9. Referências Bibliográficas

ABDUL-RAZAQ, T. POTTS, C. **Dynamic Programming State-Space Relaxation for Single-Machine Scheduling**. J. Opnl. Res. Soc. 39, 141-152, 1988.

ARONSON, R. B. **Presetting: Prelude to Perfection. Manufacturing Engineering**. Dearborn, vol.124, n.2, p.86-91, fev, 2000.

BAGCHI, U. Due Date or Deadline Assignment to Multi-Job Orders to Minimize Total Penalty in the One Machine Scheduling Problem. Presented at the ORSA/TIMS Joint National Conference, St. Louis, 1987.

BAGCHI, U.; Y. CHANG; R. SULLIVAN. Minimizing Absolute and Squared Deviations of Completion Times With Different Earliness and Tardiness Penalties and a Common Due Date. Naval Res. Logist. Quart. 34, 739-751, 1987.

BAGCHI, U.; SULLIVAN, R.; CHANG, Y. Minimizing Mean Absolute Deviation of Completion Times About a Common Due Date. Naval Res. Logist. Quart. 33, 227-240, 1986.

BAKER, K.; CHADOWITZ, A. Algorithms for Minimizing Earliness and Tardiness Penalties With a Common Due Date. Working Paper No. 240, Amos Tuck School of Business Administration, Dartmouth College, Hanover, N.H, 1989.

BAKER, K. R.; SCUDDER, G. D. Sequecing with Earliness and Tardiness Penalties: A Review. Operations Research, v. 38, p. 22–36, 1990.

BUSTAMANTE, L. M. Minimização do Custo de Antecipação e Atraso para o Problema de Sequenciamento de uma Máquina com Tempo de Preparação Dependente da Sequência: Aplicação em uma Usina Siderúrgica. Dissertação de Mestrado, Programa de Pós Graduação em Engenharia de Produção, UFMG, Belo Horizonte, 2006.

Catálogo de Ferramentas para torneamento, 2011: Produzido por SANDVIK COROMANT. Disponível em http://www2.coromant.sandvik.com/coromant/downloads /catalogue/POR/MC_2009_Klick_POR_A.pdf. Acesso em 04 jul. 2011.

CHENG, T. An Algorithm for the CON Due Date Determination and Sequencing Problem. Comp. Opns. Res. 14, 537-542, 1987.

CHIAVERINI, V. **Tecnologia Mecânica: Materiais de Construção Mecânica.** Vol III, 2ª Ed., McGraw-Hill, 1986.

EMMONS, H. Scheduling to a Common Due Date on Parallel Common Processors. Naval Res. Logist. Quart. 34, 803-8 10, 1987.

FRY, T. ARMSTRONG, R. BLACKSTONE, J. Minimizing Weighted Absolute Deviation in Single Machine Scheduling. IEEE Trans. 19, 445-450, 1987.

FRY, T. DARBY-DOWMAN, K. ARMSTRONG, R. Single Machine Scheduling to Minimize Mean Absolute Lateness. Working Paper, College of Business Administration, University of South Carolina, Columbia, 1988.

GAREY, M. TARJAN, R. WILFONG, G. One- Processor Scheduling With Symmetric Earliness and Tardiness Penalties. Math. Opns. Res. 13, 330-348, 1988.

GOMES JÚNIOR, A. C. Problema de Sequenciamento em uma Máquina com Penalidades por Antecipação e Atraso: Modelagem e Resolução. Dissertação de Mestrado. UFMG, 2007.

HALL, N.; KUBIAKS, W.; SETHI, S. **Deviation of Completion Times About a Restrictive Common Due Date**. Working Paper 89-19, College of Business, The Ohio State University, Columbus, 1989.

HALL, N.; POSNER, M. Weighted Deviation of Completion Times About a Common Due Date. Working Paper 89-15, College of Business, The Ohio State University, Columbus, 1989.

KIM, Y. D. **Minimizing Total Tardiness in Permutation Flowshops**. European Journal of Operational Research, v. 85, p. 541–555, 1995.

