

Guilherme Rodrigues Sampaio de Paula

Análise numérica e experimental de endentação em membranas hiperelásticas planas

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

> Orientador: Prof. Hans I. Weber Co-orientador: Prof. Djenane C. Pamplona

Rio de Janeiro Abril de 2013

Guilherme Rodrigues Sampaio de Paula

Análise numérica e experimental de endentação em membranas hiperelásticas planas

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Hans Ingo Weber

Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Djenane Cordeiro Pamplona

Co-orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Rubens Sampaio Filho Departamento de Engenharia Mecânica– PUC-Rio

Prof. Marcelo Amorim Savi Departamento de Engenharia Mecânica - UFRJ

> Prof. Luiz Bevilacqua UFRJ

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 17 de Abril de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Guilherme Rodrigues Sampaio de Paula

Graduado em engenharia de controle e automação.

Ficha Catalográfica

Paula, Guilherme Rodrigues Sampaio de

Análise numérica e experimental de endentação em membranas hiperelásticas planas / Guilherme Rodrigues Sampaio de Paula ; orientador: Hans I. Weber; co-orientador Djenane C. Pamplona. – 2013. 118 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2013. Inclui bibliografia

Engenharia mecânica – Teses. 2.
Elasticidade. 3. Membranas. 4. Atrito. 5. Borracha.
Elementos finitos. 7. Grandes deformações. I.
Pamplona, Djenane C. II. Weber, Hans I. III.
Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Engenharia Mecânica. IV. Título.

CDD:621

Aos meus pais, que me deram educação e condições para alcançar este objetivo.

Agradecimentos

Aos meus pais, pelo apoio e incentivo irrestritos.

A minha avó pela educação dada.

Ao CNPq e FAPERJ pela bolsa e apoio financeiro ao projeto.

Aos meus orientadores, professora Djenane C. Pamplona e professor Hans I. Weber, pelo suporte junto à PUC-Rio, pela sugestão do tema e por todo apoio dado ao desenvolvimento deste trabalho.

Aos técnicos Euclides e Wagner pelo apoio técnico na criação de dispositivos experimentais.

Aos alunos de iniciação científica do laboratório de membranas da PUC pela ajuda nos ensaios experimentais

A empresa GT2 Energia pelas horas de trabalho cedidas para realização do mestrado.

Resumo

De Paula, Guilherme Rodrigues; Weber, Hans I. **Análise numérica e experimental de endentação em membranas hiperelásticas planas.** Rio de Janeiro, 2013. 118p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O estudo do comportamento de membranas quando expostas a pressões e tensões de diverssos tipos, assim como de suas propriedades mecânicas nos últimos anos vem recebendo uma notável atenção em razão da variada aplicabilidade das membranas nas mais diversas áreas da engenharia, incluindo atuadores, robótica, sensores, aeroespacial, bioengenharia e estruturas infláveis para engenharia civil. Neste trabalho será apresentado um estudo numérico e experimental de uma membrana sujeita a uma endentação e perfuração transversalmente ao seu plano indeformado, considerando-se a presença do atrito na interface membrana-endentor, fato que torna esse estudo pioneiro nesta análise. Os estudos numéricos foram feitos no software Abaqus CAE. Os ensaios experimentais têm por objetivo comprovar os resultados numéricos e assim validá-los. Foram desenvolvidos aparatos experimentais dedicados aos ensaios pretendidos devido à ausência de equipamentos no mercado que pudessem reproduzir tais ensaios.

Palavras-chave

Elasticidade; membranas; atrito; borracha; elementos finitos; grandes deformações.

Abstract

De Paula, Guilherme Rodrigues; Weber, Hans I. (Advisor) **Numerical and experimental endentation analysis of plane hyperelastic membranes.** Rio de Janeiro, 2013. 118p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The study of membranes behavior when subjected to pressures and tensions from all kinds, as well as their mechanical properties, is receiving a noticeable attention over the last years due to various applications of membranes on various engineering fields, including, actuators, robotics, sensors, airspace, bioengineering and inflatable structures for civil engineering. On this job will be presented a numerical and experimental study of a membrane subjected to an endentation and penetration transversally to the membrane's undeformed plane, considering friction on the interface of the membrane and endentor, which makes this study a pioneer on this kind of analysis. The numerical studies were performed on Abaqus CAE finite element software. The experimental tests are intended to validate the numerical results. Experimental apparatus were developed especially to perform the tests done in this job.

Keywords

Elasticity; membranes; friction; rubber; finite element; large deformations.

