

Juliana Barros Carvalho

Controle de Estado de Polarização da Luz em Sistemas Ópticos

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica.

Orientador: Prof. Marbey Manhães Mosso

Juliana Barros Carvalho

Controle de Estado de Polarização da Luz em Sistemas Ópticos

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica.

Prof. Marbey Manhães Mosso

Orientador

Centro de Estudos em Telecomunicações - PUC-Rio

Prof^a. Maria Cristina Ribeiro Carvalho

Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Giancarlo Vilela de Faria

Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Luiz Alberto de Andrade

Instituto de Aeronáutica e Espaço – IAE/DCTA

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 03 de Abril de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Juliana Barros Carvalho

Graduou-se em Licenciatura em Física pela Universidade Federal Rural do Rio Janeiro (UFRRJ) em 2009. A atual linha de pesquisa é em Eletromagnetismo Aplicado, Dispositivos de Microondas e Sistemas de Comunicações Ópticas.

Ficha Catalográfica

Carvalho, Juliana Barros

Controle de estado de polarização da luz em sistemas ópticos / Juliana Barros Carvalho; orientador: Marbey Manhães Mosso. – 2012.

98 f.: il. (color.); 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2012.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Polarização. 3. Esfera der poincaré. 4. Controle de polarização. 5. Transformações de polarização. 6. LabVIEW. 7. Sistemas multiplexados opticamente em frequência. I. Mosso, Marbey Manhães. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

Agradecimentos

À Deus, pela grande oportunidade de concretizar esta etapa e constante presença em todos os momentos da minha vida, dando-me força e sabedoria.

Ao meu orientador professor Marbey Manhães Mosso pelo imenso estímulo, dedicação, compreensão e confiança em mim para a realização deste trabalho.

Ao CNPq, CAPES, Fundação CPqD e à PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não se realizaria.

Aos meus amados pais, agradeço fortemente pela educação, valores, atenção, amparo, confiança e amor incondicional.

Ao meu irmão Fabricio, por me presentear com minha sobrinha Helena justamente no início do meu ingresso no mestrado, sendo ela uma grande inspiração na minha vida.

A toda minha maravilhosa família: meus adoráveis avós, tios e primos, pelo incentivo que veio a reforçar a fé em mim mesma. Agradeço imensamente por sempre acompanharem meus passos, compreenderem minha ausência e pelos desmedidos gestos de carinho e amor visando sempre a minha felicidade.

Ao meu namorado Jefferson, estando sempre presente com todo apoiando com muito companheirismo e paciência.

Aos amigos e professores da UFRRJ pela sincera amizade e ensinamentos, em especial ao Bruno Areal e Frederico Alan pelo grande incentivo para que eu ingressasse neste curso.

Ao meu grande amigo Mauro Ferreira, quem me presenteou com a inscrição neste curso de mestrado.

Aos professores do CETUC/PUC-Rio pelos valiosos conhecimentos transmitidos ao longo das disciplinas, que muito contribuíram para minha formação neste curso.

Aos meus amigos do CETUC/PUC-Rio pela agradável convivência. Em especial, agradeço a todos os companheiros do Laboratório PA, pela acolhida, integração e enorme e primordial apoio; aos companheiros do Laboratório de Optoeletrônica Rogerio e Andrey, os quais me ajudaram à fabricação de circuitos eletrônicos, ao prof. Giancarlo pelas referências fundamentais, e ao Andy pelos grandes ensinamentos extremamente contributivos para o desenvolvimento desta dissertação; e aos companheiros estrangeiros de todos os laboratórios pelo imenso carinho e simpatia de sempre.

Aos amigos membros do GSOM/CETUC pela excelente receptividade. À Vanessa Magri pelo essencial treinamento, à Gelza de Moura, Gidy Florez, Jorge Mitrione e Cidy Delgado pelas importantes contribuições a esta dissertação.

Às eficientes secretárias do CETUC e do DEE pelos esclarecimentos e auxílio à minha condição de estudante.

Às queridas bibliotecárias Maria Lucia e Ana Beatriz pelo excelente trabalho e amizade formada.

A todos os funcionários do CETUC em razão do bom convívio cotidiano.

