5. Validação do Simulador de Estações de Entrega

Para determinar o escoamento do gás natural em uma estação de entrega foi desenvolvido um simulador baseado na modelagem matemática apresentada nos Capítulos 3 e 4. Detalhes de implementação do simulador e validação individual de seus módulos podem ser encontrados no Apêndice A. Neste Capítulo são apresentados dois testes de validação do Simulador de Estações de Entrega. O primeiro exemplo investiga a influência do Efeito Joule-Thomson nas válvulas e fluxo de calor requerido nos aquecedores. O segundo exemplo analisa um escoamento adiabático compressível.

5.1. Efeito Joule-Thomson nas Válvulas e Fluxo de Calor Requerido nos Aquecedores.

O primeiro exemplo de validação consiste na determinação do ganho de temperatura nos aquecedores considerando fluxo de calor constante, e a queda de temperatura nas válvulas de redução de pressão devido ao efeito Joule-Thomson. A validação ocorrerá através da comparação dos resultados com o simulador dinâmico desenvolvido para estações de entrega de gás natural denominado SIMGAS, com os valores obtidos pelo simulador comercial de processos HYSYS da Aspentech. O objetivo principal é avaliar as diferenças entre as equações de estado de Peng-Robinson e Soave-Redlich-Kwong implementadas para o cálculo das propriedades termodinâmicas do gás natural que afetam o cálculo nos equipamentos principais; e também o impacto da mudança da composição do gás natural e das variáveis de processo (pressão e temperatura) na entrada da estação nos resultados. A Figura 5.1 apresenta o diagrama esquemático do exemplo 1 com indicação no nome e do modo de controle adotado em cada equipamento.

Para o estudo de variação da composição do gás natural foram consideradas três misturas somente com parafinas (alcanos) apresentadas na Tabela 5.1, onde se buscou variar a riqueza do gás natural dentro dos limites estabelecidos pela

Portaria 104 da Agência Nacional do Petróleo - ANP (2002), que determina a composição do gás natural em cada região do Brasil. A riqueza do gás natural é definida pelo teor de componentes pesados (C3, C4+) que possuem alto peso específico e poder calorífico.

Figura 5.1 – Diagrama esquemático do exemplo 1

Tabela 5.1 – Frações Molares das Composições de Gás Natural do Exemplo 1

% Hidrocarboneto	C1 Metano	C2 Etano	C3 Propano	n-C4 nButano
Gas1	100,0	0,0	0,0	0,0
Gas2	90,0	7,0	3,0	0,0
Gas3	86,0	9,5	3,0	1,5

De acordo com a portaria 104 da ANP para a região Sudeste do Brasil o gás natural deve ser comercializado dentro das seguintes especificações:

- Metano C1 (mínimo): 86%
- Etano C2 (máximo): 10%
- Propano C3 (máximo): 3%
- Butano e Superiores C4+ (máximo): 1,5%
- Oxigênio (máximo): 0,5%
- Inertes Máximo (N2 + CO2) (máximo): 4%
- Poder Calorífico Superior: 9,72 a 11,67 kWh/m³
- Índice de Wobbe: 46500 a 52500 kJ/m³

Os resultados obtidos nos simuladores SIMGAS e HYSYS são apresentados em gráficos comparativos para avaliação do desempenho dos equipamentos isoladamente. No aquecedor HES1 foi realizada a variação do fluxo de calor desprezando a perda de pressão; na válvula VLV1 foi avaliada a queda de temperatura promovida pela variação da pressão de entrada da estação considerando o aquecedor desligado. Nestes gráficos são apresentados os resultados dos casos testados com diferentes composições de gás natural segundo a Tabela 5.1 e as equações de estado: Peng-Robinson (PR) e Soave-Redlich-Kwong (SRK).

As Figuras 5.2 e 5.3 apresentam o ganho de temperatura no aquecedor HES1 em função do fluxo de calor transferido ao gás, para as duas equações de estado, considerado as seguintes condições:

- Pressão de Entrada: 100 kgf/cm²
- Temperatura de Entrada: 15 °C
- Vazão Volumétrica de Entrega: 1.800.000 Sm³/dia
- Fluxo de Calor em HES1: 0 a 2000 kJ/s

Pode-se observar tanto na Fig. 5.2 quanto 5.3, uma perfeita concordância entre os resultados obtidos aqui, indicados nos gráficos como SIMGAS, que é o nome do simulador desenvolvido neste trabalho e os resultados obtidos com o simulador comercial HYSYS.

Figura 5.2 – Ganho de Temperatura vs Fluxo de Calor no Aquecedor (Peng-Robinson)

Figura 5.3 – Ganho de Temperatura vs Fluxo de Calor no Aquecedor (Soave-Redlich-Kwong)

A queda de temperatura em função da queda de pressão na válvula VLV1 pode ser analisada na Fig. 5.4 e 5.5 para as duas equações de estado. Estes resultados foram obtidos para as condições indicadas a seguir. Mais uma vez, observa-se perfeita concordância entre os resultados dos dois simuladores.

