
$T_{acopl,rotor}$	Torque devido ao acoplamento entre um rotor de um motor e uma carga, que atua no rotor.
tan	Tangente.
T_{as}	Torque devido ao atrito seco.
$T_{as, I}$	Torque devido ao atrito seco no corpo 1 na direção z_1 .
$T_{as,2}$	Torque devido ao atrito seco no corpo 2 na direção x ₂ .
$T_{as,i}$	Torque devido ao atrito seco em um corpo i.
$T_{as,RI}$	Torque devido ao atrito seco no rotor RI na direção z_{RI} .
$T_{as,R2}$	Torque devido ao atrito seco no rotor $R2$ na direção x_{R2} .
T_{av}	Torque devido ao atrito viscoso.
$T_{av, I}$	Torque devido ao atrito viscoso no corpo I na direção z_I .
$T_{av,2}$	Torque devido ao atrito viscoso no corpo 2 na direção x_2 .
$T_{av,RI}$	Torque devido ao atrito viscoso no rotor $R1$ na direção z_{R1} .
$T_{av,R2}$	Torque devido ao atrito viscoso no rotor $R2$ na direção x_{R2} .
T_{crit}	Período crítico observado durante o experimento de Ziegler-Nichols.
T_{din}	Torque devido ao atrito seco dinâmico.
$T_{din,1}$	Torque devido ao atrito seco dinâmico no corpo l na direção z_l
$T_{din,2}$	Torque devido ao atrito seco dinâmico no corpo 2 na direção x_2
$T_{din,i}$	Torque devido ao atrito seco dinâmico em um corpo i.
$T_{din,R1}$	Torque devido ao atrito seco dinâmico no rotor $R1$ na direção z_{R1} .
$T_{din,R2}$	Torque devido ao atrito seco dinâmico no rotor $R2$ na direção x_{R2} .

Torque no eixo sem inércia utilizado no modelo do redutor.

T_{EI}	Torque no eixo sem inércia utilizado no modelo do redutor localizado entre o rotor <i>R1</i> e o corpo <i>1</i> .
T_{E2}	Torque no eixo sem inércia utilizado no modelo do redutor localizado entre o rotor <i>R2</i> e o corpo <i>2</i> .
T_{ele}	Torque eletromotriz.
$T_{ele,RI}$	Torque eletromotriz no rotor RI na direção z_{RI} .
$T_{ele,R2}$	Torque eletromotriz no rotor $R2$ na direção x_{R2} .
T_{max}	Valor máximo do torque devido ao atrito seco estático.
$T_{max,1}$	Valor máximo do torque devido ao atrito seco estático no corpo l , na direção z_l .
$T_{max,2}$	Valor máximo do torque devido ao atrito seco estático no corpo 2 , na direção x_2 .
$T_{max,i}$	Valor máximo do torque devido ao atrito seco estático em um corpo <i>i</i> .
$T_{max,RI}$	Valor máximo do torque devido ao atrito seco estático no rotor RI , na direção z_{RI} .
$T_{max,R2}$	Valor máximo do torque devido ao atrito seco estático no rotor $R2$, na direção x_{R2} .
$T_{num\acute{e}rico}$	Termo de amortecimento numérico.
$T_{num\acute{e}rico,i}$	Termo de amortecimento numérico para um corpo i.
$T_{outros,1}$	Somatório de todos os torques que atuam no corpo I , na direção z_I , incluindo os torques inerciais decorrentes do movimento de outros corpos, mas excluindo os torques devido ao atrito seco.
$T_{outros,2}$	Somatório de todos os torques que atuam no corpo 2 , na direção x_2 , incluindo os torques inerciais decorrentes do movimento de outros corpos, mas excluindo os torques devido ao atrito seco.
$T_{outros,i}$	Somatório de todos os torques que atuam em um corpo i , incluindo os torques inerciais decorrentes do movimento de outros corpos, mas excluindo os torques devido ao atrito seco.
$T_{outros,RI}$	Somatório de todos os torques que atuam no rotor $R1$, na direção z_{R1} , incluindo os torques inerciais decorrentes do movimento de outros corpos, mas excluindo os torques devido ao atrito seco.
$T_{outros,R2}$	Somatório de todos os torques que atuam no rotor $R2$, na direção x_{R2} , incluindo os torques inerciais decorrentes do movimento de outros corpos, mas excluindo os torques devido ao atrito seco.