MANNE, A. S. **On the Job-shop Scheduling Problem**. Operations Research, v. 8, p. 219–223, 1960.

MORTON, T.E.; PENTICO, D.W. **Heuristic Scheduling Systems**. Ed. John Willey e Sons, 1993.

PANWALKAR, S.; SMITH, M.; SEIDMANN, A. Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem. Opns. Res. 30, 391-399, 1982.

PINEDO, M. L. Scheduling: Theory, Algorithms, and Systems. Ed. Springer, 3rd Ed., 2008

QUADDUS, M. A Generalized Model of Optimal Due-Date Assignment by Linear Programming. *J.* Opnl. Res. Soc. 38, 353-359, 1987.

RAGHAVACHARI, M. A V-Shape Property of Optimal Schedule of Jobs About a Common Due Date. Eur. J. Opnl. Res. 23, 401-402, 1986.

RENISHAW. **Inovative laser tool setting technology provides accuracy, flexibility and robust operation**. News from Renishaw, United Kingdom, p.1-10, 2003.

SEIDMANN, A.; PANWALKAR, S.; SMITH, M. Optimal Assignment of Due-Dates for a Single Processor Scheduling Problem. Int. J. Prod. Res. 19, 393-399, 1981.

SIMCHI-LEVI, D.; KAMINSKY, P.; SIMCHI-LEVI, E. Cadeia de suprimentos: projeto e gestão. Porto Alegre: Bookman, 2003.

SIMON, A. T. Condições de utilização da tecnologia CNC: Um estudo para máquinas ferramenta de usinagem na industria brasileira. 2001. 150p. Dissertação (Mestrado em Produção) — Faculdade de Engenharia Mecânica, Universidade de Estadual de Campinas, Campinas, 2001.

SOUZA, M. J. **Inteligência Computacional para Otimização**. Notas de aula 2011/1 do Departamento de Computação, UFOP, http://www.decom.ufop.br/prof/marcone/ Disciplinas/InteligenciaComputacional/InteligenciaComputacional.pdf. acesso em 07 Out, 2011

STAFFORD-JR, E. F.; TSENG, F. F.; GUPTA, J. N. D. Comparative Evaluation of MILP Flowshop Models. Journal of Operational Research Society, v. 56, p. 88–101, 2005.

SUNDARARAGHAVAN, P.; AHMED, M. Minimizing the Sum of Absolute Lateness in Single- Machine and Multimachine Scheduling. Naval Res. Logist. Quart. 31, 325-333, 1984.

SZWARC, W. Single Machine Scheduling to Minimize Absolute Deviation of Completion Times From a Common Due Date. Naval Res. Logist. 36, 663-673, 1989.

WAGNER, H. M. An Integer Programming Model for Machine Scheduling. Naval Research Logistics Quarterly, v. 6, p. 131–140, 1959.

WINKERSON, L.J.; IRWIN, J.D. An Improved Algorithm for Scheduling Independent Tasks, AIEE Transactions, Vol3, No. 3, 1971.

YANO, C. KIM, Y. Algorithms for Single Machine **Scheduling Problems Minimizing Tardiness and Earliness**. Technical Report #86-40, Department of Industrial Engineering University of Michigan, Ann Arbor, 1986

Apêndice A: Levantamento dos dados

A.1. Dados dos Tempos de Processamento (t_i)

As estimativas dos tempos de processamento, t_j, de cada fase foram feitas a partir da simulação da Usinagem através do *software* GibbsCAM.

A máquina em estudo é um torno CNC, marca ROMI, modelo ATOC-9. Foi feita a simulação de 10 peças, onde cada peça, com exceção da peça 3, possui 2 fases de usinagem, ou seja, há a necessidade de virar a peça para executar as outras operações. Dessa forma, de acordo com a peça e com a fase, define-se A_B como sendo a fase B da peça A.

Como parâmetros de corte para o *software*, foi necessário recorrer a um catálogo de ferramentas e conforme o material da peça usinada e sua respectiva dureza, foi especificada a velocidade de corte correspondente, bem como avanço e profundidade de corte recomendadas.

