
2
Natural Deduction for finite-valued logics

Segerberg presented a general completeness proof for propositional logics.

For this purpose, a deductive system was defined in a way that its rules

were rules for an arbitrary k-place Boolean operator in a given propositional

logic. Each of those rules corresponds to a row on the operator’s truth-table.

This chapter extends Segerberg’s idea to finite-valued propositional logic. We

maintain the idea of defining a deductive system whose rules correspond to

rows of truth-tables, but instead of having n types of rules (one for each truth-

value), we use a bivalent representation that makes use of the technique of

separating formulas as defined by Carlos Caleiro and João Marcos.

2.1
Introduction

Many-valued logic has been extensively studied since the early papers of

 Lukasiewicz, who proposed a many-valued logic as an answer to traditional

philosophical questions posed to the usual bi-valued logic by the nature

of contingent futures, especially those related to logical determinism, as

Aristotle’s famous sea-battle problem. By introducing a value that is neither

true nor false, the so called 1

2

or ‘possible’ truth value, Lukaciewicz proposes a

way to escape from the traps of logical determinism. He also defined n-valued

(n > 3) logics as natural extensions of his 3-valued logic presented in 1922.

Of course one can discuss the real impact of Lukaciewicz proposed solution

to logical determinism, but there’s no doubt that his proposal of a more

general truth-valued propositional logic is important by itself: he introduced

the concept of logical matrix, a concept used by whoever tried to define and

use many-valued logics. Emil Post wrote on many-valued logic in his thesis.

His motivation was mathematical and was related to functional completeness

of m-valued truth- functions, the so called Post’s theorem stating necessary

and su�cient conditions for a set of 2-valued truth-functions to be complete.

Bochvar (1939) and Kleene (1938) independently used many-valued logic as

a way to analyse logical paradoxes, by means of the possible assignment of a

‘paradoxical’ truth value to propositions. Another very important result in the

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 11

area was obtained by Gödel with his proof that intuitionistic logic cannot be

taken as a finitely valued logic.

Apart from its philosophical and mathematical importance, many-valued

logics have provided a vast field of study in model theory and proof-theory. The

definition of a complete and sound deductive system for a class of many-valued

logics can certainly be seen as a contribution for this vast field. As possible

applications of the results presented here, it’s worth mentioning the use of

many- valued logics in computer science to deal with problems of epistemic

gaps, paradoxical knowledge and degrees of believe. In section 2.6 we briefly

review some recent results related to our approach.

In his 1983 paper, “Arbitrary truth-value functions and Natural Deduc-

tion” (19), Segerberg presented a general completeness proof for propositional

logic based on Henkin’s method. For “general” we mean that any fragment of

the full propositional logic is a particular case of this theorem. For this purpose,

Segerberg defined a deductive system whose rules are rules for an arbitrary k-

place Boolean operator in a given propositional logic. The rules are defined in

a way that each of them corresponds to a line on the operator’s truth-table. In

order to define this system, each line of the operator’s truth-table were clas-

sified according to the operator’s truth-value. Corresponding to each of this

classification, the rules are of two kinds, one when the main operator is of

type 0, in which case the rules correspond to an elimination rule, and another

when the main operator is of type 1, in which case the rules correspond to an

introduction rule.

This chapter extends Segerberg’s idea to finite-valued propositional

logics. We maintain the idea of defining a deductive system whose rules

correspond to lines of truth-tables, but instead of having n types of rules

(one for each truth-value), we use a method provided by Carlos Caleiro and

João Marcos (6) to reduce many-valued semantics to a bivalent one. The

truth-values of many-valued logics can be separated in two classes: the class

of designated values and the class of undesignated values and to define this

reduction we need first to define a function t that goes from a set of truth-

values to {0, 1} by taking designated values to 1 and undesignated values

to 0 is defined. Then, we have to find a one-place formula ✓(P) such that

t(✓(P)) receives di↵erent values when di↵erent values in the same class are

assigned to ✓(P) , i.e., the class to which the truth-value of ✓(P) belongs when

v(P) = �i is di↵erent from the class to which the truth-value of ✓(P) belongs

when v(P) = �j, for j 6= i. With the aid of these formulas, known as separating

formulas, a bivalent semantic can be constructed from a many-valued one.

This bivalent semantics allows us to construct the truth-table of a finite-

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 12

valued k-place operator with only two truth-values. On the other hand, besides

the variables of which the operator depends, the truth-value function depends

also on separating formulas. Then, we take Segerberg’s idea and define a

deductive system by corresponding each line of the truth-table to a rule. This

deductive system must have rules that cope with rules whose main formula are

formulas of the form ✓(F(A
1

, . . . , Ak)),F a k-place operator and Ai, 1  i  k,

a formula.

2.2
The system Nmv

Let L be a finite-valued propositional logic. We define now the system

we are going to call Nmv.

Let F be a k-place finite-value operator and A
1

, . . . Ak be formulas in L
and let ✓1(P), ✓2(P), . . . , ✓s(P) be the separating formulas defined to reduce

the many-valued semantic of L to a bivalent semantic. We write ✓0(P) to

represent the proposition P . For each 1  r  k, let < Ir, Jr >, be a partition

of {0, 1, . . . , s}. For ir 2 Ir and jr 2 Jr, F(A
1

, . . . , Ak) can be classified in two

types with respect to the partitions:

type 0 F(A
1

, . . . , Ak), {✓ir(Ar)} ✏ {✓jr(Ar)}

type 1 {✓ir(Ar)} ✏ {✓jr(Ar)},F(A
1

, . . . , Ak)

Note that not all partitions are used as each of the n truth-values of L
is represented by only one of those partitions and there exists more than n

partitions of {0, 1, . . . , s}.
If F(A

1

, . . . , Ak) is of type 0 with respect to the partitions < Ir, Jr >,

for all 1  r  k, and ir 2 Ir and jr 2 Jr, then,

F(A
1

, . . . , Ak) ✓ir(Ar)(all ir 2 Ir)

[✓jr(Ar)]
...

C(all jr 2 Jr)
(hIr, Jri, 0)C

If F(A
1

, . . . , Ak) is of type 1 with respect to the partitions < Ir, Jr >,

for 1  r  k and ir 2 Ir and jr 2 Jr, then,

[F(A
1

, . . . , Ak)]
...
C ✓ir(Ar)(all ir 2 Ir)

[✓jr(Ar)]
...

