

Luiz Henrique Paraguassú de Oliveira

Análise Metrológica de Redes de Bragg de Alta Temperatura Voltadas para Aplicações em Sensoriamento

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC - Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Mecânica.

> Orientador: Prof. Arthur Martins Barbosa Braga Co-orientador: Prof. Cícero Martelli

Rio de Janeiro Junho de 2011

Luiz Henrique Paraguassú de Oliveira

Análise Metrológica de Redes de Bragg de Alta Temperatura Voltadas para Aplicações em Sensoriamento

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pósgraduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Arthur Martins Barbosa Braga

Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Cícero Martelli

Co-orientador Universidade Tecnológica Federal do Paraná

Prof. Alcir de Faro Orlando Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Jean Carlos Cardozo da Silva Universidade Tecnológica Federal do Paraná

Dra. Paula Medeiros Proença de Gouvêa PUC-Rio

Dr. Sérgio Pinheiro de Oliveira Instituto Nacional de Metrologia Normalização e Qualidade Industrial - RJ

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 3 de junho de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Luiz Henrique Paraguassú de Oliveira

Graduou-se em Engenharia Mecânica na Universidade Gama Filho em 1991. Recebeu o título de Mestre em Processos Tecnológicos pelo Centro Federal de Educação Tecnológica Celso Suckow da Fonseca em 1996. Vem trabalhando no Instituto Nacional de Metrologia, Normalização e Qualidade Industrial – INMETRO desde 1984, atualmente atua como Pesquisador/Tecnologista A III. Representante do Brasil no IMEKO comitê técnico TC 16 e grupo de trabalho de pressão do CCM/BIPM. Atua como avaliador líder e técnico da Rede Brasileira de Calibração - RBC. Ministra treinamentos nas áreas de metrologia de massa e pressão.

Ficha Catalográfica

Oliveira, Luiz Henrique Paraguassú de

Análise Metrológica de Redes de Bragg de Alta Temperatura Voltadas para Aplicacões em Sensoriamento / Luiz Henrique Paraguassú de Oliveira ; orientador: Arthur Martins Barbosa Braga; co-orientador: Cícero Martelli. - 2011. 232 f.: il. (color.) ; 29,7 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2011.

Inclui bibliografia

1. Engenharia mecânica Teses. 2. de Bragg. Sensores fibra ótica. 3. Redes а 4. Sensores de temperatura. I. Braga, Arthur Martins Barbosa. Cícero. III. Pontifícia 11. Martelli, Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD:621

A razão do meu viver Gabriel Rena Paraguassú.

A minha esposa Rosa companheira de caminhada.

Aos meus familiares e em especial ao meu pai Múcio (in memoriam) e minha mãe

Maria de Lourdes (in memoriam), pela perseverança e bondade infinita.

Agradecimentos

Primeiramente a DEUS pois sem Ele nada é possível.

Ao meu orientador Prof. Arthur Martins Barbosa Braga pela consideração, apoio e confiança no desenvolvimento deste trabalho.

Ao Paulo Roberto Guimarães Couto que me faz acreditar que o côncavo e o convexo se completam e permitiu que eu não me esgotasse em mim mesmo.

Ao Prof. Cícero Martelli pela co-orientação, ajuda na idealização da pesquisa, pelo apoio e sugestões para a viabilização das medições experimentais.

Ao Prof. Valmir Oliveira e demais da UTFPR pelo apoio e por ter cedido as redes de Bragg para os testes experimentais.

Ao Prof. John Canning e sua equipe por ter cedido as redes regeneradas para os testes experimentais.

Aos meus enviados por Deus João Gabriel, Tiago e depois Klaus, pois quando a intervenção divina se mostrou necessária eles a materializaram.

A equipe do Lapre através do Jackson, Walmir Sérgio, Leomar, Paulo Lyra, Aline, pois é na fé e torcida dos amigos que nos fortalecemos.

As Divisões de Mecânica e Térmica que me permitiram realizar as medições necessárias para o desenvolvimento desta pesquisa.

Ao INMETRO por sempre ter acreditado em meu potencial, desde quando eu era técnico de nível médio.

Aos diversos professores do Departamento de Engenharia Mecânica que contribuíram para a minha formação como pesquisador.

A Vice Reitoria Acadêmica da PUC-Rio por ter me agraciado com uma bolsa de isenção para a conclusão dos meus estudos.

Aos inúmeros amigos que têm uma parcela de contribuição neste resultado final, tais como: Wellington, João Pires, Cláudio, Cabral, Renato Teixeira, Júlio Brionizio, Dalni, Felipe, Fernando Barbuda, Garcia, Hamilton, Rogério Regazzi, e me desculpe os outros que agora me falhou a memória.