De acordo com CHIAVERINI (1986), tanto o Aço ABNT 4340, quanto o Aço ABNT 8620 são classificados como aço-liga, com baixo teor em liga. Dessa forma, consultando o catálogo Sandvik (2011), para a classe de material CG4215, as velocidades de corte indicadas para aços baixa liga e endurecidos e temperados, com dureza de 275 HB (Brinell) são: 300-210-155 metros/minuto, com avanços de 0,1-0,4-0,8 milímetros/rotação, respectivamente. Será adotada a velocidade intermediária de 210 metros/minuto, com o avanço de 0,4 milímetros/rotação. Para os aços baixa liga e endurecidos e temperados, com dureza de 350 HB (Aço ABNT 8620), estão disponíveis as velocidades de corte de: 240-170-125 metros/minuto, com avanços de 0,1-0,4-0,8 milímetros/rotação, respectivamente. Analogamente, será utilizada a velocidade intermediária de 170 metros/minuto, com o avanço de 0,4 milímetros/rotação.

Analogamente, para o Aço Inox AISI 304 - Aço inoxidável austenítico, a Classe de material é CG 2025, a velocidade de corte recomendada é 175 m/min, e o avanço recomendado é 0,4 mm/rot. Para o Aço Inox AISI 410- Aço inoxidável martensítico, tem-se: Classe CG 1125, velocidade de corte e avanço

recomendados são, respectivamente, 110 m/min e avanço 0,2 mm/rot. A Tabela 11 resume as velocidades de corte e avanços recomendados para cada peça.

Tabela 11 – Velocidades de corte recomendadas para cada peça

Peça	Matéria- Prima	Dureza (HB)	Dimensões Matéria- Prima	Class	V para desbaste (m/min)	Avanço (mm/rot)
1	Aço ABNT 4340	270-310	Ø157 x 2000	CG 4215	210	0,4
2	Aço ABNT 4340	270-310	(Ø121,5 x 218)+Ø165 x 85	CG 4215	210	0,4
3	Aço ABNT 4340	270-300	(Ø50,8 x 181.3)	CG 4215	210	0,4
4	Aço ABNT 4340	255-285	Ø185 x 170	CG 4215	210	0,4
5	Aço ABNT 8620	330-370	Ø40 x 305	CG 4215	170	0,4
6	Aço ABNT 4340	270-300	Ø32 x 692	CG 4215	210	0,4
7	Aço Inox AISI 304	-	(Ø56 - Ø36) x 500	CG 2025	175	0,4
8	Aço ABNT 4340	270-310	(∅180 - ∅120) x 105	CG 4215	210	0,4
9	Aço Inox AISI 410 ou 420	270-300	Ø40 x 265	CG 1125	110	0,2
10	Aço ABNT 4340	270-310	Ø330,2 x 210	CG 4215	210	0,4

Cabe ressaltar que para as operações de desbaste de roscas e para as furações, as velocidades de corte são diferentes das apresentadas acima, porém também foram coletadas em catálogos referentes a tais operações.

Com isso, os dados de saída do *software* foram Folhas de Processo, como a exemplificada na Figura 41, de onde se extrai os tempos de processamentos de todas as operações, conforme mostrado na Tabela 12.

Tabela 12 - Tempos de processamento (t_i)

	Tempo de	Tempo de
Trabalho	Processamento (t _j)	Processamento
	(min:seg)	(t_j) (min)
1	4:15	4.25
2	26:15	26.25
3	17:49	17.82
4	10:46	10.77
5	5:07	5.12
6	13:40	13.67
7	15:26	15.43
8	1:09	1.15
9	8:44	8.73
10	1:12	1.20
11	8:05	8.08
12	3:08	3.13
13	15:24	15.40
14	16:35	16.58
15	0:31	0.51
16	5:24	5.40
17	4:06	4.10
18	57:32	57.53
19	47:29	47.48
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Trabalho Processamento (t _j) (min:seg) 1 4:15 2 26:15 3 17:49 4 10:46 5 5:07 6 13:40 7 15:26 8 1:09 9 8:44 10 1:12 11 8:05 12 3:08 13 15:24 14 16:35 15 0:31 16 5:24 17 4:06 18 57:32

⁴ A peça 3 não possui uma segunda fase, ou seja, não existe 3_2.