- Temperatura de Entrada: 15 °C
- Pressão de Entrega (Setpoint): 35 kgf/cm²
- Pressão de Entrada: 40 a 100 kgf/cm²

Figura 5.4 – Queda de Temperatura vs Queda de Pressão na Válvula (Peng-Robinson)

Figura 5.5 – Queda de Temperatura vs Queda de Pressão na Válvula (Soave-Redlich-Kwong)

Com o objetivo de avaliar a influência simultânea da variação de pressão e temperatura nas propriedades termodinâmicas que afetam o ganho de temperatura no aquecedor e a queda de temperatura na válvula, foram obtidos no SIMGAS e no HYSYS a variação do fator de compressibilidade em função da pressão para diferentes temperaturas, assim como a variação do coeficiente Joule-Thomson com a pressão e a temperatura na entrada da VLV1. Selecionou-se a equação de estado de Peng-Robinson (PR), e duas composições diferentes de gás foram empregadas: composições do Gás 1 e Gás 3.

As Figuras 5.6 e 5.7 apresentam o comportamento do fator de compressibilidade com pressão e temperatura para os dois gases. Observa-se que o mesmo cai com o aumento da pressão e diminuição da temperatura. Os dois gases apresentam comportamento semelhante. Ambos os simuladores apresentam exatamente os mesmos resultados.

Os resultados referentes ao coeficiente Joule-Thomson em função da pressão de entrada na VLV1, mantendo a temperatura de entrada constante e igual a 15 °C são ilustrados nas Figuras 5.8 e 5.9. Neste teste variou-se a pressão de entrada de 40 a 100 kgf/cm² e utilizou-se as duas equações de estado de Soave-Redlich-Kwong e Peng-Robinson.

Figura 5.6 – Curvas isotermas para o fator de compressibilidade (Gás 1 – Peng-Robinson)

Figura 5.7 – Curvas isotermas para o fator de compressibilidade (Gás 3 – Peng-Robinson)

Analisando os resultados para os dois casos, nas Figs. 5.8 e 5.9, observa-se que os resultados obtidos no presente trabalho apresentam o mesmo comportamento que o simulador HYSYS, porém com valores ligeiramente inferiores. Ambas as equações de estado e gases, apresentam um máximo no coeficiente de Joule-Thomson para uma determinada pressão, porém a pressão correspondente ao máximo não é a mesma. Adicionalmente, observa-se que a equação de estado de Peng-Robinson prevê maiores valores que a equação de estado de Soave-Redlich-Kwong.

Figura 5.8 – Coeficiente J-T vs Pressão de Entrada (Gás 1)

Figura 5.9 – Coeficiente J-T vs Pressão de Entrada (Gás 3)

A variação do coeficiente Joule-Thomson como função da temperatura de entrada na VLV1, mantendo a pressão de entrada constante e igual a 100 kgf/cm², é apresentada nas Figuras 5.10 e 5.11 para os dois gases selecionados. Novamente as duas equações de estado foram testadas para os dois gases. Neste caso,

observa-se que o coeficiente de Joule-Thompson caiu com o aumento da temperatura para os dois gases e duas equações de estado. Novamente, os valores preditos com a equação de Peng-Robinson são superiores aos preditos com a equação de estado de Soave e-Redlich-Kwong, porém a concordância é melhor do que a observada no teste anterior, indicando uma menor sensibilidade deste coeficiente à temperatura.

Figura 5.10 – Coeficiente J-T vs Temperatura de Entrada (Gás 1)

Figura 5.11 – Coeficiente J-T vs Temperatura de Entrada (Gás 3)

Como conclusão dos testes realizados, pode-se mencionar que os gráficos comparativos de diferenças de temperatura nos equipamentos mostram uma boa concordância entre os simuladores SIMGAS e HYSYS para ambas as equações de estados e todas as composições.

Os maiores desvios de temperatura nos equipamentos foram obtidos na composição de maior peso molecular Gás 3.

O maior desvio de temperatura no aquecedor HES1 entre os simuladores SIMGAS e HYSYS é de 0,43 °C (2,03 %) para PR e 0,42 °C (1,98 %) para SRK. O desvio encontrado é atribuído a diferenças no polinômio do calor específico à pressão zero e no cálculo do fator de compressibilidade.

A razão da queda de temperatura com a queda de pressão na válvula (coeficiente Joule-Thomson) varia de acordo com a composição do gás, com a pressão e a temperatura de entrada da válvula, e também de acordo com a equação de estado selecionada. O desvio máximo de temperatura entre as equações de estado de PR e SRK é de 1,57°C (5,51%) no SIMGAS e de 1,56 °C (5,44%) no HYSYS. Entre os simuladores o desvio da temperatura na válvula aumenta com a pressão e atinge valor máximo de 0,21 °C para SRK e 0,24 para PR na pressão máxima de 100 kgf/cm².

