

William Schroeder Cardozo

Controle de motores de passo aplicado a um manipulador robótico

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Prof. Marco Antonio Meggiolaro

Rio de Janeiro Abril de 2012

William Schroeder Cardozo

Controle de motores de passo aplicado a um manipulador robótico

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Marco Antonio Meggiolaro Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Hans Ingo Weber

Departamento de Engenharia Mecânica - PUC-Rio

Prof. Max Suell Dutra

COPPE - Universidade Federal do Rio de Janeiro

Prof. José Eugênio Leal

Coordenador(a) Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 27 de abril de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

William Schroeder Cardozo

Graduou-se em Engenharia Mecânica pela PUC-Rio (Pontifícia Universidade Católica) em 2006. Trabalhou por três anos no desenvolvimento de máquinas operatrizes para retífica de motores antes de começar o mestrado na Área de Mecânica Aplicada na Pós-Graduação da PUC-Rio. Suas áreas de interesse abrangem robótica, controle e modelagem de sistemas e desenvolvimento de máquinas de controle numérico.

Ficha Catalográfica

Cardozo, William Schroeder

Controle de motores de passo aplicado a um manipulador robótico / William Schroeder Cardozo; orientador: Marco Antonio Meggiolaro. – 2012.

149 f. : il. (color.) ; 29,7 cm

Dissertação (Mestrado em Engenharia Mecânica)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2012.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Robótica. 3. Manipuladores robóticos. 4. Motores de passo. 5. Controle de posição. I. Meggiolaro, Marco Antonio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

à minha esposa, Aline, e aos meus pais, Sebastião e Lucélia

Agradecimentos

Ao meu orientador Professor Marco Antonio Meggiolaro pelo estímulo e parceria para a realização deste trabalho.

À PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Aos meus pais, pela educação, atenção e carinho de todas as horas.

Ao meu professor Hans Ingo Weber, pelos vários ensinamentos.

Aos meus colegas da PUC-Rio.

Aos professores que participaram da banca examinadora.

A todos os professores e funcionários do Departamento pelos ensinamentos e pela ajuda.

A todos os amigos e familiares que de uma forma ou de outra me estimularam ou me ajudaram.

Resumo

Cardozo, William Schroeder; Meggiolaro, Marco Antonio. **Controle de motores de passo aplicado a um manipulador robótico**. Rio de Janeiro, 2012. 149p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Motores de passo são os motores mais utilizados em aplicações de controle de posicionamento em malha aberta. Entretanto, as limitações desta forma de atuação têm fomentado o desenvolvimento de novas técnicas que incorporem o controle em malha fechada. Motores de passo possuem boa relação entre torque e custo, tornando-os atraentes para aplicações em manipuladores robóticos. Mas as técnicas tradicionais de controle de manipuladores elétricos, que normalmente assumem o uso de motores de corrente contínua, apresentam baixo desempenho quando aplicadas a motores de passo, mesmo com o uso de sensores de posição. A forma mais comum de controle em malha fechada de motores de passo exige um encoder diretamente acoplado ao eixo do motor, formando um "sistema colocado". No entanto, o projeto de muitos motores de passo não permite este acoplamento. Nesses casos, é necessário instalar os encoders na estrutura do manipulador, separados dos atuadores, caracterizando um "sistema nãocolocado", que tipicamente apresenta problemas de estabilidade. Este trabalho propõe uma técnica de controle que recebe a realimentação de um encoder, não diretamente acoplado ao motor, e gera uma sequência de pulsos para o driver do motor de passo. Esse trem de pulsos é calculado de modo a não exigir acelerações excessivas, e assim prevenir a perda de passo do motor. O modelo de um sistema controlador é desenvolvido robótico usando este e simulado em Simulink/MATLAB. Um manipulador robótico de seis graus de liberdade acionado por motores de passo é especialmente projetado e construído para validar a técnica de controle apresentada, controlado por um microcontrolador PIC18F2431. O manipulador desenvolvido é modelado, e sua dinâmica analisada através de simulações. Os experimentos comprovam a eficiência da técnica de controle proposta, resultando em uma precisão absoluta na extremidade do manipulador de 1,3mm e repetibilidade 0,5mm.

Palavras-chave

Robótica; Manipuladores Robóticos; Motores de Passo; Controle de Posição.