C(all jr 2 Jr)
(hIr, Jri, 1)C

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 13

What was stated so far does not consist of the whole system. It

can happen that one of the A0s above is of the form F0(A0
1

. . . A0
k0), and

then we need rules to cope with ✓t(F0(A0
1

. . . A0
k0)). As with F(A

1

, . . . , Ak),

✓l(F(A
1

, . . . , Ak)) for 0  l  s, is classified in two types with respect to the

partitions. For all 1  r  k, and ir 2 Ir and jr 2 Jr, F(A
1

, . . . , Ak):

type 0 ✓l(F(A
1

, . . . , Ak)), {✓ir(Ar)} ✏ {✓jr(Ar)}

type 1 {✓ir(Ar)} ✏ {✓jr(Ar)}, ✓l(F(A
1

, . . . , Ak))

According to this classification, we define the following rules:

If ✓l(F(A
1

, . . . , Ak)), 1  l  s, is of type 0 with respect to the partitions

< Ir, Jr >, then,

✓l(F(A
1

, . . . , Ak)) ✓ir(Ar)(all ir 2 Ir)

[✓jr(Ar)]
...

C(all jr 2 Jr)
(hIr, Jri, 0)C

where 1  r  k.

If ✓l(F(A
1

, . . . , Ak)), 1  l  s, is of type 1 with respect to the partitions

< Ir, Jr >,

[✓l(F(A
1

, . . . , Ak))]
...
C ✓ir(Ar)(all ir 2 Ir)

[✓jr(Ar)]
...

C(all jr 2 Jr)
(hIr, Jri, 1)C

where 1  r  k

Note that, as we are using ✓0(P) to designate P , by putting l = 0 in this

last pair of formulas we get the first.

As said above, not all partitions are used to represent a truth-value. Let

hI, Ji be a partition of {0, 1, . . . , s} that do not represent any truth-value and

P a formula in L. According to those partitions, we define the following rules,

that we call U -rules:

✓i(P)(all i 2 I)

[✓j(P)]
...

C(all j 2 J)
(hI, Ji, U)

C

for every i 2 I and j 2 J .

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 14

2.3
Soundness and Completeness

In this section we prove soundness and completeness with respect to the

usual semantics for finitely many-valued logics. The completeness theorem is

proved with the use of Hintikka sets and is an adaptation of the proof given

in (19). As a matter of illustration we provide a natural deduction system for

 L3 as an instance of our approach. This example is shown in subsection 3.1.

Let � be a consistent set of formulas. We define the degree of a formula

A, G(A), to be the number of occurrences in A of logical symbols.

The formulas ✓i(Ar), 0  i  s and 1  r  k, and ✓l(F(A
1

, . . . , Ak)), l a

number between 0 and s, are sub-formulas of ✓l(F(A
1

, . . . , Ak)). Consequently,

G(✓i(Ar)) < G(✓l(F(A
1

, . . . , Ak))).

Theorem 2.3.1 (Soundness) If � ` A, then � ✏ A.

Proof : Assume that � ` A. We want to prove that

� ✏ A

Let � be any truth-value assignment for the set of boolean atoms such that

�̄(C) = 1 for all C 2 �. The proof is by induction on the complexity of

derivations. Let ⇧ be a derivation of A from � and suppose the theorem holds

for every derivation less complex than ⇧.

If A is the conclusion of an application of (hIr, Jri, 0), then, by induction

hypotheses, there are sets of formulas �0, �ir,�jr ⇢ � such that

1. �0 ✏ ✓l(F(A
1

, . . . , Ak))

2. �ir ✏ ✓ir(Ar), for all ir 2 Ir

3. �jr, ✓jr(Ar) ✏ A, for all jr 2 Jr

By 1. and 2., we have that

1’. �̄(✓l(F(A
1

, . . . , Ak))) = 1

2’. �̄(✓ir(Ar)) = 1, for all ir 2 Ir

Suppose that �̄(A) = 0. Then, by 3.,

3’. �̄(✓jr(Ar)) = 0, for all jr 2 Jr

It follows from 1’., 2’. and 3’. that ✓l(F(A
1

, . . . , Ak)) is of type 1 with respect

to hIr, Jri, which is contrary to our assumption. Consequently, �̄(A) = 1, i.e.,

� ✏ A.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 15

The case were A is the conclusion of an application of (hIr, Jri, 1) is

analogous.

Suppose A is the conclusion of an application of (hI, Ji, U). Then, the

partition hI, Ji does not define any truth-value of L. By induction hypotheses,

there exist �i,�j ✓ � such that

1. �i ✏ ✓i(B), for all i 2 I

2. �j, ✓j(B) ✏ A, for all j 2 J

Then,

1’. �̄(✓i(B)) = 1, for all i 2 I

Suppose that �̄(A) = 0. By 2.,

2’. �̄(✓j(B)) = 0, for all j 2 J .

The information given by 1’. and 2’. is unobtainable from the initial

truth-values of L. A tuple so defined does not represent any truth-value in L.
Hence, �̄(A) = 1 and � ✏ A. ⌅

Theorem 2.3.2 (Completeness) If � ✏ A, then � ` A.

Proof : Suppose � 0 A. Then there exists �⇤ such that � ✓ �⇤,�⇤ 0 A and

�⇤ [{B} ` A, B /2 �⇤. Define a particular truth-value assignment � for the

set of atoms: �(p) = 1 i↵ p 2 �⇤. The theorem now is reduced to the claim

�̄(B) = 1 i↵ B 2 �⇤.

With this condition we show that �⇤ 2 A, for A /2 �⇤ (�⇤ 0 A).