Resumo

Oliveira, Luiz Henrique Paraguassú de; Braga, Arthur Martins Barbosa; e Martelli, Cícero. **Análise Metrológica de Redes de Bragg de Alta Temperatura Voltadas para Aplicações em Sensoriamento**. Rio de Janeiro, 2011. 232 p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A presente tese tem por objetivo estabelecer uma metodologia de caracterização metrológica de redes de Bragg do tipo I, tipo II e tipo regenerada estimando e validando estatisticamente o resultado de medição para medições de altas temperaturas voltadas para aplicações em sensoriamento. Além das telecomunicações, as fibras óticas estão sendo empregadas em aplicações de sensoriamento, visto que, a sílica que as compõem apresenta grande eficiência como meio de transmissão de dados. A crescente demanda por medição em alta temperatura nos processos industriais possibilitou o desenvolvimento de novas tecnologias de medição além das tecnologias tradicionais já utilizadas atualmente. Desta forma, criaram-se as condições necessárias para se introduzir uma nova tecnologia de medição de temperatura com redes de Bragg que apresenta algumas vantagens se comparadas com as tecnologias tradicionais de medição. Apesar de já existirem várias pesquisas a respeito de medição de temperatura com redes de Bragg, nenhuma delas aprofundou as questões metrológicas com as respectivas estimativas das incertezas de medição que envolve todo o processo de medição e caracterização de redes de Bragg em alta temperatura. A adaptação de um sistema tradicional de calibração de instrumentos de medição de temperatura foi projetado e desenvolvido, de tal forma que possibilitou a caracterização dos diferentes tipos de redes. Observou-se que os resultados de medição e as estimativas das incertezas de medição obtidos para todas as redes, se aproximaram satisfatoriamente dos modelos teóricos utilizados, confirmando a adequação dos sistemas de medição de temperatura e sensoriamento ótico.

Palavras-chave

Sensores a Fibra Ótica; Redes de Bragg; Sensores de Temperatura.

Abstract

Oliveira, Luiz Henrique Paraguassú de; Braga, Arthur Martins Barbosa (advisor); Martelli, Cícero (co-advisor). **Metrological Analysis of High Temperature Fiber Bragg Gratings for Sensing Applications**. Rio de Janeiro, 2011. 232 p. DSc., Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

This thesis aims to establish a methodology for the metrological characterization of Bragg gratings type I, type II and type regenerated statistically thereby estimating and validating the measurement results for high temperature sensing applications. Beyond telecommunications applications, optical fibers are still used for optical sensing, since the silica fiber has great optical efficiency for data transmission. The growing demand for high-temperature measurements in industrial processes has enabled the development of new measurement technologies beyond the traditional technologies already in use today. Thus were created the conditions necessary to introduce a new technology of temperature measurement with Bragg gratings which presents some advantages compared with traditional technologies of measurement. Although there are several prior studies none of those examined the by others about temperature measurement with Bragg gratings, metrological issues, and is particular, the estimate of the measurement uncertainties surrounding the whole process of measurement and characterization of Bragg gratings at high temperature. The adaptation of a traditional system of calibration instruments for temperature measurement was developed and designed in such a way that allowed the characterization of different types of gratings. It was observed that the measurement results and the estimated uncertainties of the measurements obtained for all gratings, successfully approached the theoretical models used, confirming the adequacy of the measurement of temperature and optical sensing.

Keywords

Fiber Optical Sensors; Fiber Bragg Grating; Temperature Sensors.