Resumo

Carvalho, Juliana Barros; Mosso, Marbey Manhães **Controle de Estado de Polarização da Luz em Sistemas Ópticos**. Rio de Janeiro, 2012. 98p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

Este trabalho apresenta em sua etapa inicial os conceitos básicos de polarização da luz descritos através da *Esfera de Poincaré*, *Vetores de Jones*, *Parâmetros de Stokes*, *Matrizes de Mueller* e *Fórmula da Rotação de Rodrigues*. Em seguida, as diversas técnicas utilizadas para as transformações dos SOPs (*States of Polarization*) são introduzidas. A partir destas etapas, é apresentada a seleção, o desenvolvimento e a realização prática de um sistema capaz de ativar o controle de polarização de sinais ópticos em uma fibra monomodo. Um segundo sistema capaz de controlar sinais ópticos multiplexados em frequencia é também realizado e apresentado. Ambos os sistemas são ativados através de uma ferramenta computacional dedicada baseada na linguagem de programação gráfica LabVIEW.

Palavras-chave

Polarização; Esfera de Poincaré; Controle de Polarização; Estados de Polarização; Transformações de Polarização; LabVIEW; Sistemas Multiplexados Opticamente em Frequencia.

Abstract

Carvalho, Juliana Barros; Mosso, Marbey Manhães (Advisor). **State of Polarization Control in Lightwave System**. Rio de Janeiro, 2012. 98p. MSc. Dissertation – Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

This work presents initially a set of light polarization concepts using the *Poincaré Sphere*, *Jone's Vectors*, *Stoke's Parameters*, *Mueller Matrices*, *Rodrigues' Rotation Formula*, and several SOPs (*States of Polarization*) transformations. Through these concepts and after a careful components selection, a SOP control system in monomode optical fiber is realized and presented. A second system able to implement the SOP control when multiplexed optical signals are employed is also realized and described. A dedicated computer tool using the software LabVIEW is developed to both systems.

Keywords

Polarization; Poincaré Sphere; Polarization Control; Sates of Polarization; Polarization Transformers; LabVIEW; Multiplexed Optical System.

Sumário

1. Introdução	15
2. Fundamentos Teóricos	19
2.1. Teoria Eletromagnética: A Natureza da Luz	19
2.2. Fundamentos de Óptica	22
2.3. Conceito de Polarização	26
2.3.1. Transformações de Polarização	34
2.3.2. Esfera de Poincaré	35
2.3.2.1. Estados de Polarização	36
2.3.2.2. Vetor de Jones	37
2.3.2.2.1. Estado de Polarização Linear	37
2.3.2.2.2. Estados de Polarização Circular e Elípti	ca 38
2.3.2.3. Parâmetros de Stokes	38
2.3.2.4. Luz Polarizada e Parâmetros de Stokes:	Associação entre
os tipos de polarização e as regiõe	es da Esfera de
Poincaré	40
2.3.2.4.1. Estados de Polarização Linear	41
2.3.2.4.2. Estados de Polarização Circular e Elípti	ca 41
2.3.2.5. Matrix de Jones e Matrix de Mueller	45
2.3.2.6. Fórmula da Rotação de Rodrigues	45
2.4. Comentários finais do capítulo	47
3. Estudo e seleção de componentes, materi	ais e dispositivos
para montagem da bancada de controle de po	olarização 48
3.1. Fonte óptica	48
3.2. Controladores de Polarização	49
3.2.1. Controlador de polarização mecânico	61

3.2.2	2. Controlador de polarização BATI modelo PCM410	61
3.3.	Dispositivo USB de baixo custo para aquisição de dados	62
3.4.	Polarizador linear	63
3.5.	Medidor de potência óptica	64
3.6.	LabVIEW System Design Software	64
3.7.	Divisor de feixe óptico	66
3.8.	Computador	67
3.9.	Comentários finais do capítulo	68
4.	Desenvolvimento, testes e resultados de um sistema óptico	
	para controle de polarização	70
4.1.	Descrição da bancada óptica desenvolvida	70
4.2.	Descrição do algoritmo desenvolvido em LabVIEW	72
4.3.	Descrição dos testes realizados	80
4.4.	Controle de polarização em sistemas multiplexados	
	opticamente	81
4.5.	Limitações do algotirmo utilizado	83
4.6.	Comentários finais do capítulo	84
5.	Conclusões e comentários finais	85
6.	Bibliografia	87
Apêr	ndice I	92
l.	"Características de Transmissão de um Enlace Óptico"	92
П	"An Ultra Low Cost Bias Tee Unit"	95