The proof is by induction on the degree of B. The basic step of the

induction is taken care of by the definition of �. Suppose B is of the form

✓l(F(A
1

, . . . , Ak)).For each 1  r  k, put Ir = {ir : ✓ir(Ar) 2 �⇤} and

Jr = {jr : ✓jr(Ar) /2 �⇤}. Then, hIr, Jri are partitions of {0, 1, . . . , k}. By
assumption,

1. ✓ir(Ar) 2 �⇤, that is, �⇤ ` ✓ir(Ar), for each ir 2 Ir

2. ✓jr(Ar) /2 �⇤, that is, �⇤ [{✓jr(Ar)} ` A, for each jr 2 Jr

If one of those partitions, say hIt, Jti, does not define a truth-value of

L, then by applying (hIt, Jti, U), by 1. and 2., we get that �⇤ ` A, what goes

against our initial supposition. Hence, all partitions as defined above define

truth-values of L.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 16

By the induction hypothesis, �̄(✓ir(Ar)) = 1, for all ir 2 Ir and

�̄(✓jr(Ar)) = 1, for all jr 2 Jr. Consequently, �̄(✓l(F(A
1

, . . . , Ak))) = 1 i↵

✓l(F(A
1

, . . . , Ak)) is of type 1 with respect to the partitions. Hence, we need

to prove that

�̄(✓l(F(A
1

, . . . , Ak))) = 1 i↵ ✓l(F(A
1

, . . . , Ak)) is of type 1 with respect to

the partitions hIr, Jri, for all 1  r  k.

Suppose that ✓l(F(A
1

, . . . , Ak)) 2 �⇤. Then

3. �⇤ ` ✓l(F(A
1

, . . . , Ak))

If ✓l(F(A
1

, . . . , Ak)) were of type 0 with respect to the partitions, then

�⇤ ` A (by 1., 2. and 3.) what is against our assumption. Consequently,

✓l(F(A
1

, . . . , Ak)) is of type 1 with respect to the partitions

Suppose that ✓l(F(A
1

, . . . , Ak)) /2 �⇤. Then

3’. �⇤ [{✓l(F(A
1

, . . . , Ak))} ` A

If ✓l(F(A
1

, . . . , Ak)) were of type 1 with respect to the partitions, then �⇤ ` A

(by 1., 2. and 3’.), what is against our assumption. Consequently, ✓l(F(A
1

,

. . . , Ak)) is of type 0 with respect to the partitions. ⌅

2.3.1
Example: the trivalent logic L3

The truth-value set of the L3 logic is composed of three elements 0, i, 1,

where 0 and i are undesignated values and 1 is a designated value. Hence, we

can define a function t that takes both 0 and i to 0 and 1 to 1. For implication,

the truth-table is as follows

P Q P ! Q

1 1 1

1 i i

1 0 0

i 1 1

i i 1

i 0 i

0 1 1

0 i 1

0 0 1

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 17

A separating formula for L3 can be ✓(P) = ¬P ! P , for when P has

truth-value 0, ✓(P) has truth-value 0 (undesignated) and when P has truth-

value i, ✓(P) has truth-value 1 (designated). In this case, we only need one

separating formula.

Now that we have the function t and the separating formula, we can

reduce the semantic of L3 to a bivalent semantic. Let � be the truth-

value function of L3. Instead of writing �(P ! Q) = 1 when �(P) =

1 and �(Q) = 1, we will write �(P ! Q) = 1 when �(P) = 1, �(✓(P)) =

1, �(Q) = 1 and �(✓(Q)) = 1; instead of writing �(P ! Q) = i when �(P) =

1 and �(Q) = i, we will write �(P ! Q) = 0 when �(P) = 1, �(✓(P)) =

1, �(Q) = 0 and �(✓(Q)) = 1 and so on. Thus, the bivalent truth-table is as

follows

P ✓(P) Q ✓(Q) P ! Q

1 1 1 1 1

1 1 0 1 0

1 1 0 0 0

0 1 1 1 1

0 1 0 1 1

0 1 0 0 0

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

According to the definition of Nmv, the above truth-table yields nine

rules:

P ! Q P ✓(P)

[Q]
...

C ✓(Q)

C
(1)

P ! Q P ✓(P)

[Q]
...

C

[✓(Q)]
...

C

C
(2)

P ! Q

[P]
...

C ✓(P)

[Q]
...

C

[✓(Q)]
...

C

C
(3)

[P ! Q]
...

C P ✓(P) Q ✓(Q)

C
(4)

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 18

[P ! Q]
...

C

[P]
...

C ✓(P) Q ✓(Q)

C
(5)

[P ! Q]
...

C

[P]
...

C ✓(P)

[Q]
...

C ✓(Q)

C
(6)

[P ! Q]
...

C

[P]
...

C

[✓(P)]
...

C Q ✓(Q)

C
(7)

[P ! Q]
...

C

[P]
...

C

[✓(P)]
...

C

[Q]
...

C ✓(Q)

C
(8)

[P ! Q]
...

C

[P]
...

C

[✓(P)]
...

C

[Q]
...

C

[✓(Q)]
...

C

C
(9)

Now, it can happen that the formula P is of the form A ! B, and

then there is need of rules that cope with ✓(A ! B). As the truth-value of

✓(A ! B) depends solely on the truth-value of A ! B, we can construct the

truth-table of A ! B to construct the truth-table of ✓(A ! B).

A ✓(A) B ✓(B) A ! B ✓(A ! B)

1 1 1 1 1 1

1 1 0 1 0 1

1 1 0 0 0 0

0 1 1 1 1 1

0 1 0 1 1 1

0 1 0 0 0 1

0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

The construction of the rules are analogously to what was made above.

We have the following rules:

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 19

[✓(A ! B)]
...

C A ✓(A)

[B]
...

C ✓(B)

C
1’

✓(A ! B) A ✓(A)

[B]
...

C

[✓(B)]
...

C

C
2’

[✓(A ! B)]
...

C

[A]
...

C ✓(A)

[B]
...

C

[✓(B)]
...

C

C
3’

[✓(A ! B)]
...

C A ✓(A) B ✓(B)

C
4’

[✓(A ! B)]
...

C

[A]
...

C ✓(A) B ✓(B)

C
5’

[✓(A ! B)]
...

C

[A]
...

C ✓(A)

[B]
...

C ✓(B)

C
6’

[✓(A ! B)]
...

C

[A]
...

C

[✓(A)]
...

C B ✓(B)

C
7’

[✓(A ! B)]
...

C

[A]
...

C

[✓(A)]
...

C

[B]
...

C ✓(B)

C
8’

[✓(A ! B)]
...

C

[A]
...

C

[✓(A)]
...

C

[B]
...

C

[✓(B)]
...

C

C
9’

Moreover, as the pair h1, 0i does not define any truth-value, we have a

single U -rule:

P

[✓(P)]
...

C

C
U

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 20

As an example of how the system works, we are going to show the proof

of two lemmas of L
3

, viz. A ! (B ! A) and ((A ! B) ! ((B ! C) !
(A ! C))). Because of the size of the proofs, we need to prove separately

sub-derivations of these proofs (and sub-derivations of these sub-derivations).