Sumário

CAPÍTULO 1. Introdução

1.1. Contextualização	25
1.2. Motivação	27
1.3. Escopo da Pesquisa Proposta	30
1.4. Estrutura da Tese	31

CAPÍTULO 2. Princípios Fundamentais das Medições de Temperatura

2.1. Definição da Grandeza Temperatura	34
2.2. Medições Práticas de Temperatura	34
2.3. Padronização Primária da Grandeza Temperatura	35
2.4. Rastreabilidade das Medições de Temperatura em um País	38
2.5. Rastreabilidade pela Rastreabilidade em Temperatura no Brasil	39
2.6. Instrumento para Medição de Temperatura	40
2.6.1. Métodos não Óticos de Medição de Temperatura	42
2.6.1.1. Termometria Acústica	42
2.6.1.2. Termometria Termoelétrica	46
2.6.1.2.1. Termopares Normalizados	48
2.6.1.2.2. Termopares para Medições em Altas Temperaturas	51
2.6.1.2.2.1. Princípio de Funcionamento da Termometria Termoelétrica	53
2.6.1.2.2.1.1. Efeito Seebeck	54
2.6.1.2.2.1.2. Efeito Peltier	56
2.6.1.2.2.1.3. Efeito Thomson	58
2.6.1.2.2.1.4. Leis Fundamentais dos Circuitos Termoelétricos	59
2.6.1.2.2.1.5. Leis dos Metais Homogêneos	60
2.6.1.2.2.1.6. Leis dos Metais Intermediários	61
2.6.1.2.2.1.7. Leis das Temperaturas Sucessivas ou Intermediárias	61
2.6.2. Métodos Óticos de Medição de Temperatura	62
2.6.2.1. Termometria Baseada em Sensor de Corpo Negro	63
2.6.2.2. Termometria Baseada em Expansão Térmica	66
2.6.2.3. Termometria por Fluorescência	68
2.6.2.4. Termometria Baseada em Intervalo de Banda Semicondutora	70
2.6.2.5. Termometria Baseada em Espelhamento Ótico	73

2.6.2.6. Termometria Baseada em Redes de Período Longo (LPG)	78
2.6.2.7. Termometria Baseada em Redes de Bragg (FBG)	80

CAPÍTULO 3. Estado da Arte em Redes de Bragg

3.1. Premissas Iniciais para o Estabelecimento do Estado da Arte	82
3.2. Cronologia das Redes de Bragg	83
3.3. Tipos de Foto Sensibilização em Fibras de Silicato de Germânio	84
3.4. Fabricação de Redes de Bragg	88
3.4.1. Máscara de Fase	88
3.4.2. Técnica Interferométrica	89
3.5. Tipos de Redes de Bragg	90
3.6. Classificações Relacionadas às Propriedades de Crescimento	91
3.6.1. Redes do Tipo I	91
3.6.2. Redes do Tipo In (Tipo II A	93
3.6.3. Redes do Tipo IH (Hidrogenadas)	95
3.6.4. Redes do Tipo I Hp (Tipo I A)	96
3.6.5. Redes do Tipo I Hs (Hipersensibilizadas)	96
3.6.6. Redes do Tipo I d (Densificação)	99
3.6.7. Redes do Tipo II (Danificadas)	100
3.6.8. Redes do Tipo R (Regeneradas)	101
3.6.9. Redes de Composição Química (CCG)	104
3.6.10. Redes de Cristais Simples de Safira	107
3.7. Sensibilidade do Comprimento de Onda de Bragg	109

CAPÍTULO 4. Montagem Experimental

4.1. Considerações Iniciais	112
4.2. Planejamento do Experimento	112
4.3. Estabelecimento do Sistema de Referência em Temperatura e	
Princípio de Medição	114
4.4. Configuração do Sistema de Medição de Temperatura	115
4.4.1. Seleção do Padrão de Referência	115
4.4.2. Descrição dos Equipamentos e Acessórios	117
4.4.2.1. Meio Térmico de Medição	118

4.4.2.2. Bloco de Equalização	119
4.4.2.3. Instrumento de Leitura da Tensão no Termopar	121
4.4.2.4. Vaso Dewar	122
4.4.3. Montagem e Disposição do Sistema de Calibração	123
4.4.4. Procedimento de Calibração Térmica	125
4.4.5. Sistema de Aquisição de Dados	127
4.5. Configuração do Sistema de Interrogação Ótico	128
4.5.1. Seleção do Sistema de Interrogação	131
4.5.2. Descrição dos Equipamentos e Acessórios	131
4.5.3. Montagem e Disposição do Sistema de Interrogação	133
4.5.4. Características das Redes de Bragg da Pesquisa	134
4.5.5. Sistema de Aquisição de Dados	135
4.5.6. Rotina de Calibração com o Sistema de Interrogação	138
4.6. Esquema Completo do Sistema de Medição Idealizado	138

CAPÍTULO 5. Resultados de Medição

5.1. Introdução	140
5.2. Caracterização de Rede Tipo I	141
5.2.1. Caracterização Térmica em Função do Comprimento de	
Onda - Caracterização de Rede do Tipo I	142
5.2.2. Caracterização Térmica da Sensibilidade	143
5.2.3. Variação da Sensibilidade em Função da Temperatura	143
5.2.4. Comparação entre Curva Teórica e Experimental	144
5.2.5. Diferença entre Temperatura Teórica e Experimental	145
5.2.6. Caracterização da Refletividade em Função do Comprimento	
de Onda em Reflexão	145
5.2.7. Caracterização da Refletividade em Função do Comprimento	
de Onda em Transmissão	146
5.2.8. Caracterização da Refletividade em Função da Potência	
das Redes	147
5.3. Caracterização de Rede do Tipo II	147
5.3.1. Caracterização Térmica em Função do Comprimento	
de Onda Caracterização de Rede do Tipo II	148
5.3.2. Caracterização Térmica da Sensibilidade	148