Abstract

Cardozo, William Schroeder; Meggiolaro, Marco Antonio (Advisor). **Stepper motor control applied to a robotic manipulator**. Rio de Janeiro, 2012. 149p. Msc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Stepper motors are used in most applications in open loop. However, the limitations of this type of control have encouraged the development of new techniques for closed loop control. Stepper motors have a good relationship between torque and cost, making it attractive for applications in robotic manipulators. But the limitation of traditional control deteriorates the performance of the manipulator. The most common form of closed loop control of stepper motors require an encoder directly coupled to the motor shaft. However, this is not always practical. In some cases, it is necessary to control the position of some system component that can't be precisely known from the position of the motor. This work proposes a control technique that receives feedback from an encoder, not directly coupled to the motor shaft, and generates a sequence of pulses to the stepper motor driver. This pulse train is done so as not to require excessive accelerations, and thus prevent the loss of step. The model of a system using this controller is built using Simulink/MATLAB. A robotic manipulator of six degrees of freedom, using stepper motors, is designed and built to validate the presented control techniques, implemented on a PIC18F2431 microcontroller. The obtained absolute accuracy is 1.3mm and repeatability 0.5mm, proving the efficiency of the proposed control technique.

Keywords

Mechanical Engineering; Control; Robotics; Stepper Motor.

Sumário

1 Introdução	16
2 Fundamentos teóricos	20
2.1. Motores de passo	20
2.2. Motores de passo em malha aberta	25
2.3. Motores de passo em malha fechada	26
2.4. Redutores com folga (backlash)	29
3 Modelagem de motores de passo	31
3.1. Circuito equivalente	31
3.2. Torque gerado	32
3.3. Equação de movimento do motor	33
3.4. Relação entre dentes, fases e número de passos	34
3.5. Cálculo do fluxo induzido máximo	35
4 Controle de motores de passo	36
4.1. Malha de controle	36
4.2. Base de regras	38
4.3. Estimativa das constantes do controlador	39
5 Sistema experimental	44
5.1. Projeto do manipulador	44
5.2. Projeto do controlador	56
5.3. EMC (Enhanced Machine Controller)	59
6 Modelagem do manipulador	64
6.1. Cinemática direta	64
6.2. Cinemática inversa	68
6.3. Dinâmica	73
7 Simulações	78

7.1. Modelo de motor de passo	78
7.2. Modelo de driver	80
7.3. Gerador de pulsos	82
7.4. Controlador	83
7.5. Simulação de um motor com controlador	84
7.6. Ajuste do controlador	88
7.7. Simulação do manipulador	91
7.8. Cálculo do fluxo máximo induzido dos motores utilizados	94
7.9. Resultado da simulação do manipulador	96
8 Experimentos	99
8.1. Calibração do sistema	99
8.2. Sistema de medição	102
8.3. Posições medidas	104
8.4. Cálculo do erro	105
8.5. Resultados	106
9 Conclusões e trabalhos futuros	110
10 Referências bibliográficas	112
Apêncie A – Rotina dos microcontroladores	116
Apêncie B — Códigos do MATLAB	124
Função para simulação do manipulador	124
Função para cálculo da matriz de inércia	130
Função para cálculo da cinemática inversa	134
Apêndice C – Dados dos motores e redutores	137

Apêncie D - Rotína para cálculo da cinemática inversa em tempo real 140

Lista de figuras

Figura 1 – Esquema motor VR [15]	20
Figura 2 – Fluxo motor VR [15]	21
Figura 3 – Motor 4 fases [15]	21
Figura 4 – Driver 4 fases [15]	22
Figura 5 – Sequência motor de 4 fases [15]	22
Figura 6 – Esquema motor híbrido [10]	23
Figura 7 – Sequência motor híbrido [10]	24
Figura 8 – Sinais de comando	26
Figura 9 – Malha fechada típica	27
Figura 10 – Torque vs. posição por fase	27
Figura 11 – Torque vs. velocidade para vários ângulos de comutação	28
Figura 12 – Foto de um motor com <i>encoder</i>	28
Figura 13 – Folga entre dentes	29
Figura 14 – Ângulo do eixo de entrada vs. saída com folga	30
Figura 15 – Circuito equivalente	31
Figura 16 – Esquema imã híbrido [15]	33
Figura 17 – Dentes rotor e estator [15]	34
Figura 18 – Malha de controle proposta	37
Figura 19 – Gráfico de desempenho de um motor de passo	40
Figura 20 – Gráfico esquemático erro vs. tempo de um sistema	41
Figura 21 – Desaceleração constante do motor	41
Figura 22 – Manipulador robótico	45
Figura 23 – Localização dos motores	46
Figura 24 – Dimensões básicas	47
Figura 25 – Vista explodida das três primeiras juntas	48
Figura 26 – Motores 1 e 2 utilizados	49
Figura 27 – Motores 3 e 4 utilizados	49
Figura 28 – Foto dos motores 5 e 6	50
Figura 29 – Vista explodida dos três últimos elos	50
Figura 30 – Detalhe das polias do punho	51
Figura 31 – Detalhe do punho	52
Figura 32 – Posição do centro de gravidade dos três últimos elos	53