Whenever we prove a relation ln [X] : � ` C we will say that ⇧n
X is a proof of

C from �.

Lemma 2.3.1 1) l
1

[P] : P ` ✓(P)

2) l
2


P

Q

�
: ✓(P), Q, ✓(Q) ` P ! Q

3) l
3


P

Q

�
: P,Q, ✓(Q) ` P ! Q

4) l
4


Q

P

�
: Q ` P ! Q

5) l
5


Q

P

�
: Q ` ✓(P ! Q)

6) l
6


P

Q

�
: ✓(P), ✓(Q) ` ✓(P ! Q)

7) l
7


Q

P

�
: ✓(Q) ` ✓(P ! Q)

8) l
8


P

Q

�
: P, P ! Q ` Q

9) l
9


P

Q

�
: P, ✓(P ! Q) ` ✓(Q)

10) l
10


P

Q

�
: ✓(P), P ! Q ` ✓(Q)

11) l
11

"
P

Q

R

#
: P, P ! Q,Q ! R ` P ! R

12) l
12

"
P

Q

R

#
: ✓(P), P ! Q,Q ! R ` P ! R

13) l
13

"
P

Q

R

#
: ✓(R), P ! Q,Q ! R ` P ! R

14) l
14

"
P

Q

R

#
: P ! Q,Q ! R ` P ! R

15) l
15

"
P

Q

R

#
: P ! Q, ✓(Q ! R) ` ✓(P ! R)

16) l
16

"
P

Q

R

#
: ✓(P ! Q), Q ! R ` ✓(P ! R)

Proof :

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 21

1)

P [✓(P)]U

✓(P)
U

2)

[P ! Q]5

[P ! Q]4 [P]5 ✓(P) Q ✓(Q)

P ! Q
4

✓(P) Q ✓(Q)

P ! Q
5

3)

[✓(P)]U Q ✓(Q)

⇧2

P ! Q P

P ! Q
U

4)

Q

[P ! Q]7

[P]7 Q [✓(Q)]U

⇧3

P ! Q

[✓(P)]7 Q [✓(Q)]U

⇧2

P ! Q Q [✓(Q)]U

P ! Q 7

P ! Q
U

5)

Q

⇧4

Q,P

P ! Q [✓(P ! Q)]U

✓(P ! Q)
U

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 22

6)

[✓(P ! Q)]6
0

[✓(P ! Q)]1
0

[P]6
0
✓(P)

[Q]1
0

⇧5

Q,P

✓(P ! Q) ✓(Q)

✓(P ! Q)
1’

✓(P)

[Q]6
0

⇧5

Q,P

✓(P ! Q) ✓(Q)

✓(P ! Q)
60

7)

[✓(P ! Q)]8
0

[P]8
0

[✓(P)]U ✓(Q)

⇧6

✓(P ! Q)

✓(P ! Q)
U

[✓(P)]8
0
✓(Q)

⇧6

✓(P ! Q)

[Q]8
0

⇧4

Q,P

P ! Q ✓(Q)

✓(P ! Q)
80

8)

P

P ! Q P [✓(P)]U

P ! Q P [✓(P)]U

[Q]1 [✓(Q)]3

Q
1

P ! Q P [✓(P)]U

[Q]1 [✓(Q)]U

Q
1
[Q]3

Q
U

Q
3

Q
U

9)

P

✓(P ! Q) P [✓(P)]U
0

[Q]2
0
[✓(Q)]U

✓(Q)
U
[✓(Q)]2

0

✓(Q)
2’

✓(Q)
U 0

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 23

10)

P ! Q

P ! Q [P]3

⇧8

Q [✓(Q)]U

✓(Q)
U
✓(P)

[Q]3 [✓(Q)]U

✓(Q)
U

[✓(Q)]3

✓(Q)
3

11) Easily derived from l
8


P

Q

�
, l

8


Q

R

�
and l

4


R

P

�

12)

[P ! R]6

[P]6

P ! Q Q ! R

⇧11

P ! R ✓(P)

[R]6

⇧4

R,P

P ! R

✓(P) P ! Q

⇧10

P,Q

✓(Q) Q ! R

⇧10

Q,R

✓(R)

P ! R
6

13)

[P ! R]8

[P]8

P ! Q Q ! R

⇧11

P ! R

[✓(P)]8

P ! Q Q ! R

⇧12

P ! R

[R]8

⇧4

R,P

P ! R ✓(R)

P ! R
8

14)

[P ! R]9

[P]9

P ! Q Q ! R

⇧11

P ! R

[✓(P)]9

P ! Q Q ! R

⇧12

P ! R

[R]9

⇧4

R,P

P ! R

[✓(R)]9

P ! Q Q ! R

⇧13

P ! R

P ! R
9

15) e 16) Similar to what was already shown.

⌅

Theorem 1 L
1

: A ! (B ! A)

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 24

Proof :

– l↵ : A ` A ! (B ! A) is the composition of l
4


A

B

�
and l

4


B ! A

A

�

– l� : ✓(A), ✓(B ! A) ` A ! (B ! A)

[A ! (B ! A)]

7

[A]

7

⇧↵

A ! (B ! A) ✓(A)

[B ! A]

7

⇧

4

B!A,A

A ! (B ! A) ✓(B ! A)

A ! (B ! A)

7

– l� : ✓(B ! A) ` A ! (B ! A)

[A ! (B ! A)]

8

[A]

8

⇧↵

A ! (B ! A)

[✓(A)]

8

✓(B ! A)

⇧�

A ! (B ! A)

[B ! A]

8

⇧

4

B!A,A

A ! (B ! A) ✓(B ! A)

A ! (B ! A)

8

– l� : ✓(A) ` A ! (B ! A) is the composition of l
6


A

B

�
and l�.