5.3.3. Variação da Sensibilidade em Função da Temperatura	149
5.3.4. Variação da Sensibilidade com o Tempo	150
5.3.5. Comparação entre Curva Teórica e Experimental	151
5.3.6. Diferença entre as Temperaturas Teórica e Experimental	151
5.3.7. Caracterização da Refletividade em Função do Comprimento	
de Onda em Reflexão	152
5.3.8. Caracterização da Refletividade em Função do Comprimento	
de Onda em Transmissão	153
5.3.9 Caracterização da Refletividade em Função da	
Potência das Redes	154
5.3.9.1 Primeiro Ciclo de Medição	155
5.3.9.2 Segundo Ciclo de Medição	156
5.4. Caracterização de Rede do Tipo Regenerada Exterior	157
5.4.1. Caracterização Térmica em Função do Comprimento de	
Onda - Caracterização de Rede do Tipo Regenerada Exterior	158
5.4.2. Caracterização Térmica da Sensibilidade	158
5.4.3. Variação da Sensibilidade em Função da Temperatura	159
5.4.4. Variação da Sensibilidade com o Tempo	160
5.4.5. Comparação entre as Curvas Teórica e Experimental	161
5.4.6. Diferença entre Temperatura Teórica e Experimental	162
5.4.7. Caracterização da Refletividade em Função do Comprimento	
de Onda em Reflexão	162
5.4.8. Caracterização da Refletividade em Função do Comprimento	
de Onda em Transmissão	164
5.4.9 Caracterização da Refletividade em Função da	
Potência das Redes	165
5.5. Caracterização de Rede do Tipo Regenerada Brasil	166
5.5.1. Caracterização Térmica em Função do Comprimento de	
Onda - Caracterização de Rede do Tipo Regenerada Brasil	166
5.5.2. Caracterização Térmica da Sensibilidade	167
5.5.3. Variação da Sensibilidade em Função da Temperatura	168
5.5.4. Comparação entre as Curvas Teórica e Experimental	168

CAPÍTULO 6. Incerteza de Medição

7.2. Comentários Finais e Propostas Futuras

6.1. Introdução	170
6.2. Etapas para a Estimativa da Incerteza de Medição	171
6.2.1. Definição do Mensurando	171
6.2.2. Diagrama Causa-Efeito	173
6.2.3. Estimativa das Incertezas das Fontes de Entrada –	
Avaliação das Incertezas Padrão	174
6.2.4. Cálculo dos Coeficientes de Sensibilidade	177
6.2.5. Combinação de Incertezas	178
6.2.6. Determinação do Fator de Abrangência	179
6.2.7. Estimativa da Incerteza Expandida	179
6.3. Incerteza de Medição para Diferentes Tipos de Rede de Bragg	180
6.3.1. Incerteza para Redes de Bragg do Tipo I	180
6.3.2. Incertezas para Redes de Bragg do Tipo II	182
6.3.3. Incertezas para Redes Regeneradas	183
6.4. Limitações do ISO GUM	185
6.4.1. Linearização do Modelo	185
6.4.2. Suposição da Normalidade do Mensurando	185
6.4.3. Cálculo dos Graus de Liberdade Efetivos	186
6.5. Simulação de Monte Carlo	186
6.5.1. Passos para a Estimativa da Incerteza pelo Método de	
Monte Carlo	187
6.5.2. Estimativa da Incerteza pelo Método de Monte Carlo	188
6.5.3. Comparação entre as Estimativas de Incerteza obtidas	
pelos Métodos ISO GUM e Monte Carlo	189
CAPÍTULO 7. Conclusões e Discussões	
7.1 Conclusões	190

192

Referências Bibliográficas

Apêndice A	208
Apêndice B	214
Apêndice C	218
Apêndice D	220
Apêndice E	222
Apêndice F	227
Apêndice G	229
Apêndice H	231