Figura 41 – Exemplo de Folha de Processo

A.2. Dados dos Tempos de Preparação de Máquina(Sii)

Os dados dos tempos de preparação de máquina, S_{ij} , foram estimados baseados nas seguintes características de Usinagem:

- (a) Comprimento da peça e tipo de usinagem, que implica ou não o uso de luneta⁵ ou uso de contra-ponto;
- (b) Geometria da peça, que implica no tipo de castanha utilizada para fixar a peça;
- (c) Peso da peça, o que pode exigir o uso de um guincho mecânico; e
- (d) Número de ferramentas a ser utilizada em cada fase de Usinagem.

De acordo com Zoller & Davis Tools apud SIMON (2001), o tempo de preparação em um torno CNC de uma ferramenta pré-ajustada (que utiliza o *presetter*⁶) é de 2,58 minutos, sendo assim, o tempo total para a preparação da máquina para uma operação que necessite de 5 ferramentas será de 12,90 minutos.

O tempo de instalação da luneta e do contra-ponto são, respectivamente, 10 e 12 minutos e o tempo de troca entre os modelos da castanha é de 14 minutos.

Para colocar uma peça que necessite do guincho mecânico, estima-se que o tempo necessário é de 4 minutos.

Dessa forma, para se preparar a máquina de uma fase que não necessite de luneta nem contra-ponto, para uma fase que precise desses componentes, serão necessários 22 minutos. Se nessa mesma fase inicial, estiver sendo usada a castanha tipo 1 e a próxima fase for utilizar a castanha tipo 2, acrescentar-se-á 14

⁵ **Lunetas** são conjuntos mecânicos utilizados em tornos universais de cabeçote fixo para dar estabilidade na **usinagem de eixos delgados**, ou seja, onde a relação "comprimento/diâmetro" é muito grande. A peça é fixada entre o meio de sujeição da peça, no lado do fuso principal, e o contra-ponto no lado oposto.

⁶ *Presetters* são dispositivos utilizados para fazer a pré-ajustagem das ferramentas e a detecção de quebra em centros de usinagem CNC (RENISHAW, 2003). Funciona com um simples mecanismo de toque do tipo "*probe*" ou com sistemas de laser, que registram não apenas o comprimento da ferramenta, como também o diâmetro e sua superfície (ARONSON, 2000).

minutos aos 22 inicias, somando 36 minutos. Além disso, se for necessário transportar a peça com o guincho mecânico para se retirar a peça da fase inicial e colocar a peça para a fase final deste exemplo, teremos um acréscimo de 4 minutos por fase, finalizando em um tempo de 42 minutos, faltando ainda somar 2,58 minutos por ferramenta necessária na fase seguinte. A Tabela 13 mostra as características de cada fase que implicarão no tempo de preparação de máquina. A Tabela 14 mostra os tempos de preparação de máquina.

Tabela 13 - Características de preparação de máquina

Peça_Fase	Luneta	Contra- ponto	Tipo de castanha	Necessita de gincho mecânico	N° de ferramentas utilizadas
1_1	Sim	Não	1	Sim	5
1_2	Sim	Sim	1	Sim	5
2_1	Não	Não	1	Sim	9
2_2	Não	Sim	1	Sim	2
3_1	Não	Não	2	Não	8
4_1	Não	Sim	1	Não	3
4_2	Não	Não	1	Não	6
5_1	Sim	Não	2	Não	3
5_2	Não	Sim	2	Não	4
6_1	Sim	Não	2	Não	2
6_2	Não	Sim	2	Não	3
7_1	Sim	Não	2	Não	4
7_2	Sim	Sim	2	Não	4
8_1	Não	Não	1	Não	5
8_2	Não	Não	1	Não	2
9_1	Sim	Não	2	Não	4
9_2	Sim	Sim	2	Não	5
10_1	Não	Não	1	Sim	5
10_2	Não	Não	1	Sim	2