Finally,

[A ! (B ! A)]

8

[A]

8

⇧↵

A ! (B ! A)

[✓(A)]

8

⇧�

A ! (B ! A)

[B ! A]

8

⇧

4

B!A,A

A ! (B ! A)

✓(B ! A)

⇧�

A ! (B ! A)

A ! (B ! A)

8

⌅

Theorem 2 L
2

: (A ! B) ! ((B ! C) ! (A ! C))

Proof : We put ' = (B ! C) ! (A ! C)

– l↵ : A ! B,B ! C ` (B ! C) ! (A ! C) is the composition of

 l
14

"
A

B

C

#
and l

4


A ! C

B ! C

�
.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 25

– l� : A ! B, ✓(B ! C) ` (B ! C) ! (A ! C)

[']

6

A ! B [B ! C]

6

⇧↵

' ✓(B ! C)

[A ! C]

6

⇧

4

A!C,B!C

'

A ! B ✓(B ! C)

⇧

15

A,B,C

✓(A ! C)

'

6

– l� : A ! B, ✓(A ! C) ` (B ! C) ! (A ! C)

[']

8

A ! B [B ! C]

8

⇧↵

'

A ! B [✓(B ! C)]

8

⇧�

'

[A ! C]

8

⇧

4

A!C,B!C

' ✓(A ! C)

'

8

– l� : A ! B ` (A ! B) ! ((B ! C) ! (A ! C))

[']

9

A ! B [B ! C]

9

⇧↵

'

A ! B [✓(B ! C)]

9

⇧�

'

[A ! C]

9

⇧

4

A!C,B!C

'

A ! B [✓(A ! C)]

9

⇧�

'

'

⇧

4

',A!B

(A ! B) ! '

9

– l✏ : ✓(A ! B), B ! C ` ✓((B ! C) ! (A ! C)) is the composition of

 l
16

"
A

B

C

#
and l

7


A ! C

B ! C

�
.

– l⇣ : ✓(A ! B), ✓(B ! C) ` ✓((B ! C) ! (A ! C))

[✓(')]

3

0

✓(A ! B) [B ! C]

3

0

⇧✏

✓(') ✓(B ! C)

[A ! C]

3

0

⇧

5

A!C,B!C

✓(')

[✓(A ! C)]

3

0

⇧�

✓(')

✓(')

3

0

– l⌘ : ✓(A ! B) ` ✓((B ! C) ! (A ! C))

[✓(')]

9

0

✓(A ! B) [B ! C]

9

0

⇧✏

✓(')

✓(A ! B) [✓(B ! C)

9

0

⇧⇣

✓(')

[A ! C]

9

0

⇧

5

A!C,B!C

✓(')

[✓(A ! C)]

9

0

⇧�

✓(')

✓(')

9

0

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 26

– l◆ : ✓(A ! B) ` (A ! B) ! ((B ! C) ! (A ! C))

[(A ! B) ! ']

6

[A ! B]

6

⇧�

(A ! B) ! ' ✓(A ! B)

[']

6

⇧

4

A!B,'

(A ! B) ! '

✓(A ! B)

⇧⌘

(A ! B) ! '

(A ! B) ! '

6

– l : ✓(') ` (A ! B) ! ((B ! C) ! (A ! C))

[(A ! B) ! ']

8

[A ! B]

8

⇧�

(A ! B) ! '

[✓(A ! B)]

8

⇧◆

(A ! B) ! '

[']

8

⇧

4

A!B,'

(A ! B) ! ' ✓(')

(A ! B) ! '

8

Finally,

[(A ! B) ! ']

9

[A ! B]

9

⇧�

(A ! B) ! '

[✓(A ! B)]

9

⇧◆

(A ! B) ! '

[']

9

⇧

4

A!B,'

(A ! B) ! '

[✓(')]

9

⇧

(A ! B) ! '

(A ! B) ! '

9

⌅

2.4
Normalization

In this section we prove the normalization of Nmv. We start with some

basic notions.

A maximal segment in a derivation is a sequence A
1

, . . . , An of occur-

rences of formulas of the same form such that A
1

is the conclusion of an

application of a rule of type 1 and An is the major premiss of an application

of a rule of type 0.

A maximal formula is a maximal segment whose length is 1.

The degree of a formula A, G(A), is the number of occurrences in A of

logical symbols. The degree of a segment is the degree of the formula that

occurs in the segment.

The degree of a derivation ⇧, G(⇧), is the highest degree of a maximal

segment in ⇧. If ⇧ does not have maximal segments, then G(⇧) = 0.

The premiss ✓l(F(A
1

, . . . , Ak)) of a rule of type 0 and the premises ✓i(P)

of a U -rule are called major premises. The premises C of a rule of type 0, of

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 27

a U -rule and of a rule of type 1 are called c-premises. The other premises are

called minor premises.

The premiss ✓l(F(A
1

, . . . , Ak)) discharged by a rule of type 1 is called

major discharged premiss. The other premises discharged by a rule of type 1

are called minor discharged premises.

A branch of a derivation ⇧ is a sequence A
1

, . . . , An of formula occur-

rences in ⇧ such that

1. A
1

is a top-formula in ⇧;

2. Ai+1

stands immediately above Ai;

3. An is either the first formula occurrence in the sequence that is a minor

premise or the end-formula of ⇧ if there is no such minor premise in the

sequence.

The order of a branch is defined as follows: a branch that ends with the

end-formula of the derivation has order 0. A branch that ends with a minor

premise is assigned the order n+ 1 if the side formula that is a major premise

belongs to a branch of order n.

A critical derivation in Nmv is a derivation ⇧ such that, if G(⇧) = g,

then the last inference of ⇧ has a maximal premiss with degree g, and for every

sub-derivation ⌃ of ⇧, G(⌃) < G(⇧).

A derivation ⇧ is in U-form if the major premise of any application of

a rule of type 0 in ⇧ is not the conclusion of an application of U -rule and the

conclusion of any application of a rule of type 1 in ⇧ is not a major premise

of an application of U -rule.

A simplified derivation is a derivation where no major premiss of a rule

of type 1 is a major discharged premiss of a rule of type 1.

A derivation is normal if it does not have maximal segments and it is a

simplified derivation in U -form.

Lemma 2.4.1 Every derivation ⇧ can be transformed into a derivation in

U-form.

Proof : Let hIr, Jri, 0  r  k be a partition of s+1 and hI 0a, J 0
ai be a partition

that does not represent any truth-value.

Case 1: The conclusion of a U -rule is the major premiss of a rule of type 0.