194

Lista de Figuras

Figura 1 - Histórica da evolução das temperaturas de operação	
na indústria, adaptado de (SHANTUNG, 2007).	27
Figura 2 - Visão de uma célula de ponto fixo em corte constando	
os elementos principais, adaptado de (SANTOS, 2008).	36
Figura 3 - Etapas para estabelecimento da rastreabilidade de uma medição	
a partir do BIPM, adaptado do site do Inmetro (www.inmetro.gov.br).	38
Figura 4 - Sequência de rastreabilidade tradicional para temperatura,	
onde é possível verificar os diferentes níveis de exatidão dos padrões,	
numa cadeia sucessiva de calibrações, adaptado de (SANTOS, 2008).	39
Figura 5 - Diferentes tipos de medidores de temperatura, que necessitam	
estar em contato ou não para determinar a temperatura de um corpo,	
adaptado de (MICHALSKI et al, 1991).	41
Figura 6 - Esquema de um termômetro acústico, adaptado de	
(DALLY et al, 1993).	45
Figura 7 - Fotografia do termômetro acústico primário do NIST,	
adaptado do site do Nist (www.nist.gov).	46
Figura 8 - Esquema de montagem de um termopar, onde é possível	
ver as duas junções formadas por fios de metais distintos,	
adaptado de (LEEGH, 1997).	46
Figura 9 - Esquema de fems dos termopares mais tradicionais,	
onde é possível verificar as diferentes curvas de respostas dos	
termopares em função da temperatura, adaptado de (NICHOLAS, 2001).	50
Figura 10 - Esquema de fems dos termopares de alta temperatura,	
onde é possível verificar as diferentes curvas de respostas dos	
termopares em função da temperatura, adaptado de (MCGEE, 1988).	51
Figura 11 - Representação do efeito Seebeck, onde é possível	
ver a trajetória dos elétrons, adaptado de (NICHOLAS, 2001).	55
Figura 12 - Representação do efeito Peltier, adaptado de	
(NICHOLAS, 2001).	57
Figura 13 - Representação do efeito Thomson, adaptado de	
(NICHOLAS, 2001).	59

Figura 14 - Lei dos Metais Homogêneos, onde é possível notar	
em (b) que a liga do metal A está submetida a uma temperatura T_3	
e a liga do metal B à temperatura T ₄ ,	
adaptado de (MICHALSKI et al, 1991).	60
Figura 15 - Lei dos Metais Intermediários, onde é possível notar	
que a tensão gerada em (b) será a mesma em (a), caso T ₃	
seja igual a T ₄ , adaptado de (MICHALSKI et al, 1991).	61
Figura 16 - Lei das Temperaturas Sucessivas ou Intermediárias,	
adaptado de (MICHALSKI et al, 1991).	62
Figura 17 - Representação da cavidade de corpo negro na fibra,	
adaptado de (YU, 2009).	66
Figura 18 - Representação esquemática sistema interferométrico	
de medição de temperatura Fabry-Perot, adaptado de (YU, 2009).	68
Figura 19 - Descrição esquemática da tecnologia de decaimento	
fluorescente. A transição eletrônica (esquerda, topo), espectro	
de excitação e emissão típicos (direita, topo), intensidade da luz refletida	
em função do tempo, adaptado de (PINET, ELLYSON, BORNE, 2010).	70
Figura 20 - Espectros refletidos do sensor semicondutor de GaAs	
medidos através de um analisador de espectro ótico (OSA)	
na faixa de temperatura de - 20 °C até 140 °C em vinte passos,	
adaptado de (PINET, ELLYSON, BORNE, 2010).	72
Figura 21 - Representação esquemática de um espectro de luz	
espalhada para um sinal de propagação de comprimento de onda.	
Um aumento na temperatura da fibra produz efeitos nas	
suas componentes Raman e Brillouin, adaptado de (INAUDI, 2006).	74
Figura 22 - Representação esquemática da medição de	
temperatura pelo espalhamento Raman, adaptado de (TAKEI et al, 2009).	76
Figura 23 - Principais elementos de uma rede de período longo	
(LPG) e seu perfil espectral característico, adaptado	
de (VENUGOPALAN et al, 2010).	79
Figura 24 - Representação esquemática da fabricação de	
uma rede de Bragg, adaptado de FOKINE, 2009.	81
Figura 25 - Defeitos da deficiência oxigênio-germânio são	
os responsáveis pelos efeitos de fotossensibilidade nas fibras	