Tabela 14 – Tempos de Preparação de Máquina (S_{ij})

	1_1	1_2	2_1	2_2	3_1	4_1	4_2	5_1	5_2	6_1	6_2	7_1	7_2	8_1	8_2	9_1	9_2	10_1	10_2
1 1	0	36.90	36.90	42.90	35.90	33.90	27.90	29.90	41.90	29.90	41.90	29.90	35.90	27.90	27.90	29.90	35.90	36.90	36.90
1 2	36.90	0	42.90	36.90	41.90	27.90	33.90	35.90	35.90	35.90	35.90	35.90	29.90	33.90	33.90	35.90	29.90	42.90	42.90
2 1	47.22	53.22	0	47.22	40.22	38.22	32.22	46.22	46.22	46.22	46.22	46.22	52.22	32.22	32.22	46.22	52.22	41.22	41.22
2 2	35.16	29.16	29.16	0	28.16	14.16	20.16	34.16	22.16	34.16	22.16	34.16	28.16	20.16	20.16	34.16	28.16	29.16	29.16
3 1	43.64	49.64	37.64	43.64	0	34.64	28.64	26.64	26.64	26.64	26.64	26.64	32.64	28.64	28.64	26.64	32.64	37.64	37.64
4 1	28.74	22.74	22.74	16.74	21.74	0	13.74	27.74	15.74	27.74	15.74	27.74	21.74	13.74	13.74	27.74	21.74	22.74	22.74
4 2	30.48	36.48	24.48	30.48	23.48	21.48	0	29.48	29.48	29.48	29.48	29.48	35.48	15.48	15.48	29.48	35.48	24.48	24.48
5_1	24.74	30.74	30.74	36.74	13.74	27.74	21.74	0	19.74	7.74	19.74	7.74	13.74	21.74	21.74	7.74	13.74	30.74	30.74
5_2	39.32	33.32	33.32	27.32	16.32	18.32	24.32	30.32	0	22.32	10.32	22.32	16.32	24.32	24.32	22.32	16.32	33.32	33.32
6_1	22.16	28.16	28.16	34.16	11.16	25.16	19.16	13.16	17.16	0	17.16	5.16	11.16	19.16	19.16	5.16	11.16	28.16	28.16
6 2	36.74	30.74	30.74	24.74	13.74	15.74	21.74	27.74	7.74	19.74	0	19.74	13.74	21.74	21.74	19.74	13.74	30.74	30.74
7_1	27.32	33.32	33.32	39.32	16.32	30.32	24.32	18.32	22.32	10.32	22.32	0	16.32	24.32	24.32	10.32	16.32	33.32	33.32
7_2	33.32	27.32	39.32	33.32	22.32	24.32	30.32	24.32	16.32	16.32	16.32	16.32	0	30.32	30.32	16.32	10.32	39.32	39.32
8_1	27.90	33.90	21.90	27.90	20.90	18.90	12.90	18.90	26.90	26.90	26.90	26.90	32.90	0	12.90	26.90	32.90	21.90	21.90
8_2	20.16	26.16	14.16	20.16	13.16	11.16	5.16	11.16	19.16	19.16	19.16	19.16	25.16	5.16	0	19.16	25.16	14.16	14.16
9_1	27.32	33.32	33.32	39.32	16.32	30.32	24.32	18.32	22.32	10.32	22.32	10.32	16.32	24.32	24.32	0	16.32	33.32	33.32
9 2	35.90	29.90	41.90	35.90	24.90	26.90	32.90	26.90	18.90	18.90	18.90	18.90	12.90	32.90	32.90	18.90	0	41.90	41.90
10_1	36.90	42.90	30.90	36.90	29.90	27.90	21.90	27.90	35.90	35.90	35.90	35.90	41.90	21.90	21.90	35.90	41.90	0	30.90
10_2	29.16	35.16	23.16	29.16	22.16	20.16	14.16	20.16	28.16	28.16	28.16	28.16	34.16	14.16	14.16	28.16	34.16	23.16	0

A.3. Penalidades por Antecipação e Atraso (α_j, β_j)

Como apresentado na seção 1.2.1, a penalidade por antecipação, α_j , leva em consideração o custo de se manter uma peça pronta em estoque e a penalidade atraso, β_j , é um custo proporcional a $T_j = max\{0, C_j - d_j\}$, que leva em consideração a ordem que as peças devem ficar.