Sumário

1 Introdução	17
1.1. Objetivo da dissertação	19
1.2. Organização do texto	19
2 Formulação	21
2.1. Revisão bibliográfica de membrana e endentação	21
2.2. Invariantes de deformação	22
2.2.1. Energia de deformação	23
2.3. Formulações de energia para a borracha	24
2.3.1. Neo-Hookeano	24
2.3.2. Mooney-Rivlin	25
2.3.3. Ogden	26
2.4. Formulação Elementos Finitos	26
2.4.1. O método	27
2.4.2. Elementos de Membranas, de Casca e Sólidos	28
2.5. O processo de endentação, penetração e ruptura	29
2.6. O endentor	30
3 Análise experimental	32
3.1. Material utilizado	32
3.2. Preparação da membrana de borracha	33
3.3. Descrição do aparato	33
3.4. Caracterização do material – ensaios	36
3.5. Caracterização do atrito	41
3.5.1. Valores dos coeficientes de atrito estático dos ensaios sem	
lubrificação	42
3.5.2. Valores médios do coeficiente de atrito dinâmico para os ensaios	;
sem lubrificação	43
3.5.3. Gráficos dos ensaios sem lubrificação	44
3.5.4. Verificação da taxa de aquisição de dados	46

3.5.5. Ensaios com Lubrificante	48
3.6. Ensaio de endentação e penetração	54
3.6.1. Com lubrificante	55
3.6.2. Sem lubrificante	57
3.6.3. Com lixa	60
3.7. Análise da histerese	65
4 Análise numérica	69
4.1. Material Neo Hookeano	71
4.1.1. Sem atrito, μ=0,00	71
4.1.2. Baixo atrito, μ=0,20	73
4.1.3. Atrito médio, μ=0,46	74
4.1.4. Atrito elevado, μ=0,80	76
4.2. Material Mooney-Rivlin	77
4.2.1. Sem atrito, μ=0,00	77
4.2.2. Baixo atrito, μ=0,20	79
4.2.3. Atrito médio, μ=0,46	80
4.2.4. Atrito elevado, μ=0,80	82
4.3. Material Ogden primeira ordem	84
4.3.1. Sem atrito, µ=0,00	84
4.3.2. Baixo atrito, μ=0,20	85
4.3.3. Atrito médio, µ=0,46	87
4.3.4. Atrito elevado, µ=0,80	88
4.4. Material Ogden segunda ordem	90
4.4.1. Sem atrito, µ=0,00	91
4.4.2. Baixo atrito, μ=0,20	92
4.4.3. Atrito médio, µ=0,46	94
4.4.4. Atrito elevado, µ=0,80	96
4.5. Estudo paramétrico das formulações de energia relativas ao	atrito 100
4.6. Estudo paramétrico variando a espessura	100
4.7. Estudo paramétrico variando o diâmetro do endentor	102
5 Comparação dos resultados numéricos e experimentais	105
5.1. Lubrificado	105

5.2. Sem lubrificante	107
5.3. Com lixa	109
5.4. Rompimento	111
6 Conclusão	112
7 Trabalhos futuros	115
8 Referências Bibliográficas	116
	110

Lista de figuras

Figura 1.1 - Estutura provisória de membrana	18
Figura 1.2 - Procedimento de angioplastia	18
Figura 1.3 - Membrana de proteção de aterro sanitário	19
Figura 2.1- Malha de elementos finitos	28
Figura 2.2 - Ponto limite entre endentação e penetração	29
Figura 2.3 - Limite de descolamento	30
Figura 2.4 - Endentores	31
Figura 3.1 - Lençol de borracha	33
Figura 3.2 - Instron 3343	34
Figura 3.3 - Configuração para ensaios de atrito	35
Figura 3.4 - Equipamento para ensaios de endentação	35
Figura 3.5 - Corpo de Prova	37
Figura 3.6 - Ensaio de caracterização	38
Figura 3.7 - Software BlueHill	38
Figura 3.8 - Gráfico carga vs. deformação	39
Figura 3.9 - Gráfico comparativo dos funcionais	40
Figura 3.10 - Ensaio de atrito	41
Figura 3.11 - Gráfico para 98.6g e 100mm/min sem lubrificação	44
Figura 3.12 - Gráfico para 198.6g e 100mm/min sem lubrificação	45
Figura 3.13 - Gráfico para 298.6g e 100mm/min sem lubrificação	45
Figura 3.14 - Gráfico para 598.6g e 100mm/min sem lubrificação	46
Figura 3.15 - Ensaios com 198.6g e taxa de aquisição maior	47
Figura 3.16 - Ensaios com 298.6g e taxa de aquisição maior	47
Figura 3.17 - Gráfico para 598.6g e velocidade 100mm/min	49
Figura 3.18 - Gráfico para 598.6g e velocidade 400mm/min	50
Figura 3.19 - Gráfico para 1098.6g e velocidade 100mm/min	50
Figura 3.20 - Gráfico com nove ensaios sem re-lubrificação	51
Figura 3.21 - Gráfico dos ensaios com re-lubrificação	51
Figura 3.22 - Gráfico para 98,6g com lixa gramatura 100	53
Figura 3.23 - Gráfico para 198.6g com lixa 100	53