Then ⇧ is of the form

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 28

⇧i0a

✓i
0
a(Ba)

[✓j
0
a(Ba)]U

⇧j0a

✓l(F(A
1

, . . . , Ak))
U

✓l(F(A
1

, . . . , Ak))

⇧ir

✓ir(Ar)

[✓jr(Ar)]0

⇧jr

C
0

C

⇧ can be transformed into a derivation of the form

⇧i0a

✓i
0
a(Ba)

[✓j
0
t(Bt)]U

⇧j0t

✓l(F(A
1

, . . . , Ak))

⇧ir

✓ir(Ar)

[✓jr(Ar)]0

⇧jr

C
0, for each j0t 2 J 0

a
C

U
C

Case 2: A major premiss of a U -rule is the conclusion of a rule of type 1.

Then ⇧ is of the form

[✓l(F(A
1

, . . . , Ak))]1

⇧l

C

⇧ir

✓ir(Br)

[✓jr(Br)]1

⇧jr

C
1

C

⇧i0a

✓i
0
a(Ba)

[✓j
0
a(Ba)]U

⇧j0a

D
U

D

where C is of the form ✓i
0
t(At), for some i0t 2 I 0a. ⇧ can be transformed

into a derivation of the form

[✓l(F(A
1

, . . . , Ak))]1

⇧l

C

⇧i0a

✓i
0
a(Ba)

[✓j
0
a(Ba)]U

⇧j0a

D
U

D

⇧ir

✓ir(Br)

[✓jt(Bt)]1

 jt

D
1

D

where jt ⌘
✓jt(Bt)

⇧jt

C

⇧i0a

✓i
0
a(Ba)

[✓j
0
a(Ba)]U

⇧j0a

D
U

D

, for all jt 2 Jr

⌅

Lemma 2.4.2 Every derivation can be transformed into a simplified deriva-

tion.

Proof : Let ⇧ be a derivation of the form

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 29

[✓l(F(A
1

, . . . , Ak))]1
⇧ir

✓ir(Ar)

[✓jr(Ar)]0

⇧jr

C
0

C

⇧i0r

✓i
0
r(Ar)

[✓j
0
r(Ar)]1

⇧j0r

C
1

C

As the rules for ✓l(F(A
1

, . . . , Ak)) are defined by the partitions of

{0, 1, . . . , s}, we have that one of the following cases hold:

Case 1: there exists a formula ✓uv(Av), uv 2 Ir, of the same form of a

formula discharged by a rule of type 1. Then ⇧ can be transformed into

a derivation of the form

⇧uv

(✓uv(Av))

⇧j0r

C

.

Case 2: there exists a formula ✓uv(Av), uv 2 I 0r, of the same form of a

formula discharged by a rule of type 0. Then ⇧ can be transformed into

a derivation of the form

⇧uv

(✓uv(Av))

⇧jr

C

.

⌅
Note that if a simplified derivation is transformed into a derivation ⇧ in

U -form, ⇧ remains a simplified derivation.

Now we are going to prove the lemma known as Critical Lemma, which

is used to prove the Normalization Theorem.

Lemma 2.4.3 (Critical Lemma) If ⇧ is a critical simplified derivation in U-

form of C from �, then ⇧ can be transformed into a derivation ⇧0 such that

G(⇧0) < G(⇧).

Proof : Let ⇧ be a simplified critical derivation in U -form of C from �. The

proof is by induction on the pair h#G(⇧), `(⇧)i, where #G(⇧) is the number

of formulas in the segment of degree G(⇧) in ⇧ and `(⇧) is the length of ⇧.

Suppose ⇧ has one application of (hIr, Jri, 1) followed by (hI 0r, J 0
ri, 0),

where hIr, Jri and hI 0r, J 0
ri are partitions of {0, 1, . . . , s} with respect to the

formula Ar. ⇧ has the form:

[✓l(F(A
1

, . . . , Ak))]1

⇧l

✓l
0
(F0(B

1

, . . . , Bk0))

⇧ir

✓ir(Ar)

[✓jr(Ar)]1

⇧jr

✓l
0
(F0(B

1

, . . . , Bk0))
1

✓l
0
(F0(B

1

, . . . , Bk0))

⇧0
i0r

✓i
0
r(Br)

[✓j
0
r(Br)]0

⇧0
j0r

C
0

C

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 30

We have three cases to consider:

Case 1: There exists a mn 2 Ir and m0
n0 2 J 0

r such that ✓mn(An) = ✓m
0
n0 (Bn0)

in ⇧. Then ⇧ can be transformed into a derivation ⇧0 of the form

⇧mn

(✓mn(An))

⇧0
m0n0

C

As ✓mn(An) is a sub-formula of ✓l(F(A
1

, . . . , Ak)), G(✓mn(An))¡ G(✓l(

F(A
1

, . . . , Ak))) and max{G(⇧mn), G(⇧m0n0)} < G(✓l(F(A
1

, . . . , Ak))),

for ⇧ is a critical derivation. Thus, G(⇧0) < G(⇧).

Case 2: There exists a mn 2 Jr and m0
n0 2 I 0r such that ✓mn(An) = ✓m

0
n0 (Bn0)

in ⇧. Then ⇧ can be transformed into a simplified derivation in U -form

⇧] of the form

⇧m0n0

(✓m
0
n0 (An0))

⇧mn

✓l
0
(F0(B

1

, . . . , Bk0))

⇧i0r

✓i
0
r(Br)

[✓j
0
r(Br)]0

⇧j0r

C
0

C

If ✓l
0
(F0(B

1

, . . . , Bk0)) is a maximal formula in ⇧], then #G(⇧]) <

#G(⇧) and, by induction hypothesis, ⇧] can be transformed into a

derivation ⇧0 such that G(⇧0) < G(⇧]) = G(⇧). If ✓l
0
(F0(B

1

, . . . , Bk0))

is not a maximal formula in ⇧], then ⇧0 = ⇧] and G(⇧0) < G(⇧).

Case 3: Neither the conditions of cases 1 and 2 hold. Then ⇧ can be

transformed into a derivation ⇧] of the form

[✓l(F(A
1

, . . . , Ak))]1

1

C

⇧ir

✓ir(Ar)

[✓jr(Ar)]1

 jr

C
1

C

where
1

=

✓l(F(A
1

, . . . , Ak))

⇧l

✓l
0
(F0(B

1

, . . . , Bk0))

⇧i0r

✓i
0
r(Br)

[✓j
0
r(Br)]0

⇧j0r

C
0

C

and jr =

✓jr(Ar)

⇧jr

✓l
0
(F0(B

1

, . . . , Bk0))

⇧i0r

✓i
0
r(Br)

[✓j
0
r(Br)]0

⇧j0r

C
0

C

, for all jr 2 Jr.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 31

It is easy to see that no new maximal formulas are created by this

transformation and that the sub-derivations
1

and jr, jr 2 Jr, that are

not normal, are critical, simplified and in U -form and have degree G(⇧).

