
2
Related work

Several tools can aid the prototyping stage, with many approaches available:

desktop or web-based applications, UI-specific or generic diagrammatic solutions,

mouse-based or pen-based interaction, amongst others. Lists of some products can

be found online, for example, in (Harrelson, 2009) or (Barber, 2009). An

overview of some widely used applications will be presented in the following

sections. Section 2.1 analyzes mouse-based prototyping software and Section 2.2,

pen-based ones. Section 2.3 presents a comparison table summarizing the

analyzed applications.

2.1
Mouse-based prototyping software

2.1.1.
Microsoft Visio

Microsoft Visio
1
 is a tool that allows the creation of various types of

diagrams - from flowcharts to Windows-style user interfaces. For each type, a pre-

defined set of elements is presented and, by drag-and-drop, the selected ones are

added to the representation being built.

Although largely known and utilized, Microsoft Visio presents relevant

limitations. Since it handles a wide array of diagram types, it is a rather generic

solution to the UI prototyping problem. Therefore, specific behavior is not

supported, allowing only the navigation between screens. Its strength resides in

the fact that the mockup interface is really similar to the final result in a Windows

XP environment, as seen in Figure 1.

1
 Information about the latest version can be found at

 http://office.microsoft.com/en-us/visio/

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

17

Figure 1: Microsoft Visio 2007.

2.1.2.
Balsamiq

Balsamiq
2
 is a very popular UI prototyping software as of the writing of this

dissertation. It presents a collection of 75 elements that can be added to the

mockup, varying the complexity from simple buttons and labels to more complex

ones, such as a formatting toolbar or an iTunes-like cover flow.

Elements are added by drag-and-drop and the only possible interaction with

them is as hyperlinks between mock-ups (for example, a checkbox cannot toggle

its ―checked‖ state during the ―full-screen presentation‖). This limitation is a

major disadvantage of the software, since if the designer wants to create an

interactive prototype, he/she must build copies of the same interface with the

elements in different states and then create links between these mock-ups.

Moreover, not all elements can have hyperlinks associated to them. For instance,

cover flow, numeric stepper and playback controls cannot trigger navigation

actions.

Although not pen-based, Balsamiq‘s elements have a ―sketchy‖ look-and-

feel, which can be seen in Figure 2. This helps to enhance the conceptual

2
 http://www.balsamiq.com/

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

18

difference between ―prototype‖ and ―product‖ to the final user, thus ―can help to

disarm those who think that suddenly your software is ‗done‘‖ (Harrelson, 2009).

Figure 2: Balsamiq
3
.

2.1.3.
Axure RP Pro

Another UI prototype tool is the Axure RP Pro
4
. It supports defining other

forms of interaction than only navigating between screens, allowing the

generation of a functional prototype with less effort. Its interface can be seen in

Figure 3.

Figure 3: Axure RP Pro
5
.

3
 Image taken from:

 http://balsamiq.wpengine.netdna-cdn.com/images/help_3mainareas.png
4
 http://www.axure.com/

5
 Image taken from:

 http://www.axure.com/images/training-axurerpenvironment-interface.jpg

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

19

The addition of elements is also done by drag-and-drop and there is an

extensive list of properties to be defined for each element. The form-based

paradigm extends to the definition of the interactive behavior, being necessary to

fill out some fields and requiring several mouse clicks, as can be seen in Figure 4.

Figure 4: Defining behavior with Axure RP Pro
6
.

2.2
Pen-based prototyping software

2.2.1.
DENIM

DENIM
7

 (Lin, Thomsen, & Landay, 2002) explores the pen-based

interaction paradigm to aid the initial states of website development. Its main

characteristic is the different zoom levels to view the project, going from a macro

vision – the site map – to a micro vision – a single page. The pen strokes easily

create links between pages by dragging lines between them, as can be seen in

Figure 5, in which the ―Home‖ page links to the ―Weather‖ page.

6
 Images taken from: http://www.axure.com/images/training-interactions-dialog.jpg

 and http://www.axure.com/images/training-conditionallogic-multipleconditions.jpg
7
 http://dub.washington.edu:2007/denim/

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

20

Figure 5: DENIM.

DENIM also features a gesture system that naturally flows along with the

drawing of pages. If the user holds the pen‘s barrel button or the CTRL key, the

drawing will be interpreted as a gesture, following the language presented in

Figure 6. The gesture system allows frequent operations, such as undo/redo and

cut/copy/paste, to be executed directly from the canvas, without changing the

drawing paradigm by adding an implicit mode of interaction (a ―gesture mode‖

activated by the holding of the pen‘s barrel button or the CTRL key).

Figure 6: DENIM gesture system
8
.

8
 Images taken from online documentation available at :

 http://dub.washington.edu:2007/projects/denim/docs/HTML/quick_ref/gestures.html

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

21

However, even heavily based on drawing, the addition of WIMP (Windows,

Icons, Menus and Pointers) elements still relies on specific tools that work as

―stamps‖, as can be seen in the lower bar of Figure 5. Another limitation is that

the only available actions are navigational (hyperlinks), but it is possible to make

a conditional navigational depending on the state of elements. Such conditionals

are displayed one at a time, without highlighting which component is related to

each conditional. As can be seen in Figure 7, the checkbox is responsible for the

two possible navigational paths, but it is not highlighted in any way.

Figure 7: DENIM‘s representation of conditionals
9
.

One nice feature is the idea of ―custom component‖, allowing the use of a

user-defined element in the application. The operations regarding custom

components — such as creating, adding and editing — are accessible through the

pie menu, so it is not possible to add these components through drawing or stamps

as the regular ones.