Figura 3.24 - Membrana colada ao anel	54
Figura 3.25 - Membrana presa ao dispositivo	55
Figura 3.26 - Ensaio lubrificado com 30mm(1), 50mm(2), 60mm(3) e 90mm(4)) 56
Figura 3.27 - Gráfico de carregamento e descarregamento	57
Figura 3.28 - Ensaio sem lubrificante com 30mm(1), 52mm(2), 60mm(3) e	
90mm(4)	58
Figura 3.29 - Gráfico força vs. deslcocamento sem lubrificante	59
Figura 3.30 - Membrana após o descarregamento	59
Figura 3.31 - Ensaio com lixa com 30mm(1), 60mm(2), 65mm(3) e 90mm(4)	61
Figura 3.32 - Gráfico força vs. deslocamento com lixa	62
Figura 3.33 - Membrana após um ciclo de carga e descarga	62
Figura 3.34 - Gráfico de rompimento	63
Figura 3.35 - Ensaio de rompimento	64
Figura 3.36 - Membrana perfurada	64
Figura 3.37 - Gráfico comparativo de velocidades de endentação	65
Figura 3.38 - Ensaio com velocidade 2,3 mm/s	66
Figura 3.39 - Ensaio com velocidade 4,0mm/s	67
Figura 3.40 - Ensaio com velocidade 4,3mm/s	67
Figura 4.1 - Comparação de elementos	70
Figura 4.2 - µ=0,00 Neo Hookeano	71
Figura 4.3 - μ =0,00 Neo Hookeano com legenda de cores expandida	72
Figura 4.4 - μ =0,00 Neo Hookeano com 90mm de deslocamento do endentor	72
Figura 4.5 - µ=0,20 Neo Hookeano no fim da endentação	73
Figura 4.6 - μ =0,20 Neo Hookeano com legenda de cores expandida no fim	
da endentação	73
Figura 4.7 - μ=0,20 Neo Hookeanoa 90mm	74
Figura 4.8 - µ=0,46 Neo Hookeano	75
Figura 4.9 - μ=0,46 Neo Hookeano a 90mm	75
Figura 4.10 - μ=0,80 Neo Hookeano	76
Figura 4.11 - μ=0,80 Neo Hookeano a 90mm	77
Figura 4.12 - µ=0,00 Mooney-Rivlin	78
Figura 4.13 - μ =0,00 Mooney-Rivlin com legenda de cores expandida	78
Figura 4.14 - μ=0,00 Mooney-Rivlin a 90mm	79