Finalmente, pode-se afirmar que os testes de validação realizados apresentaram resultados satisfatórios.

5.2.

Cálculo da vazão e da queda de pressão num escoamento adiabático compressível

O segundo exemplo de validação verifica a modelagem das equações de conservação de quantidade de movimento linear (QML) aplicada a válvulas e dutos considerando escoamento compressível adiabático. A Figura 5.12 ilustra o diagrama esquemático composto por 03 dutos e 01 válvula. Para este exemplo considerou-se que os seguintes parâmetros são fornecidos:

- Equação de Estado de Peng-Robinson
- Condição padrão para vazão volumétrica: 20 °C e 1 atm
- Condições na entrada de GAS1:
 - Pressão de entrada: 75,0 kgf/cm²
 - Temperatura de entrada: 25,0 °C

- Composição molar do gás natural: 86% metano 9,5% etano 3,0% propano e 1,5% n-butano
- Propriedades nos dutos DUTO1, DUTO2 e DUTO3:
 - Coeficiente global de transferência: U=1e-5 W/m².K
 - Temperatura ambiente: 25 °C
 - Diâmetro externo: 6 pol
 - Espessura de parede: 0,5 pol
 - Rugosidade: 0,0254 mm
 - Comprimento: 1000 m
 - Fator de atrito calculado pela equação de Colebrook.
- Válvula VLV1:
 - Fração de Abertura: 1,0 (Curva de Abertura Linear)
 - $Cv \text{ máximo} = 100 \text{ gpm/psi}^{0,5}$

Figura 5.12 – Diagrama esquemático do exemplo 2 (Parâmetro de Entrada)

Neste exemplo serão comparados os resultados obtidos entre o simulador de estação de entrega SIMGAS e o simulador de rede de gás TGNET 2.1 (Pipeline Studio) da empresa Energy Solutions considerando duas condições diferentes nos pontos de saída de gás:

 Condição de Pressão nas Saídas: de 64,0 kgf/cm² em GAS2 e 60,0 kgf/cm² em GAS3 Condição de Vazão nas Saídas: 200,0 SMm³/d em GAS2 e 1000,0 SMm³/d em GAS3

A partir da Tabela 5.2 é possível avaliar como a vazão volumétrica, pressão, temperatura e velocidade nos dutos é afetada em ambos os simuladores por mudanças nas condições de contorno. No SIMGAS a variação de temperatura nos dutos e válvulas é promovida apenas pelo efeito Joule-Thomson, pois foi desconsiderando o efeito do trabalho viscoso na equação da energia.

SIMGAS - Pressão definida nas saídas										
Nome	Vazão Vol	Pressão	Pressão	Temperatura	Temperatura	Velocidade	Velocidade			
		Entrada	Saída	Entrada	Saída	Entrada	Saída			
Unidade	SMm3/d	kgf/cm2a	kgf/cm2a	°C	°C	m/s	m/s			
DUTO1	1260,52	75,00	68,28	25,00	21,75	12,88	14,12			
DUTO2	304,81	64,45	64,00	19,80	19,57	3,61	3,64			
DUTO3	955,71	64,45	60,00	19,80	17,46	11,33	12,17			
TGNET - Pressão definida nas saídas										
DUTO1	1257,78	75,00	68,26	25,00	22,30	12,82	14,11			
DUTO2	305,979	64,45	64,00	20,13	20,33	3,66	3,63			
DUTO3	951,798	64,45	60,00	20,33	18,36	11,29	12,16			
SIMGAS - Vazão definida nas saídas										
DUTO1	1200,00	75,00	68,94	25,00	22,07	12,26	13,31			
DUTO2	200,00	65,51	65,31	20,34	20,24	2,33	2,34			
DUTO3	1000,00	65,51	60,70	20,34	17,83	11,67	12,58			
TGNET - Vazão definida nas saídas										
DUTO1	1200,00	75,00	68,89	25,00	22,55	12,23	13,33			
DUTO2	200,00	65,48	65,29	20,72	20,80	2,34	2,34			
DUTO3	1000,00	65,48	60,63	20,80	18,68	11,68	12,64			

Tabela 5.2 – Comparação entre simuladores SIMGAS e TGNET (exemplo 2)

Os desvios máximos encontrados entre os simuladores SIMGAS e TGNET para as condições estudadas foram:

- Caso de Pressão Conhecida:
 - vazão: 3,9 SMm³/dia (0,41%) e temperatura: 0,9 °C (4,89%)
- Caso de Vazão Conhecida:
 - pressão: 0,22 kgf/cm² (0,34%) e temperatura: 0,85 °C (4,53%)

Mais uma vez, em face aos excelentes resultados, pode-se considerar que os testes mostraram a metodologia empregada no presente trabalho é adequada.