de sílica dopadas com germânio, adaptado de (OTHONOS, 1997).	84
Figura 26 - No centro Ge (1) o elétron é retido no átomo de Ge	
e unido a quatro ligações O-Si, adaptado de (PISSADAKIS, 2007).	85
Figura 27 - No centro Ge (2) o elétron é retido no átomo de Ge e	
unido por uma ligação O-Ge (≡Ge-O-Ge≡) e três ligações O-Si,	
adaptado de (PISSADAKIS, 2007).	86
Figura 28 - Esquema de fabricação de FBG pelo	
método interferométrico, adaptado de (MELTZ et al, 1989).	90
Figura 29 - Ordens de difração com máscara de fase em rede do	
tipo I e demais tipos, adaptado de (CANNING, 2008).	92
Figura 30 - Recozimento isócrono da rede tipo In (tipo II A)	
para altas temperaturas, adaptado de (GROOTHOFF, 2004).	95
Figura 31 - Sequência do processo de hipersensibilização para redes	
do tipo I Hs, adaptado de (CANNING, 2006).	98
Figura 32 - Rede inscrita ponto a ponto por femtossegundo.	
O item (a) mostra a filamentação na direção do pulso de	
irradiação. O item (b) mostra a mudança localizada	
do índice de refração, adaptado de (CANNING, 2008).	101
Figura 33 - Sequência de crescimento de uma rede regenerada	
a partir de uma rede de base do tipo I de aproximadamente 900 $^{\circ}$ C,	
adaptado de (CANNING, 2009).	103
Figura 34 - Dinâmica da refletividade de uma CCG durante	
tratamento térmico, adaptado de (FOKINE, 2004).	106
Figura 35 - Esquema de fabricação de uma fibra de safira	
com femto laser e máscara de fase, adaptado de (BUSCH et al, 2009).	109
Figura 36 - Fotografia de detalhes do termopar Au/Pt construído	
no Inmetro, onde se observa as junções quente e fria e os	
fios de ligação ao multímetro.	116
Figura 37 - Fotografia do aparato experimental de medição de	
temperatura das redes de Bragg do tipo I, Tipo II e Tipo	
regenerada do Brasil e exterior.	117
Figura 38 - Desenho esquemático do forno Heraus onde as	
calibrações das diferentes redes de Bragg foram realizadas.	119
Figura 39 - Fotografia do bloco de equalização e tubo cerâmico	

de proteção das fibras óticas.	120
Figura 40 - Fotografia do multímetro HP modelo 3457 A.	121
Figura 41 - Fotografia do vaso Dewar preparado com gelo	
para a inserção do termopar Au/Pt de referência.	123
Figura 42 - Esquema de disposição do sistema de medição	
de temperatura, composto por termopar Au/Pt, bloco de	
equalização, vaso Dewar, multímetro e computador.	124
Figura 43 - Sequência de isolamento do bloco de equalização	
com o meio exterior, onde em (a) aparece o bloco de equalização	
sem isolamento térmico, em (b) início do isolamento do	
forno e em (c) completo isolamento do forno.	125
Figura 44 - Tela de estabilização do programa de aquisição	
de dados para a temperatura do forno de 100 °C.	128
Figura 45 - Fotografia do interrogador ótico Micron Optics	
modelo sm 125, adaptado do manual do instrumento.	132
Figura 46 - Esquema do sistema de interrogação composto	
por interrogador ótico, fibras óticos com rede de Bragg e	
computador no modo de reflexão.	133
Figura 47 - Esquema do sistema de interrogação composto	
por interrogador ótico, fibras óticos com rede de Bragg e	
computador no modo de transmissão.	134
Figura 48 - Tela inicial do programa de aquisição de dados	
do interrogador sm 125-500, com espectros lidos	
em modo de reflexão e transmissão.	136
Figura 49 - Tela para habilitar os parâmetros de detecção e	
esquema de seleção dos sensores do interrogador sm 125.	137
Figura 50 - Tela de estabilização das leituras de uma calibração	
de rede de Bragg no interrogador sm 125.	137
Figura 51 - Esquema completo dos sistemas térmico e de	
interrogação ótico de medição das redes de Bragg do tipo I,	
tipo II e regeneradas do Brasil e do exterior para alta temperatura.	139
Figura 52 - Variação do comprimento de onda em função da	
temperatura da rede tipo I.	142

do tipo I em função da temperatura.	143
Figura 54 - Variação da sensibilidade da rede de Bragg	
do tipo I em função da temperatura.	144
Figura 55 - Comparação entre curvas teórica e experimental	
da rede de Bragg do tipo I.	144
Figura 56 - Diferença entre temperaturas teórica e	
experimental da rede de Bragg do tipo I.	145
Figura 57 - Caracterização da potência da rede de Bragg	
do tipo I em relação ao comprimento de onda no modo de reflexão.	146
Figura 58 - Caracterização da potência da rede de Bragg	
do tipo I em relação ao comprimento de onda no modo de transmissão.	146
Figura 59 - Gráfico de caracterização da variação da refletividade	
com relação à variação de temperatura para rede de Bragg do tipo I.	147
Figura 60 - Variação do comprimento de onda em função da	
temperatura da rede tipo II.	148
Figura 61 - Curva de sensibilidade da rede de Bragg do tipo II	
em função da temperatura.	149
Figura 62 - Variação da sensibilidade da rede de Bragg do tipo II	
em função da temperatura.	149
Figura 63 - Variação da sensibilidade com o tempo da rede tipo II.	150
Figura 64 - Comparação entre curvas teórica e experimental da	
rede de Bragg do tipo II.	151
Figura 65 - Diferenças entre as temperaturas teórica e	
experimental da rede tipo II.	151
Figura 66 - Caracterização da potência em relação ao comprimento	
de onda da rede tipo II em modo de reflexão	
para as temperaturas compreendidas entre 100 °C a 250 °C.	152
Figura 67 - Continuação da caracterização da potência	
em relação ao comprimento de onda da rede de Bragg do tipo II	
em modo de reflexão para as temperaturas compreendidas	
entre 100 °C a 250 °C.	153
Figura 68 - Caracterização da potência em relação ao	
comprimento de onda da rede de Bragg do tipo II em modo	