Figura 33 – Posição do centro de gravidade dos quatro últimos elos	53
Figura 34 – Montagem do <i>encoder</i> na junta 1	54
Figura 35 – Montagem do <i>encoder</i> na junta 2	55
Figura 36 – Montagem dos <i>encoders</i> nas junta 3 e 4	55
Figura 37 – Montagem dos <i>encoders</i> nas juntas 5 e 6	56
Figura 38 – Registrador QEI	57
Figura 39 – Diagrama elétrico do controlador	58
Figura 40 – Diagrama do <i>software</i> implementado	61
Figura 41 – Foto do computador e manipulador utilizado	62
Figura 42 – Diagrama geral de conexões	63
Figura 43 – Diagrama dos eixos coordenados	65
Figura 44 – Posição do centro do punho	68
Figura 45 – Duas soluções da junta 3	70
Figura 46 – Ícone do motor de passo do Simulink	78
Figura 47 – Caixa de diálogo do motor de passo do Simulink	79
Figura 48 – Modelo de <i>driver</i> no Simulink	80
Figura 49 – Entrada e saída do sequenciador	81
Figura 50 – Modelo de gerador de pulsos	82
Figura 51 – Modelo de controlador	83
Figura 52 – Subsistema com algoritmo de controle	83
Figura 53 – Modelo de motor, redutor e controlador	85
Figura 54 – Modelo do <i>encoder</i>	86
Figura 55 – Gráficos do motor	86
Figura 56 – Velocidade máxima do motor	87
Figura 57 – Posição do <i>encoder</i>	87
Figura 58 – Sistema demandado de 40inc. de amplitude, a 0,05Hz	88
Figura 59 – Sistema demandado de 40inc. de amplitude, a 0,5Hz	88
Figura 60 – Saída com $K_p = 10$ e $K_D = 0.02$	89
Figura 61 – Saída com $K_p = 15$ e $K_D = 0.02$	90
Figura 62 – Saída com $K_p = 13$ e $K_D = 0.02$	90
Figura 63 – Velocidade do motor vs. demandada	91
Figura 64 – Modelo com motores e manipulador	92
Figura 65 – Esquema da bancada de medidas	94

Figura 66 – Foto da bancada de medidas	95
Figura 67 – Medida de tensão no osciloscópio	95
Figura 68 – Erro da posição da extremidade	96
Figura 69 – Movimento do manipulador	97
Figura 70 – Rastro do manipulador	98
Figura 71 – Nivelamento da base	99
Figura 72 – Calibração da junta 2	100
Figura 73 – Calibração da juntas 3 e 4	100
Figura 74 – Calibração das juntas 5 e 6	101
Figura 75 – Calibração da junta 1	101
Figura 76 – Linhas de referência	102
Figura 77 – Media da altura de um ponto	103
Figura 78 – Medida de orientação da extremidade	103
Figura 79 – Medida com relógio comparador	104