Lista de Figuras

Figura 1 – Espectro eletromagnético [16]	
Figura 2 – Efeito Fotoelétrico [20]	22
Figura 3 – Propagação da Luz confinada, sofrendo reflexão interna	
total ao longo da fibra óptica. Os raios em que Φ < Φc são	
refratados para fora do núcleo, ou seja, na casca	24
Figura 4 – Onda propagando-se na direção positiva do eixo z, onde	
os campos E e H possuirão componentes apenas no	
plano xy [24] [25]	27
Figura 5 – Polarização das ondas eletromagnéticas: Linear, Circular	
e Elíptica	27
Figura 6 - Exemplo de luz não polarizada incidindo sobre uma	
lâmina polarizadora	28
Figura 7 – Variação harmônica do campo elétrico - Polarização linear	
nas direções x e y	30
Figura 8 – Uma onda eletromagnética linearmente polarizada: vetor	
campo elétrico possui apenas uma ou duas componentes	
ortogonais em fase ou em oposição de fase	31
Figura 9 – Uma onda eletromagnética circularmente polarizada:	
vetor campo elétrico tem módulo constante	31
Figura 10 – Onda eletromagnética circularmente polarizada: vetor	
campo elétrico tem módulo constante. Têm-se em (a)	
Polarização circular à direita ($\phi = +\pi/2$) e em (b)	
Polarização circular à esquerda (φ = -π/2)	32
Figura 11 – Onda eletromagnética elipticamente polarizada	
dependente da grandeza de φ	33
Figura 12 – Onda eletromagnética elipticamente polarizada: (a)	
Polarização elíptica à direita (- $\pi \le \phi \le 0$) (b) Polarização	
elíptica à esquerda ($(0 \le \phi \le \pi)$)	34
Figura 13 – Elipse de polarização [28]	
Figura 14 – Esfera de Poincaré: representação do estado de	
polarização elíptica [31]	36
Figura 15 – Representação fasorial para as componentes Ex e Ey do	
campo elétrico.	36
Figura 16 – Esfera de Poincaré e os estados de polarização [35]	
Figura 17 – Representação de uma elipse onde A é o eixo maior e B	
é o eixo menor	42
Figura 18 – (a) e (b): Representação dos estados de polarização na	
Esfera de Poincaré [28]	42
Figura 19 – Estados de Polarização e respectiva localização sobre a	+∠
Esfera de Poincaré [35]	11
Figura 20 – Esfera de Poincaré: Transformação de dois estados	++
	17
de polarização [28]	+ /

	21 – Apresentação do espectro optico de um laser DFB [39] 22 – Cristal de calcita mostrando o fenômeno de	.48
3	birrefringência [41]	. 49
Figura	23 – Propagação de uma onda plano-polarizada através de uma lâmina de fração de onda	. 51
Figura	24 – Propagação de uma onda plano-polarizada com mais	. 0 1
9	comprimentos de onda através de uma lâmina de fração	
	de onda.	.51
Figura	25 - Rotação da onda de luz propagante em torno do eixo	
gaa	rápido por uma lâmina de meia onda	. 53
Figura	26 – Retardador de $\lambda/4$ na onda de luz ao propagar-se por	
gaa	uma lâmina de quarto de onda	. 54
Figura	27 - Lâmina de quarto de onda transformando uma onda	
9	linearmente polarizada em circularmente polarizada [44]	. 54
Figura	28 – (a) Transformação da polarização circular por um	
9	retardador linear, com azimute υ e elipcidade ε [28]. (b)	
	Vista entre os eixos S1,S3 e S1,S2	. 57
Figura	29 - Controle de Polarização utilizando um compensador	
Ü	Soleil-Babinet [40] [45]	. 58
Figura	30 - Soleil-Babinet Compensator. O retardo necessário é	
Ū	ajustado por variações na espessura do cristal 1 [46]	. 59
Figura	31 - Retardador eletro-óptico (LiNbO3) - Estrutura de corte -	
_	x e propagação - z [28]	. 59
Figura	32 – Transformação de polarização por um retardador linear	
	de niobato de lítio [28]	. 60
Figura	33 – ProtoDel Controlador de Polarização Mecânico [48]	.61
Figura	34 – PCM400: secção cruzada [50]	.62
Figura	35 – NI-DAQmx USB 6009 [52]	.63
	36 – Polarizador linear General Photonics, no tail [53]	
_	37 – FPM-8200 Medidor de Potência Óptica em fibra [40]	.64
Figura	38 - Painel frontal e diagrama de blocos de um sistema	
	simples desenvolvido em LabVIEW [55]	. 68
Figura	39 - Paletas de controle do painel frontal, funções do	
	diagrama de blocos e ferramentas para construção dos	
	sistemas nas Vi's [56]	
	40 – Divisor de potência óptica.	.70
Figura	41 - Tela da Ferramenta LabVIEW Measurement &	
	Automation: Aquisição de dados de uma fonte de tensão	
	de - 6 V [56]	. 68
Figura	42 – Sistema para controle de polarização. A numeração	
	indica a ordem de acontecimento das etapas do sistema	. 70
Figura	43 – Bancada para testes do sistema de controle de	
	polarização. A numeração segue a mesma ordem descrita	- .
- :	na Figura 42.	. /1
⊢ıgura	44 – Painel frontal e diagrama de blocos representativo do	
	instrumento virtual para aquisição e variação dos dados	
	fornecidos e gerados pelo dispositivo USB NI-DAQmX. A	
	Figura ilustra o exemplo de geração de tensões para o	70
	estágio 1 do PC [56]	. /2