2.2.2. SketchiXML

The SketchiXML
10

 is a ―multi-agent application able to handle several kinds

of hand-drawn sources as input, and to provide the corresponding specification in

UsiXML― (Coyette, Faulkner, Kolp, Limbourg, & Vanderdonckt, 2004). It

focuses on UI sketching and has its own gestural language to add elements

through drawing, which can be seen in Figure 8.

9
 Images taken from online documentation available at:

 http://dub.washington.edu:2007/projects/denim/docs/HTML/tutorial/Using_Conditional.
 htm
10

 http://www.usixml.org/index.php?mod=pages&id=14

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

22

Figure 8: SketchiXML
11

.

Not all elements can trigger actions. For instance, a button can trigger

multiple actions, but an image can trigger none. Moreover, these actions are

limited to navigation between screens. This behavior definition is done in the

―Navigate‖ mode, where the screens are presented as thumbnails in a 2-D space.

Then they can be organized by the user, since he/she is unaware of this 2-D space

when he is building the screens. The addition of actions explores the pen input,

since we need to draw a line connecting the element that will trigger the action to

the screen that will be shown. When a valid connection is available, the line being

drawn changes its color, giving feedback that an action can then be created. After

lifting the pen, a pop-up menu appears so the user can choose what action will be

created (open/close, minimize/maximize, bring to front/back). The creation of an

action therefore happens in two steps: drawing a line to determine the trigger

element and the target screen and then selecting the action from the pop-up menu.

A particular characteristic of SketchiXML is that it has different levels of

the mockup visual representation: the original stroke, a ―beautified‖ stroke, a

conceptual version of the element and the element as would be shown at the

interface of the current running operating system. The different representation

levels can be seen in Figure 9, starting from the top-left corner and going

clockwise:

11

 Image taken from: http://www.usixml.org/images/sketchixml_09.png

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

23

Figure 9: Different levels of representation in SketchiXML.

2.2.3.
CogTool

CogTool
12

 is a software currently being developed by the Carnegie Mellon

University that, besides creating UI prototypes, ―automatically evaluates your

design with a predictive human performance model‖ (Carnegie Mellon

University, 2009). One difference from all other evaluated tools is that CogTool

supports different input devices (not only the usual keyboard and mouse, but also

touch screen and microphone) and audio as another output device in addition to

the monitor screen.

In CogTool, a project consists of frames, related to the windows of the

interface being designed. The elements are defined by drawing a rectangular area

that will be occupied by it. Despite having this rectangle drawing component, the

user must choose the corresponding tool to choose the element type.

Between frames it is possible to add a transition, having an event (such as a

mouse or keyboard input) associated to it. These transitions can be shown in a

storyboard-like fashion, allowing an overview of the project and the relations

between frames, as can be seen in Figure 10.

12

 http://cogtool.hcii.cs.cmu.edu/

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

24

Figure 10: CogTool.

Having defined the frames and transitions, it is possible to make a GOMS

task analysis simulation with a ―cognitive crash dummy‖ (as described in the

project‘s webpage), measuring the time elapsed in each step. In the end, a graph

summarizing the results is displayed, as shown in Figure 11.

Figure 11: Simulation in CogTool.

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

25

Besides a good task analysis, the prototype is very simplified, since all user

interface elements are graphically represented by rectangles (bounding boxes)

with which users can interact. As the main focus is the automated task analysis to

be used by the design team, the choice for this simplified representation is

justified. However, if the prototype is presented to an end user, we believe that

this design choice of only displaying bounding boxes could result in some

confusion.

2.3
Summary

Table 1 presents a comparison of the tools described in this chapter. Each

lines represents a feature, showing whether the tool has (y) or does not have (n) a

certain feature. When a certain feature depends on another, it is indented in a tree-

like fashion with ―>>―. In this case, if the tool does not have the ―parent‖ feature,

it is marked with an ―x‖. Empty cells means that the features were not evaluated.

Table 1: Software comparison.

M
ic

ro
s
o

ft
 V

is
io

A
x
u

re
 R

P
 P

ro

D
e
n

im

S
k
e
tc

h
iX

M
L

B
a
ls

a
m

iq

C
o

g
T

o
o

l

Free n n y y n y

UI-prototype exclusive (vs generic diagrammatic tool) n y y y y n

UI components for multiple environments (vs web-

page prototype only)
y y n y y y

Drawing widgets n n n y n n

>> Evolution of widgets x x x n x x

Element manipulation y n n y y

Undo/Redo y y y y y

Group/Ungroup y y n y n

>> Select internal objects y x x n x

Cut/Copy/Paste y y y y y

>> Copies the action n n n y n

Zoom levels y y y y y

Guidelines n n n y n

Layer ordering y n n y y

Sketchy visual n n y y y y

Actions n y y y y y

>> Beyond navigation x y n n n n

>> Sketchy interaction x n y y n y

>> Event x y y n n y

>> Conditions x n y n n n

Prototype evaluation x y y n y y

Save y y y n y y

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

26

As we will see in the next chapters, UISKEI targets the prototyping process

with a pen-based interaction approach, not only during interface building but also

when defining the interface behavior. Moreover, the behavior defined should go

beyond navigational purposes and be conditionally triggered, combination only

present in Axure RP Pro, but without the sketchy interaction.

DBD
PUC-Rio - Certificação Digital Nº 0912900/CA

	2 Related work
	2.1 Mouse-based prototyping software
	2.1.1. Microsoft Visio
	2.1.2. Balsamiq
	2.1.3. Axure RP Pro

	2.2 Pen-based prototyping software
	2.2.1. DENIM
	2.2.2. SketchiXML
	2.2.3. CogTool

	2.3 Summary