de transmissão para as temperaturas compreendidas entre 100 °C a 500 °C.	154
Figura 69 - Gráfico da variação da refletividade em	
função da temperatura no primeiro ciclo de medições do	
primeiro par de redes de Bragg do tipo II.	155
Figura 70 - Gráfico da variação da refletividade em	
função da temperatura no primeiro ciclo de medições do	
segundo par de redes de Bragg do tipo II.	156
Figura 71 - Gráfico da variação da refletividade em	
função da temperatura no segundo ciclo de medições	
do primeiro par de redes de Bragg do tipo II.	157
Figura 72 - Gráfico da variação da refletividade em	
função da temperatura no segundo ciclo de medições	
do segundo par de redes de Bragg do tipo II.	157
Figura 73 - Variação do comprimento de onda em função	
da temperatura da para a rede regenerada do exterior.	158
Figura 74 - Curva de sensibilidade da rede regenerada do	
exterior II em função da temperatura.	159
Figura 75 - Variação da sensibilidade da rede regenerada	
do exterior em função da temperatura.	160
Figura 76 - Variação da sensibilidade com o tempo	
da rede regenerada do exterior.	161
Figura 77 - Comparação entre curvas teórica e experimental	
da rede regenerada do exterior.	161
Figura 78 - Diferenças entre as temperaturas teórica e	
experimental da rede regenerada do exterior.	162
Figura 79 - Caracterização da potência ótica em relação	
ao comprimento de onda da rede regenerada do exterior	
no modo de reflexão.	163
Figura 80 - Continuação da caracterização da potência	
ótica em relação ao comprimento de onda da rede	
regenerada do exterior no modo de reflexão.	163
Figura 81 - Caracterização da potência ótica em relação	
ao comprimento de onda da rede regenerada do exterior	

no modo de transmissão.	164
Figura 82 - Caracterização da potência em relação ao	
comprimento de onda da rede regenerada do exterior no	
modo de transmissão.	165
Figura 83 - Gráfico de caracterização da variação da	
refletividade com relação à variação de temperatura para	
rede regenerada do exterior.	165
Figura 84 - Variação do comprimento de onda em função	
da temperatura da rede regenerada do Brasil.	166
Figura 85 - Curva de sensibilidade da rede regenerada do Brasil	
em função da temperatura.	167
Figura 86 - Variação da sensibilidade da rede regenerada do Brasil	
em função da temperatura.	168
Figura 87 - Comparação entre curvas teórica e experimental	
da rede regenerada do Brasil.	169
Figura 88 - Diagrama causa-efeito das medições de	
temperatura pelas redes de Bragg, mostrando as diversas	
fontes de incerteza e seus métodos de estimativa.	173
Figura 89 - Variação das incertezas expandidas estimadas	
para as redes de Bragg do tipo I, mostrando os seus valores	
obtidos em diferentes datas de calibração e sua variação média.	181
Figura 90 - Variação das incertezas expandidas estimadas	
para as redes de Bragg do tipo II, mostrando os seus	
valores obtidos em diferentes datas de calibração e	
sua variação média.	183
Figura 91 - Variação das incertezas expandidas estimadas	
para as redes de Bragg regeneradas do exterior,	
mostrando os seus valores obtidos em diferentes	
datas de calibração e sua variação média.	184
Figura 92 - Exemplo de estimativa do intervalo de	
incerteza obtida para quatro desvios-padrão utilizando	
100000 iterações para o cálculo do mensurando através	
do programa "Crystal Ball".	188