As these critical derivations are smaller than ⇧, by induction hypothesis

they can be transformed into derivations ⇤
1

and ⇤jr, respectively, such

that G(⇤
1

) < G(
1

) and G(⇤jr) < G(jr). By substituting each

occurrence of the critical sub-derivations
1

and jr in ⇧] by ⇤
1

and ⇤jr,

respectively, we achieve a derivation ⇧0. If ⇧0 is a simplified derivation in

U -form, then ⇧0 is the wanted derivation. If not, we just need to apply

lemmas 2.4.1 and 2.4.2 to achieve the wanted derivation.

⌅

Theorem 1 (Normalization theorem) Every derivation of C from � can be

reduced to a normal derivation of C from �.

Proof : Let ⇧ be a derivation of C from �. By lemma 2.4.2, ⇧ can be

transformed into a simplified derivation ⇧0. By lemma 2.4.1, ⇧0 can be

transformed into a simplified derivation ⇧
0

in U -form. The proof of this

Normalization theorem is by induction on the pair h`(⇧),#G(⇧)i. Choose
a critical sub-derivation ⌃ such that G(⌃) = G(⇧). By the critical lemma

(lemma 2.4.3), ⌃ can be transformed into a derivation ⌃
0

such that G(⌃
0

) <

G(⌃). Let ⇧
1

be the result of substituting ⌃0 for ⌃ in ⇧
0

and let A be the

end-formula of ⌃. Note that it does not have an e↵ect on maximal segments

of degree G(⇧) except, possibly, for segments containing the formula A. We

have that, either A is not a maximal premise, or it is, in which case it was

already a maximal premiss in ⇧
0

and G(A) < G(⇧
0

). Hence, G(⇧
1

) < G(⇧
0

)

and, by induction hypothesis, ⇧
1

can be transformed into a normal derivation

of C from �. ⌅

2.5
Some Further Results

As consequence of the Normalization Theorem, we have the usual results.

The first result states that, in each branch of a derivation, it cannot

happen that a rule of type 0 occurs after a rule of type 1.

Corollary 2.5.1 Let ⇧ be a normal derivation in Nmv and let � = A
1

, . . . , An

be a sequence of formulas in ⇧. Then, there exist formula occurrences Ai, . . . Aj

in �, 1  i, j  n, called the minimum segment which separates � into the

following (possibly empty) parts:

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 32

– a part called the 0-part of �, where each Ar, r < i, is a major premiss

of a rule of type 0 and contains Ar+1

as a sub-formula;

– Ai, if i 6= n, is a premiss of a rule of type 1 or of a U-rule;

– a part called the U -part of �, where each As, i < s < j, is a major

premiss of a U-rule and has the same form that As+1

;

– Aj, if j 6= n, is a premiss of a rule of type 1;

– and a part called the 1-part of �, where each At, j < t < n, is a premiss

of a rule of type 1 and is a sub-formula of At+1

.

The sub-formula principle states that every formula that occurs in a

derivation has the same form of either a sub-formula of a top-formula or of the

conclusion. As with natural deduction rule for the elimination of disjunction,

this sub-formula structure of normal derivations can be lost with rules of type

0 and in a similar way those derivations can be transformed with the following

permutation:

⇧l

✓l(F(A
1

, . . . , Ak))

⇧ir

✓ir(Ar)

[✓jr(Ar)]0

⇧jr

✓l
0
(F0(B

1

, . . . , B0
k)) 0

✓l
0
(F0(B

1

, . . . , B0
k))

⇧i0r

✓i
0
r(Br)

[✓j
0
r(Br)]0

0

⇧j0r

C
0’C

B

⇧l

✓l(F(A
1

, . . . , Ak))

⇧ir

✓ir(Ar)

[✓jt(At)]0

⇧jt

✓l
0
(F0(B

1

, . . . , B0
k))

⇧i0r

✓i
0
r(Br)

[✓j
0
r(Br)]0

0

⇧j0r

C
0’C

0
C

for each jt 2 Jr.

Corollary 2.5.2 (Sub-formula Principle) Every formula occurrence in a nor-

mal derivation of C from � is a sub-formula of a formula in � [{C}.

Proof : Let ⇧ be a normal derivation of C from � and � = A
1

, . . . , An be a

branch in ⇧ of order p. From corollary 2.5.1, we have that every formula in �

is a sub-formula of either A
1

or An. Hence, we need to prove that A
1

and An

are sub-formulas of � [{C}.
We have that either A

1

belongs to � or A
1

was discharged by an

application r of

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 33

– a rule of type 0, in which case A
1

is a sub-formula of the major premiss

M of r. We have that either M 2 � or M is a minor discharged premise,

in which case M is a sub-formula of a formula that belongs to a branch

of order less than p.

– a U -rule, in which case A
1

is a sub-formula of the minor premises of r,

which belongs to a branch of order less than p,

– a rule of type 1, in which case A
1

is either a minor premiss of a rule of

type 0 or of a U -rule, or A
1

belongs to the 1-part of the derivation and

is a sub-formula of An.

Concerning An, we have that either An is the conclusion of ⇧ or An is

a minor premiss of an application r of a rule of type 0, in which case An is

a sub-formula of the major premiss of r, which belongs to a branch of order

p� 1.

⌅
A deduction system S is consistent if there exists a formula � such that

0S �. The next corollary states that the system here presented is consistent.

Corollary 2.5.3 Nmv is consistent.

Proof : Suppose that Nmv is not consistent and let � be a formula of L.
Hence, there exists a normal proof ⇧ of �. As it holds for any �, it holds for

� = B, B an atomic formula. By 2.5.1, we have that B is either the conclusion

of a rule of type 0 or of a U -rule. In either case, it is easy to see that ⇧ has at

least one hypothesis that was not discharged. Therefore, ⇧ is not a proof. ⌅

2.6
Related Works

In the literature of deduction systems for non-classical logics and exten-

sions of classical logics, we can find two main classes of deductive systems:

internal or external based. The first one deals only with formulas as they are

defined by the logic itself. The second type involves the manipulation of non-

logical elements, such as signed or labeled formulas and constraints marks and

controls. The use of Kripke worlds indexing in tableaux for modal logics is

an example of externally based deductive system, while the sequent calculus

for the same modal logic can be an example of an internally based one. We

believe that the fewer external signs and controls a deductive system has, the

better it is from the proof-theoretical point of view. Of course, when imple-

menting a theorem prover, many more controls and marks are needed to take

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 34

care of proving strategies and e�ciency. We should not mix these implement-

ation mechanisms with marks and labels needed to ensure completeness and

soundness of the ‘pure’ deductive system.