A Tabela 15 apresenta os valores dos pesos das penalidades por antecipação e atraso para cada fase.

Tabela 15 – Penalidades por Antecipação e Atraso

Peça_Fase	Trabalho	Penalidade por Antecipação (α_j)	Penalidade por Atraso (β_j)
1_1	1	50	10
1_2	2	50	10
2_1	3	40	40
2_2	4	40	40
3_1	5	20	30
4_1	6	30	50
4_2	7	30	50
5_1	8	20	10
5_2	9	20	10
6_1	10	20	10
6_2	11	20	10
7_1	12	10	10
7_2	13	10	10
8_1	14	30	20
8_2	15	30	20
9_1	16	10	30
9_2	17	10	30
10_1	18	40	50
10_2	19	40	50

Fonte: Autor

As penalidades por antecipação, α_j , são estimadas de acordo com o tamanho da peça e do material da mesma, o que implicará num maior custo para proteger a peça contra oxidação. Dessa forma, os valores de α_j são:

- Peça 1: 50
- Peça 2 e Peça 10: 40
- Peça 3, Peça 5 e Peça 6: 30
- Peça 4 e Peça 8: 20
- Peça 7 e Peça 9: 10

As penalidades por atraso, β_j , são estimadas de acordo com os grupos a que elas pertencem, como mostrado na Figura 42, sendo assim, os valores de β_j para cada grupo de peças são:

- Grupo 1: 50
- Grupo 2: 40
- Grupo 3: 30
- Grupo 4: 20
- Grupo 5: 10

A.4. Data Prometida (d_i)

Conforme apresentado em 1.2.1, as datas prometidas foram estimadas levando em consideração a lista de materiais (*Bill of Materials* – BOM) do produto, conforme Figura 42. Cabe ressaltar que as peças selecionadas compõem apenas uma amostragem das principais peças de todo o Produto Final.

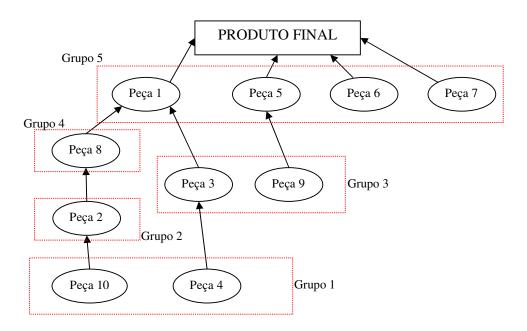


Figura 42 - Lista de Materiais (Bill Of Materials-BOM)

Conforme apresentado na Figura 42, as peças foram reunidas em grupos, de acordo com sua posição na Lista de Materiais. Para cada grupo de peças será definida uma data prometida a fim de garantir a montagem do Produto Final:

Grupo 1: 100 minGrupo 2: 150 min

- Grupo 3: 250 min

- Grupo 4: 400 min

- Grupo 5: 600 min

Utilizando essa metodologia, as datas prometidas das fases de cada peça são apresentadas na Tabela 16.

Tabela 16 – Datas Prometidas (d_i)

Trabalho	Peça_Fase	Data Prometida (d _j) (minutos)
1	1_1	600
2	1_2	600
3	2_1	150
4	2_2	150
5	3_1	250
6	4_1	100
7	4_2	100
8	5_1	600
9	5_2	600
10	6_1	600
11	6_2	600
12	7_1	600
13	7_2	600
14	8_1	400
15	8_2	400
16	9_1	250
17	9_2	250
18	10_1	100
19	10_2	100