$^{B}T^{A}$	Matriz de transformação de coordenadas de um sistema solidário ao referencial A para um sistema solidário ao referencial B.
U	Energia potencial total do sistema.
U_I	Energia potencial do corpo 1.
U_2	Energia potencial do corpo 2.
U_{RI}	Energia potencial do rotor <i>R1</i> .
U_{R2}	Energia potencial do rotor R2.
и	Tensão na armadura.
u_{RI}	Tensão na armadura do motor 1.
u_{R2}	Tensão na armadura do motor 2.
$U_{L,RI}$	Tensão limite na armadura do motor 1.
$U_{L,R2}$	Tensão limite na armadura do motor 2.
$_{\mathrm{B}}^{\mathrm{C}}\mathbf{V}_{\mathrm{a}}$	Vetor velocidade de um ponto <i>a</i> com respeito a um corpo (ou referencial) B escrito em coordenadas de um sistema solidário a um referencial (ou corpo) C.
${}^{\mathrm{C}}_{\mathrm{B}} \mathbf{v}_{\mathrm{a}}^{\mathrm{T}}$	Vetor $_{\mathbf{B}}^{\mathbf{C}}\mathbf{v}_{\mathbf{a}}$ transposto.
x_0 y_0 z_0	Eixos do sistema de coordenadas cartesianas solidário ao corpo θ .
x_1 y_1 z_1	Eixos do sistema de coordenadas cartesianas solidário ao corpo 1.
x_2 y_2 z_2	Eixos do sistema de coordenadas cartesianas solidário ao corpo 2.
$x'_1 y'_1 z'_1$	Eixos do sistema de coordenadas cartesianas intermediário utilizado para obtenção do ângulo desejado para o corpo 2.
x' ₂ y' ₂ z' ₂	Eixos do sistema de coordenadas cartesianas intermediário utilizado para obtenção do ângulo desejado para o corpo 2.
$x_a \ y_a \ z_a$	Componentes do vetor posição do ponto a com respeito ao ponto \mathcal{O} escrito em coordenadas do sistema solidário ao referencial G.
X _{alvo} Y _{alvo} Z _{alvo}	Componentes do vetor posição do alvo com respeito ao ponto $\mathcal O$ escrito em coordenadas do sistema solidário ao referencial G.
X_{cen} Z_{cen}	Coordenadas do centróide do alvo no plano da imagem capturada pelo sensor de visão.
$x_G \ y_G \ z_G$	Eixos do sistema de coordenadas cartesianas solidário ao referencial inercial.
$x_{RI} \ y_{RI} \ z_{RI}$	Eixos do sistema de coordenadas cartesianas solidário ao rotor $R1$.

x_{R2} y_{R2} z_{R2}	Eixos do sistema de coordenadas cartesianas solidário ao rotor <i>R2</i> .
Z	Zero.
Z.O.H.	Segurador de ordem zero ("zero order hold").
Símbolos Gregos	
α	Ângulo de rotação do corpo I em relação ao corpo θ .
lpha'	Diferença entre α_d e α .
$lpha_d$	Ângulo α desejado.
$lpha_m$	Ângulo de rotação do rotor $R1$ em relação ao corpo θ .
\overline{lpha}	Valor do ângulo $lpha$ obtido pelo encoder.
β	Ângulo de rotação do corpo 2 em relação ao corpo 1 .
eta'	Diferença entre β_d e β .
$oldsymbol{eta_d}$	Ângulo β desejado.
$oldsymbol{eta}_m$	Ângulo de rotação do rotor R2 em relação ao corpo 1.
$\overline{oldsymbol{eta}}$	Valor do ângulo β obtido pelo encoder.
γ	Ângulo de rolagem ("roll").
$\pm \Delta$	Incerteza de um sensor.
Δt	Atraso de tempo.
Δt	Atraso de tempo para atualização do sinal de controle quando se utiliza a arquitetura de controle do tipo 1.
Δt_I	Atraso de tempo para atualização do sinal de saída das malhas externas nas arquiteturas de controle dos tipos 2 e 3.
Δt_2	Atraso de tempo para atualização do sinal de controle (saída das malha internas) nas arquiteturas de controle dos tipos 2 e 3.
δ	Ângulo de inclinação ("pitch").
η	Metade da folga total em um redutor de velocidades.
η_I	Metade da folga total no redutor de velocidades utilizado entre o rotor RI e o corpo I .
η_2	Metade da folga total no redutor de velocidades utilizado entre o rotor <i>R2</i> e o corpo <i>2</i> .
$ heta_l$	Deslocamento angular da extremidade esquerda do eixo sem inércia (<i>E</i>) utilizado no modelo do redutor.
$ heta_2$	Deslocamento angular da extremidade direita do eixo sem inércia (<i>E</i>) utilizado no modelo do redutor.
$ heta_b$	Ângulo θ_2 menos ângulo θ_{carga} .