Our approach is internally based, since the natural deduction system

obtained is defined using only the original language of the logic. In the sequel

we comment other approaches to obtain deductive systems for finite-valued

logics.

In (1) it is reported how to obtain complete and sound sequent calculi

for the finite-valued Lukasiewicz logics. The sequent calculus deals with multi-

sequents reminding a hypersequent approach. Considering the Lukasiewicz

logic Ln+1

of {0, 1

n
, . . . , n�1

n
, 1}, n > 1, truth-values, a sequent for Ln+1

is

of the form

�
1

` �
1

|�
2

` �
2

| . . . |�n ` �n

where each ` is related to the respective truth-value in Ln.

This form of the sequents works because of the well-known fact that

states that ‘the truth of many-valued formulas in Ln+1

can be reduced to the

truth of n classical logic formulas’. That is, for each formula � of Ln+1

, there

is a n-tuple �1, . . . ,�n of bi-valued classical formulas stating that each �i takes
i
n
as truth-value. This is called boolean decomposition of Ln+1

. In fact, for

each n, there are n mapping functions Bi
n, i = 1, n, that maps each � to its

corresponding �i.

The mapping from a usual sequent � ` � to the form above can be

obtained by means of the Bi
n. The sequent rules are, in this way, localized by

the respective truth value. For example, when applying a ¬-right rule to a

premiss having �i, A ` �i as its i-th component, we obtain �n�i ` �n�i,¬A.
In this sequent calculus, a sequent is valid, i↵, for every interpretation

(valuation) v for Ln, there is a component �i ` �i, such that v(
V

�2�i
Bi

n(�)) 
v(
W

�2�i
Bi

n(�)) holds. There is a cut-rule for each pair i, j with i  j. The

elimination of the cut is not proved in the article. However, the article shows

that the cut rule is not needed by proving completeness without taking the cut

rule into account. Comparing with our approach, it does not provide a natural

deduction system for the Lukasiewicz logics and the approach is restricted to

logics satisfying boolean decompositions like Lukasiewicz logics, that is, there

must be formulas Bi
n, i = 1, n and a way to express i  j in boolean terms.

Finally, the similarity to hypersequents does not allow a simple way to obtain

a natural deduction system from the sequent calculus.

In (5) Baaz, Fermüller and Zach propose a systematic way to obtain

natural deduction systems for arbitrary finite-valued first order logics. The

main idea behind their strategy is as follows:

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 35

1. Take the truth-tables for the many-valued logic under consideration.

2. Extract from these truth-tables a sequent calculus.

3. Show that the sequent calculus is sound and complete with respect to

the intended semantics.

4. Cut-elimination follows from the completeness proof (method of reduc-

tion trees used by Schütte).

5. Extract from the sequent calculus rules introduction and elimination

rules that define a natural deduction system for the same logic.

6. Soundness and completeness of the natural deduction system is a nat-

ural consequence of soundness and completeness for the corresponding

sequent calculus.

7. The normal form theorem is obtained through cut-elimination for the

sequent calculus: take a derivation ⇧ of � ` � in the natural deduction

system. By soundness, there is a cut-free sequent calculus proof ⇧0 of

�) �. The proof ⇧0 can now be translated into a normal derivation ⇧?

of � ` � in the natural deduction system.

The main di↵erences between this result and ours are:

– We do not use sequent calculus as a step to produce natural deduction

systems for many-valued logics.

– Soundness and completeness are proved directly for the natural deduction

systems.

– The natural deduction systems defined in (5) are multiple conclusion

systems, while our natural deduction systems are single conclusion

systems.

– We prove the normalization theorem directly for our systems and not

just a normal form theorem based on cut-free proofs in sequent calculus.

The bivalent representation used here and presented in (20, 6), was used

to define tableaux systems for arbitrary finite-valued logics. After reducing the

many-valued semantics of a truth-table to a bivalent one with the help of the

separating formulas, the idea to define the rules is very simple: the rules can

be “read” straight from the truth-table. For instance, in (6), one of the rules

to handle L
3

implication is

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 36

F (A ! B)

T (A)

T (✓(A))

F (B)

T (✓(B))

T (A)

T (✓(A))

F (B)

F (✓(B))

F (A)

T (✓(A))

F (B)

F (✓(B))
The reader just needs to compare this rule with the three lines in which

the truth-value of A ! B is 0 (which generates three elimination rules in

Nmv) on the bivalent truth-table of implication presented in subsection 2.3.1

to understand how it was defined. Besides the rules for introduction and

elimination of the operators, Nmv has rules (the U -rules) defined by tuples

that do not define any of the truth-values in question. In (6), these tuples

define closure rules for the tableaux.

2.7
Conclusion

The main results of this chapter are:

– A systematic way to extract natural deduction systems for finitely-many-

valued logics from truth-tables;

– A proof that the systems so defined are sound and complete with respect

to the intended semantics;

– A proof that the systems so defined satisfies the normalization theorem.

Our approach is based on a combination of techniques introduced by

Segerberg in (19) and the method of internal decoding of binary prints defined

in (6). It’s worth mentioning again that the proof-theoretical analysis is carried

out in a very systematic way directly for natural deduction without any

resource to auxiliary systems.

A future work we would like to mention is the improvement of the

complexity of the natural deduction systems. For example, in the (6, 20) we

find a method to reduce both the number of rules and the number of premises

in each rule (when possible). We believe these methods can be used with our

approach. For example, according to the method presented in (6), the rules for

elimination of the L
3

implication presented in subsection 2.3.1 (rules 1, 2 and

3) can be replaced by the following two rules:

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 37

P ! Q ✓(P)

[Q]
...
C

C
P ! Q ✓(P)

[✓(Q)]
...
C

C

In the next chapter we extend the result shown here to non-deterministic

finite-valued logics.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

