

Tiago Mendes Dantas

Modelo Tempo-Frequência para Previsão de Curto Prazo de Velocidade de Vento

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica.

Orientador: Prof. Reinaldo Castro Souza

Rio de Janeiro Agosto de 2011

Tiago Mendes Dantas

Modelo Tempo-Frequência para Previsão de Curto Prazo de Velocidade de Vento

Dissertação de Mestrado apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Reinaldo Castro Souza Orientador Departamento de Engenharia Elétrica – PUC-Rio

> Prof. José Francisco Moreira Pessanha UERJ

> > **Prof. André Luís Marques Marcato**UFJF

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico

Rio de Janeiro, 31 de agosto de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Tiago Mendes Dantas

Graduou-se como Bacharel em Estatísticas na Escola Nacional de Ciências Estatísticas em 2009.

Ficha Catalográfica

Dantas, Tiago

Modelo Tempo-Frequência para Previsão de Curto Prazo de Velocidade de Vento / Tiago Mendes Dantas; orientador: Reinaldo Castro Souza. — Rio de Janeiro : PUC-Rio, Departamento de Engenharia Elétrica, 2011.

v., 69 f: il.; 29,7 cm

1. Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

1. Engenharia Elétrica – Tese. 2. Energia Eólica. 3. Velocidade de Vento. 4. Previsão. 5. Memória Longa. I. Souza, Reinaldo Castro Souza. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

Agradecimentos

Ao meu orientador e amigo, Professor Reinaldo Castro Souza, pelas oportunidades e pela confiança depositada.

Aos professores da PUC-Rio por todos os ensinamentos durante esses dois anos.

À minha família e sobretudo aos meus pais, Sidnei e Célia, pelo apoio e carinho durante todos os momentos.

Aos amigos especiais, Lincoln e Heloisa, que tiveram contribuição direta na elaboração dessa dissertação e na minha vida.

A todos os amigos que torceram por mim de perto ou de longe. A Deus.

Resumo

Dantas, Tiago Mendes; Souza, Reinaldo Castro (Orientador). Modelo Tempo-Frequência para Previsão de Curto Prazo de Velocidade Rio de Janeiro, 2011. 69p. Dissertação de Mestrado -Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do

Rio de Janeiro.

A quantidade de energia gerada através de energia eólica está aumentando

no mundo todo. O Brasil tem um enorme potencial devido a sua localização

geográfica e governo brasileiro d'a claros sinais de que está propenso a investir

neste tipo de energia. Previsões precisas de velocidade vento são essenciais para a

operação planejamento do sistema elétrico de energia. Este trabalho tem como

objetivo fazer previsões mais precisas na Nordeste do Brasil. Para isso,

usamos um modelo que leva em conta as características

comportamento da memória longa. O modelo aplicado nesta região particular

mostrou-se mais preciso que o modelo de persistência e outros modelos (por

exemplo, modelo híbrido neuro-fuzzy)

Palavras-chave

Energia Eólica; Velocidade de Vento; Previsão; Memória Longa.

Abstract

Dantas, Tiago Mendes; Souza, Reinaldo Castro (Advisor). **Time-Frequency model for short term wind speed forecasting**. Rio de Janeiro, 2011. 69p. MSc Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The amount of energy generated by wind sources is increasing all over the world. Brazil has a huge potential due to its geographic localization and the Brazilian Government has given a clear signal that is prone to invest in this kind of energy. Accurate wind speed forecasts are essential in the operation planning for the electrical wind power system. This work aims to make more accurate forecasts in the northeast of Brazil. To do so, we use a model that takes into account the daily characteristics and the long memory behavior. The model applied in this particular region proved to be more accurate than the persistence model and other models.

Keywords

Wind energy; Wind speed; Forecasting; Long memory.

Sumário

1	Introdução	11
1.1	Métodos de Previsão de Vento	14
2	Base de Dados	16
3	Metodologia	18
3.1	Processos Estocásticos	21
3.2	Previsão de Séries Temporais	22
3.3	Método Ingênuo	23
3.4	Metodologia Box e Jenkins	24
3.5	Modelo ARFIMA	28
3.6	Análise Harmônica	33
3.7	Métricas de Comparação	38
4	Análise Exploratória	39
5	Modelagem	47
5.1	Aplicação do modelo	50
5.2	Comparação dos resultados	60
6	Considerações Finais	63
6.1	Sugestões	64
7	Referências Bibliográficas	66

Lista de figuras

1.1	Aerogeradores	11
1.2	Distribuição de energia eólica mundial em 2010	12
1.3	Potencial eólico no Nordeste	13
3.1	Entrada de ruído branco e geração de série temporal via filtro linear (geração de série temporal)	24
3.2	Entrada da série temporal e saída de ruído branco via filtro linear (análise de série temporal)	25
4.1	Série de dados em São João do Cariri - PB	40
4.2	Velocidade média horária do vento em São João do Cariri - PB	41
4.3	Periodograma dos dados em São João do Cariri - PB	41
4.4	Velocidade média mensal do vendo em São João do Cariri - PB	42
4.5	Função de autocorrelação da série de São João do Cariri - PB	43
4.6	Função de autocorrelação parcial da série de São João do Cariri - PB	43
4.7	Histograma da série de São João do Cariri - PB	44
4.8	Boxplot da série de São João do Cariri - PB	45
4.9	QQ-Plot da série de São João do Cariri - PB	45
5.1	Resíduos	52
5.2	Função de autocorrelação dos resíduos	53
5.3	Função de autocorrelação parcial dos resíduos	53
5.4	Histograma dos resíduos	54
5.5	Q-Q Plot dos resíduos	54
5.6	Previsão 1 passo à frente e valores observados	55
5.7	Previsão 2 passos à frente e valores observados	56
5.8	Previsão 3 passos à frente e valores observados	56
5.9	Previsão 4 passos à frente e valores observados	57
5.10	Previsão 5 passos à frente e valores observados	57
5.11	Previsão 6 passos à frente e valores observados	57
5.12	Evolução do MAPE na primeira semana de 2007	58
5.13	Previsão 24 passos à frente e valores observados	59
5.14	Previsões 1, 6 e 24 passo à frente e valores observados	60
5.15	Comparação: Modelo Proposto e Modelo harmônico	60
	Comparação: Modelo Proposto e Modelo ARFIMA	61
5.17	Comparação: Modelo Proposto e Modelo Persistence	61

Lista de tabelas

2.1	Estações do projeto SONDA	16
	Medidas de resumo da série temporal de São João do Cariri - PB Teste de estacionariedade Augmented Dickey - Fuller	39 40
	Teste de normalidade	46
5.1	Coeficientes estimados pelo modelo	51
5.2	Resumo dos Resíduos	52
5.3	Métricas de comparação	56
5.4	Métricas de comparação	58
5.5	Métricas de comparação	59
5.6	Métricas de comparação entre os modelos	61

"The answer, my friend, is blowin' in the wind The answer is blowin' in the wind"