Figura 4.15 - µ=0,20 Mooney-Rivlin	79
Figura 4.16 - µ=0,20 Mooney-Rivlin a 90mm	80
Figura 4.17 - µ=0,46 Mooney-Rivlin	81
Figura 4.18 - Gráfico Espessura vs. Raio	81
Figura 4.19 - µ=0,46 Mooney-Rivlin a 90mm	82
Figura 4.20 - µ=0,80Mooney-Rivlin	83
Figura 4.21 - µ=0,80 Mooney-Rivlin a 90mm	83
Figura 4.22 - µ=0,00 Ogden 1 ^a ordem	84
Figura 4.23 - µ=0,00 Ogden 1 ^a ordem a 90mm	85
Figura 4.24 - µ=0,20 Ogden 1 ^a ordem	86
Figura 4.25 - μ =0,20 Ogden 1 ^a ordem com legenda de cores expandida	86
Figura 4.26 - µ=0,20 Ogden 1 ^a ordem a 90mm	87
Figura 4.27 - µ=0,46 Ogden 1 ^a ordem	87
Figura 4.28 - µ=0,46 Ogden 1 ^a ordem a 90mm	88
Figura 4.29 - µ=0,80 Ogden 1 ^a ordem	89
Figura 4.30 - µ=0,80 Ogden 1 ^a ordem a 90mm	89
Figura 4.31 - Gráfico comparativo de atritos	90
Figura 4.32 - µ=0,00 Ogden 2 ^a ordem	91
Figura 4.33 - µ=0,00 Ogden 2 ^a ordem a 90mm	92
Figura 4.34 - µ=0,20 Ogden 2 ^a ordem	92
Figura 4.35 - Gráfico Espessura vs Raio para µ=0,20	93
Figura 4.36 - µ=0,20 Ogden 2 ^a ordem a 90mm	93
Figura 4.37 - µ=0,46 Ogden 2 ^a ordem	94
Figura 4.38 - Gráfico Espessura vs. Raio	95
Figura 4.39 - µ=0,46 Ogden 2 ^a ordem a 90mm	95
Figura 4.40 - Gráfico Espessura vs. Raio	96
Figura 4.41 - µ=0,80 Ogden 2 ^a ordem	97
Figura 4.42 - Gráfico Espessura vs raio	97
Figura 4.43 - µ=0,80 Ogden 2 ^a ordem a 90mm	98
Figura 4.44 - Gráfico Espessura vs raio	98
Figura 4.45 - Gráfico comparativo de atritos resultado verde estranho conferir	99
Figura 4.46 - Gráfico comparativo dos funcionais de energia para μ =0,80	100
Figura 4.47 - Membrana com espessura 0,4mm	101

Figura 4.48 - Membrana com 0,4mm de espessura a 90mm	101
Figura 4.49 - Gráfico espessura vs. raio	102
Figura 4.50 - Endentor com 9mm de diâmetro a 52mm	103
Figura 4.51 - Endentor com 9mm de diâmetro a 90mm	103
Figura 4.52 - Gráfico espessura vs. raio	104
Figura 5.1 - μ =0,00 Neo Hookeano com legenda de cores expandida	106
Figura 5.2 - Comparação numérico experimental do caso lubrificado	
indicando o fim da endentação	107
Figura 5.3 - Comparação numerico experimental indicando o fim da	
endentação	109
Figura 5.4 - Comparação numérico experimental com lixa indicando o fim	
da endentação	110
Figura 5.5 - Comparação de membranas rompidas	111

Lista de tabelas

Tabela 2.1 - Funções densidade de energia	24
Tabela 3.1 - Funcionais de energia potencial elástica	36
Tabela 3.2 - Parâmetros dos funcionais de energia da membrana	40
Tabela 3.3 – Resultado dos coeficientes de atrito estático para os ensaios	
com velocidade 100mm/min sem lubrificação	42
Tabela 3.4 - Resultado dos coeficientes de atrito estático para os ensaios	
velocidade 400mm/min sem lubrificação	43
Tabela 3.5 - Resultado dos coeficientes de atrito dinâmico para os ensaios	
com velocidade 100mm/min sem lubrificação	43
Tabela 3.6 - Resultado dos coeficientes de atrito dinâmico para os ensaios	
com velocidade 400mm/min sem lubrificação	43
Tabela 3.7 – Valores do coeficiente de atrito para os ensaios com taxa de	
aquisição alta	46
Tabela 3.8 – Resultado do coeficiente de atrito estático dos ensaios	
lubrificados com velocidade 100mm/min	48
Tabela 3.9 - Resultado do coeficiente de atrito estático dos ensaios	
lubrificados com velocidade 400mm/min	48
Tabela 3.10 - Resultado do coeficiente de atrito dinâmico dos ensaios	
lubrificados com velocidade 100mm/min	48
Tabela 3.11 - Resultado do coeficiente de atrito dinâmico dos ensaios	
lubrificados com velocidade 100mm/min	48
Tabela 3.12 – Resultados do coeficiente de atrito estático para os ensaios	
lixa gramatura 100	52
Tabela 3.13 – Resultados do coeficiente de atrito dinâmico para os ensaios	
com lixa gramatura 100	52
Tabela 3.14 – Resultados do coeficiente de atrito estático para os ensaios	
lixa gramatura 600	54
Tabela 3.15 – Resultados do coeficiente de atrito dinâmico para os ensaios	
com lixa gramatura 600	54
Tabela 5.1 - Comparação numérico experimental da endentação sem atrito	106

Tabela 5.2 - Comparação numérico experimental da endentação sem	
lubrificante	108
Tabela 5.3 - Comparação numérico experimental da endentação para o	
atrito máximo.	110