Figura 45 – Diagrama de Fluxo do algoritmo de maximização para o controle de polarização nos estágios 1, 2, 3 e 4	76
Figura 46 – Diagrama de Fluxo do máximo de potência óptica	
otimizada	. / /
Figura 47 – Algoritmo em Diagrama de Blocos para Controle de	
Polarização desenvolvido no Software LabVIEW [1]. A	
imagem apresenta a situação em que há variação do	
estágio 1 do controlador de polarização, enquanto os	
outros quatro estágios tem seus níveis de tensão	
	.79
Figura 48 – Painel Frontal do Software LabVIEW. Nesta imagem, é	
mostrada a análise do algoritmo desenvolvido para	
controle de apenas um dos quatro estágios do controlador	
, , , , , , , , , , , , , , , , , , ,	.80
Figura 49 – Algoritmo em Diagrama de Blocos para Controle de	
Polarização desenvolvido no Software LabVIEW [1]. A	
imagem apresenta a situação em que os quatro estágios	
do controlador de polarização possuem valores de	
tensões fixos, mantendo, portanto, o máximo nível de	.81
· · · · · · · · · · · · · · · · · · ·	. 0 1
Figura 50 – Painel Frontal do Software LabVIEW [56] apresentando	
os resultados do sistema para controle de polarização	
desenvolvido. As tensões fixas nos quatro estágios do	
controlador de polarização. Por análise dos resultados	
obtidos, nota-se que o máximo valor de tensão afixado é	
da ordem de 7 V	. 83
Figura 51 – Sinal óptico multiplexado em polarização: as projeções	
sobre x e y apresentam uma soma quadrática constante,	
isto é, V1 = V ₂ para qualquer desvio de polarização	. 81
Figura 52 – Sistema óptico elaborado para controle de polarização	
em sistemas multiplexados opticamente. A saída x possui	
um sistema de controle do SOP similar	. 82
Figura 53 – Sistema óptico para controle de polarização	
desenvolvido no laboratório GSOM	.83

Lista de Acrônimos

A/D: Analog to Digital converter

Amp Ops: Amplificadores Operacionais

BPF: Band Pass Filter

DAQ: Data Acquisition Device

D/A: Digital to Analog converter

DFB: Distributed Feedback

DGD: Differential Group Delay

DOP: Degree of Polarization

DQPSK: Differential Quadrature Phase Shift Keying

EAM: Electro-Absorption Modulator

FPGA: Field-Programmable Gate Array

IEEE: Institute of Electrical and Electronics Engineers

PBS: Polarizer Beam Splitter

PC: Polarization Control

PCM: Polarization Control Module

PDL: Polarization Dependent Loss

PMD: Polarization Mode Dispertion

PolMUX: Polarization Multiplex

PRBS: Pseudo-Random Binary Sequence

RUT: Retarder Under Test

SMD: Surface Mounted Devices

SOP: State of Polarization

TEM: Transversal Eletromagnética

QAM: Quadrature Amplitude Modulation

QPSK: Quadrature Phase Shift Keying

16QAM: 16 State Quadrature Amplitude Modulation

64QAM: 64 State Quadrature Amplitude Modulation

"É pela lógica que provamos, é pela intuição que inventamos. A lógica, portanto, permanece estéril se não for fertilizada pela intuição."

(Henri Poincaré)