Lista de Tabelas

Tabela 1: Pontos fixos de definição que constam na	
Escala Internacional de Temperatura EIT - 90,	
adaptado de (SANTOS, PETKOVIC, 2008).	37
Tabela 2: Elementos químicos dopantes do núcleo e	
da casca de uma fibra.	83
Tabela 3: Composição química do aço SAE 4340	
do bloco de equalização, adaptado de (NETO, 2005),	
tendo o elemento químico ferro Fe como elemento de balanço.	120
Tabela 4: Determinação das variâncias, covariâncias e	
correlação dos coeficientes do polinômio de segundo grau.	175
Tabela 5: Determinação dos coeficientes de	
sensibilidade das fontes de incerteza estimadas	
para as medições de temperaturas realizadas para as redes de	
Bragg do tipo I, Tipo II e regeneradas do Brasil e do exterior.	177
Tabela 6: Valores das incertezas expandidas estimadas	
para as redes do tipo I para três redes em diferentes	
pontos nominais de temperatura.	181
Tabela 7: Valores das incertezas expandidas estimadas	
para as redes do tipo II para seis redes em diferentes	
pontos nominais de temperatura.	182
Tabela 8: Valores das incertezas expandidas estimadas	
para as redes regeneradas do exterior para sete redes	
em diferentes pontos nominais de temperatura.	184
Tabela 9: Valores das incertezas expandidas estimadas	
pelos Métodos ISO GUM e Monte Carlo, para redes de	
Bragg dos tipos I, tipo II, tipo regenerada do Brasil e exterior.	189

Lista de Abreviaturas e Siglas

A/D - analógico/digital

Al₂O₃ - óxido de alumínio ou alumina

ASTM - American Society for Testing and Materials (Sociedade Americana de Ensaios e Materiais)

ASE - amplified spontaneous emission (emissão espontânea amplificada)

Au - ouro

Au/Pt -termopar ouro-platina

atm - unidade da grandeza pressão

BIPM - Bureau International des Poids et Mèsures (Bureau Internacional de Pesos e Medidas)

BSSD - broadband source and swept detector (fonte de banda larga e detector de varredura)

B₂O₃ - oxido de boro

CCG - chemical composition grating (rede de composição química)

CDGO - centros de deficiência germânio oxigênio

CI - circuito integrado

Cr - cromo

Cu - cobre

CIPM - Comité International des Poids et Mèsures (Comitê Internacional

de Pesos e Medidas)

CO2 - dióxido de carbono

DC - depois de Cristo

DIMCI - Diretoria de Metrologia Científica e Industrial

DITER - Divisão de Metrologia Térmica

EIT - Escala Internacional de Temperatura de 1990

F-P - Fabry-Perot

FBG - fiber Bragg grating (rede de Bragg em fibra ótica)

Fe - ferro

fem - força eletro motriz

FFP - fiber Fabry Perot (fibra Fabry-Perot)

FOCI - Fiber Optic Communications, Inc

- GaAs laser gálio/arsênio
- Ge germânio

GeO₂ - óxido de germânio

Ge - OH - ligação germânio hidroxila

GPIB - general purpose interface bus (barramento interface de uso geral)

- INM Institutos Nacionais de Metrologia
- INMETRO Instituto Nacional de Metrologia, Qualidade e Tecnologia
- Ir-Ir/Rh irídio irídio/rênio
- IV infravermelho
- LAN local area network (rede de área local)
- LATER Laboratório de Termometria
- Led light emitting diode (diodo emissor de luz)
- LPG long period grating (rede de período longo)
- LSBD laser source and broadband detector (fonte laser e detector de banda larga)
- LSFO Laboratório de Sensores de Fibras Óticas
- Mg manganês
- mol unidade da grandeza quantidade de matéria
- Ni níquel
- NIST National Institute of Standards and Technology (Instituto Nacional
- de Padrões e Tecnologia)
- OH radical hidroxila
- OSA optical spectrum analyzer (analisador de espectro ótico)
- OSI optical spectrum interrogator (integrador de espectro ótico)
- OTDR optical time domain reflectometry (reflectrometria ótica por divisão do
- tempo)
- PID proportional integral derivative (proporcional integral derivativo)
- P₂O₅ óxido fosfórico
- Pt platina
- Rh ródio
- Sled superluminescent light emitting diode (diodo emissor de luz super luminescente)
- SI Sistema Internacional de Unidades

Si - silício

- Si O ligação silício oxigênio
- Si OH ligação silício hidroxila
- SiO₂ óxido de silício ou sílica
- TDM time division multiplexing (multiplexação por divisão do tempo)

TPRAT - termômetro padrão de resistência de platina para alta temperatura

- TRP termômetro de resistência em platina
- UTFPR Universidade Tecnológica Federal do Paraná
- UV ultravioleta
- VIM Vocabulário Internacional de Metrologia
- WDM wavelength division multiplexing (multiplexação por divisão do comprimento de onda)
- W-Mo tungstênio/molibdênio
- W-MoW tungstênio molibdênio/tungstênio
- W-WRe tungstênio tungstênio/rênio
- WRe-WRe tungstênio/rênio tungstênio/rênio