$ heta_{bI}$	Ângulo θ_b do redutor entre o rotor RI e o corpo I .
$ heta_{b2}$	Ângulo θ_b do redutor entre o rotor $R2$ e o corpo 2.
$ heta_{carga}$	Deslocamento angular da carga movimentada pelo motor.
$ heta_d$	Ângulo θ_I menos ângulo θ_{carga} .
$ heta_{dI}$	Ângulo θ_d do redutor entre o rotor RI e o corpo I .
$ heta_{d2}$	Ângulo θ_d do redutor entre o rotor $R2$ e o corpo 2.
$\dot{ heta}_i$	Velocidade angular de um corpo <i>i</i> na direção do eixo de rotação do corpo.
$\dot{ heta}_{residual,i}$	Velocidade angular residual de um corpo <i>i</i> na direção do eixo de rotação do corpo.
$ heta_{rotor}$	Deslocamento angular do rotor, com respeito à carcaça do motor, medido em torno do eixo axial do rotor.
μ	Grau de pertinência das funções de pertinência utilizadas no FLC.
μ_i	Constante utilizada para o cálculo do coeficiente de amortecimento numérico em um corpo <i>i</i> .
Š.	Valor real de uma variável.
ξ - ξ ξ <i>j</i>	Valor de uma variável obtido por algum sensor.
ξ_j	Variável (coordenada) independente j.
Ξ_j	Força (torque) generalizada não conservativa correspondente à ξ_j .
Ξ_{lpha}	Força (torque) generalizada não conservativa correspondente à variável independente α .
Ξ_{lpha_m}	Força (torque) generalizada não conservativa correspondente à variável independente α_m .
Ξ_eta	Força (torque) generalizada não conservativa correspondente à variável independente β .
$\Xi_{oldsymbol{eta}_m}$	Força (torque) generalizada não conservativa correspondente à variável independente β_m .
$\hat{ ho}$	Ângulo de abertura.
$\hat{ ho}_{az}$	Ângulo de abertura em azimute do sensor de visão.
$\hat{ ho}_{\scriptscriptstyle el}$	Ângulo de abertura em elevação do sensor de visão.
σ	Desvio-padrão.
Ψ	Ângulo de guinagem ("yaw").
ω	Velocidade angular de um rotor, com respeito à carcaça do motor, na direção do eixo axial do rotor.

$_{B}^{C}\omega_{A}$	Vetor velocidade angular de um corpo A com respeito a um corpo (ou referencial) B escrito em coordenadas de um sistema solidário a um referencial (ou corpo) C.
$_{B}^{C}\omega_{A}^{T}$	Vetor $_{B}^{C}\omega_{A}$ transposto.
ωd_{x_2}	Componente da velocidade angular inercial desejada do corpo 2 na direção x_2 .
ωd_{z_2}	Componente da velocidade angular inercial desejada do corpo 2 na direção z_2 .
ωd_{inc}	Incremento para a componente da velocidade angular inercial desejada.
$\mathit{od}_{\mathit{inc}_{M}}$	Constante utilizada para normalização das funções de pertinência de saída empregadas no FLC.
od_{incx_2}	Incremento para a componente da velocidade angular inercial desejada do corpo 2 na direção x_2 .
ωd_{incz_2}	Incremento para a componente da velocidade angular inercial desejada do corpo 2 na direção z_2 .
$\mathcal{O}_{min,1}$	Velocidade angular (do corpo l com respeito ao corpo l) de transição entre os regimes de "stick" e "slip".
$\mathcal{O}_{min,2}$	Velocidade angular (do corpo 2 com respeito ao corpo 1) de transição entre os regimes de "stick" e "slip".
$\mathcal{O}_{min,i}$	Velocidade angular de transição entre os regimes de "stick" e "slip" na direção do eixo de rotação do corpo.
$\mathcal{O}_{min,RI}$	Velocidade angular (do rotor $R1$ com respeito ao corpo θ) de transição entre os regimes de "stick" e "slip".
$\mathcal{O}_{min,R2}$	Velocidade angular (do rotor <i>R2</i> com respeito ao corpo <i>1</i>) de transição entre os regimes de "stick" e "slip".
\mathscr{O}_{x_2}	Componente da velocidade angular inercial do corpo 2 na direção x_2 .
ω_{z_2}	Componente da velocidade angular inercial do corpo 2 na direção z_2 .
Ω	Velocidade angular do movimento circulatório do alvo em um plano paralelo ao plano formado pelos eixos x_G e z_G .