Lista de Símbolos

A_i^{i-1}	Matriz de transformação do sistema <i>i</i> -1 para o sistema <i>i</i>
a_i	Comprimento da normal comum entre a junta <i>i</i> e a junta <i>i</i> -1
c_i	$\cos(\theta_i)$
C_{ii}	$\cos(\theta_i + \theta_i)$
D	Coeficiente de atrito viscoso
d_i	Distância do ponto onde parte a normal comum
E_{M}	Tensão máxima medida nos terminais em aberto do motor
e_A	F.E.M. (Força Eletro Motriz) na fase A
e_B	F.E.M. (Força Eletro Motriz) na fase B
e_0	Erro no início da desaceleração
f	Frequência de pulsos de passo
G_i	Torque a gravidade no elo <i>i</i>
\overline{g}	Vetor da força gravitacional
Η	Henry
I_i	Matriz de inércia do elo i em relação ao centro de massa
${}^{j}I_{i}$	Matriz de inércia do elo i usando coordenadas da junta j
I_M	Corrente máxima na fase
i_A	Corrente na fase A
i_B	Corrente na fase B
<i>i</i> ₅	Relação de transmissão da junta 5
<i>i</i> ₆	Relação de transmissão da junta 6
J J^{i} .	Inércia do motor de passo mais a carga <i>J-ésima</i> coluna da matriz Jacobiana linear do elo <i>i</i>
	Sub-matriz Jacobiana associada à velocidade angular do elo i
σ _{ωi} K.	Constante de ganho proporcional
K _p	Constante de ganho derivativo
L_{Λ}^{D}	Indutância na fase A
L_{R}^{A}	Indutância na fase B
M_{ii}	Termo ij da matriz de inércia do manipulador
m	Número de fases
m_i	Massa do elo j
N _r	Número de dentes do rotor
N	Velocidade angular em RPM
$^{j-1}p_{ci} *$	Vetor posição do CG de i , em relação $j-1$, escrito na base.
р	Número de pares de pólos magnéticos
^{i}p	Posição do ponto P no sistema i
Q_i	Torque generalizado do elo <i>i</i>
q	Vetor de coordenadas generalizadas das juntas

q_x	Coordenada x da extremidade
q_{v}	Coordenada y da extremidade
a	Coordenada z da extremidade
R_z	Resistência da fase A
R.	Resistência da fase B
$j_{r_{ci}}$	Vetor posição do CG do elo i , usando coordenadas de j
S	Número de passos por revolução
S _i	$sen(\theta_i)$
S _{ij}	$sen(\theta_i + \theta_i)$
T_{dm}	Torque de retenção
T_I	Torque da carga
T_L	Torque da carga
t	Tempo
t_{C}	Tempo crítico
u V_{PD}	Vetor unitário na direção de <i>x</i> ₆ Velocidade calculada pela lei de controle PD
V _{MIN}	Velocidade mínima que não ultrapassa máxima desaceleração
V _{MAX}	Velocidade máxima que não ultrapassa máxima aceleração
V_{c}	Velocidade de saída do controlador
Vs	Velocidade de saturação da saída
V_i	Torque devido termos centrífugos e de Coriolis na junta i
v V_A	Vetor unitário na direção de y_6 Tensão nos terminais da fase A
v_{R}	Tensão nos terminais da fase B
w	Vetor unitário na direção de z_6
$\alpha_{_i}$	Ângulo entre o eixo z_{i-1} e o eixo z_i em relação a x_i
$\delta_{_i}$	Ângulo de rotação do eixo do motor <i>i</i>
$\theta_{_i}$	Ângulo entre o eixo x_{i-1} e o eixo x_i em relação a z_{i-1}
θ	Ângulo de rotação do rotor
θ_{s}	Ângulo de passo em graus
λ	Defasagem da excitação do motor
$ au_{_{e}}$	Torque eletromagnético gerado pelo motor
$ au_{\scriptscriptstyle A}$	Torque gerado pela fase A do motor
$ au_{\scriptscriptstyle B}$	Torque gerado pela fase B do motor
Ψ_{M}	Fluxo induzido máximo
Ψ_{A}	Fluxo induzido na fase A
$\Psi_{\scriptscriptstyle B}$	Fluxo induzido na fase B
Ω	Ohm
ω	Frequencia angular

Lista de Abreviaturas e Siglas

AC	Corrente Alternada
CAD	Computer-Aided Design
CG	Centro de Gravidade
CNC	Controle Numérico Computadorizado
DC	Corrente Contínua
DH	Denavit Hartenberg
EKF	Extended Kalman Filter (Filtro Kalman Extendido)
EMC	Enhanced Machine Controller
EMF	Electromotive Force (Força Eletromotriz)
HMI	Human Machine Interface (Interface Homem-Máquina)
MA	Malha Aberta
MF	Malha Fechada
NIST	National Institute of Standards and Technology
PID	Proporcional Integrativo Derivativo
RL	Circuito Resistor Indutor
SMC	Sliding Mode Control
RPM	Rotações por Minuto
VR	Variable Reluctance (Relutância Variável)
ppr	Pulsos por revolução