
4
Correspondence between normal Natural Deduction and cut-
free Sequent Calculus

4.1
Introduction

Logic has a strong syntactical and deductive tradition, semantics is

relatively new in logic. From the model-theoretic point of view there might

be many approaches to provide semantics. Algebras, categories and Tarski-

based semantics are some examples. There is also proof-theoretical semantics.

The Curry-Howard isomorphism can be seen as one of the most well-known

representatives of this kind of semantics. Categorical models can be also

considered as representants of this proof-theoretical approach. However, even

for the most well-known propositional logics, proof-theoretical semantics faces

some problems. Natural Deduction and Sequent Calculus are mostly taken

into account when discussing such problems. One of the points that deserve

special attention is the (potential?) isomorphism between both systems. When

considering normal and cut-free proofs, the literature has reported some

problems (see next section).

This chapter and the next are dedicated to the definition of isomorphic

translations between Natural Deduction and Sequent Calculus. In this chapter,

we deal only with translations between normal and cut-free derivations,

showing that these translations are in a one-to-one correspondence.

In next chapter we define translations between any derivations and not

only normal and cut-free ones. With isomorphism, “cut-free proofs in Sequent

Calculus and normal proofs in Natural Deduction became mere notational

variants of one and the same proof” (15).

4.2
Motivation

In the first part, we extended Segeberg’s general completeness proof for

propositional logic to finitely-valued propositional logics (19).

For this purpose, we followed Segeberg’s original idea of defining a natural

deductive system whose rules correspond to rows of truth-tables, but instead

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 45

of having n types of rules (one for each truth-value), we use a bivalent

representation of many-valued truth-tables that makes use of a technique

defined by Caleiro and João Marcos (6).

Although the idea is quite simple, it enables us to find a Natural De-

duction system for any finite-valued propositional logic. However, the system

defined has so many rules it might be laborious to work with it. We believe that

a Sequent Calculus system defined in a similar way would be more intuitive.

This idea made us think about translations between Sequent Calculus

and Natural Deduction. Since the firsts definitions of Natural Deduction and

Sequent Calculus systems in 1934, translation between the system were defined

preserving conclusion and hypothesis. These translations do not preserve

normal and cut-free derivations. For example:

Gentzen In the same paper (8) in which Gentzen defined the firsts systems

of Natural Deduction (NK and NJ) and Sequent Calculus (LK and

LJ) for predicate logic, Gentzen also showed that these systems are

equivalent. The translations defined in order to show the equivalence map

normal Natural Deduction derivations into Sequent Calculus derivations

with cut.

The systems as defined by Gentzen are not isomorphic. There is, for

instance, only one normal NJ -derivation of (A^B) ! (A_B) but two

cut-free LJ -derivations. Besides that, as interchange and contraction can

be applied at any step of a derivation, there may be a large number of

LJ -derivations that is the image of the same NJ -derivation. So, one

of the systems or both would have to me modified, in some extent, to

achieve isomorphism.

Zucker In (21), Zucker relates cut-elimination with reduction, but only for

the fragment {^,!, 8,?} of intuitionistic predicate logic. He presents

an example of a non-terminating and non-repeating reduction sequence

of the Sequent Calculus if disjunction is added to the system. The

translation defined between normal and cut-free derivations is not an

isomorphism.

In Zucker’s Sequent Calculus’s system S, the formulas in the antecedent

of a sequent form a set, and not a sequence as in LJ and LK. This

means we do not need to worry about exchange and thinning rules. Also,

the premisses are indexed. In Natural Deduction, more than one formula

of the same form can be discharged in the application of a single rule.

The idea of the indexed formulas in S is that, in a transformation, all

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 46

the formulas discharged in a single rule in Natural Deduction would be

mapped to the same index in S (and conversely).

The premisses of Zucker’s Natural Deduction are also indexed, but those

indices are not part of the formal system, they are used only in the

metalevel to facilitate the definition of the mapping between the systems.

Reducing a derivation in Natural Deduction means that the resulting

derivation is either normal or the complexity of at least one of its

maximum formulas is reduced. However, conversions in Sequent Calculus

may only mean the permutation of a cut application one step up. With

this in mind, it is easy to see that reduction sequences in Sequent Calculus

are usually larger than reduction sequences in Natural Deduction. To deal

with this situation, Zucker defined an equivalence that comprises these

permutative conversions.

Pottinger (17), improved Zucker’s method by simplifying it and extend-

ing it to the full intuitionistic propositional logic.

Danos, Joinet and Schellinx Danos, Joinet and Schellinx (7) have an iso-

morphism between Sequent Calculus and Natural Deduction passing

through Linear Logic.

Negri and von Plato Negri and von Plato’s translation defined in (15)

is between Sequent Calculus with independent contexts and Natural

Deduction in Sequent Calculus style with general elimination rules. They

show that weakening can be related to vacuous discharge of assumptions

and that contraction can be related to multiple discharge.

The translation takes into account only Sequent Calculus derivations in

which the principal formulas in weakening and contraction are used, i.e.,

they are the principal formulas of a left rule. This means that, for instace,

if there exists a derivation of A from � in Sequent Calculus, a derivation

of A from �, B, where B /2 �, has no equivalence in Natural Deduction.

To give an example of a derivation whose translation as defined in (15)

does not work, let us take the implication A ! (B ! (B ! (A !
B))). The derivation of this implication in Sequent Calculus has three

applications of the weakening rule, which can be applied in di↵erent levels

of the derivations. For example, with the notation used in (15):

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 47

B) B
Wk

A,B) B
Wk

A,A,B) B
Wk

A,A,B,B) B
R �

A,B,B) A � B
R �

A,B) B � (A � B)
R �

A) B � (B � (A � B))
R �) A � (B � (B � (A � B)))

B) B
Wk

A,B) B
R �

B) A � B
R �) B � (A � B)
Wk

B) B � (A � B)
R �) B � (B � (A � B))
Wk

A) B � (B � (A � B))
R �) A � (B � (B � (A � B)))

Accordin to the translation defined in (15), the derivation on the left side

has no correspondent in Natural Deduction. and the derivation on the

right side corresponds to the following derivation in Natural Deduction:
2.

[B]
I �, 1.

A � B
I �, 2.

B ! (A � B)
I �, 3.

B � (B ! (A � B))
I �, 4.

A � (B � (B ! (A � B)))

where 1., 3., and 4., are “ghost” labels that correspond to vacuous

discharge. In the systems we are going to work with there is only one

possible (normal/cut-free) derivation of A ! (B ! (B ! (A ! B)))

in Sequent Calculus and in Natural Deduction (see section 4.5). The

translations defined in this chapter work for every cut-free derivation in

Sequent Calculus and every normal derivation in Natural Deduction.

Focuses proofs Nigam and Miller (16) showed that di↵erent proof systems,

including Natural Deduction and Sequent Calculus, have the same pro-

vable sets of formulas by showing that each system can be encoded into

a Focused Linear Logic system. In (10), Henriksen showed that Linear

Logic is not needed and showed a similar result from that of (16) by

encoding the systems into a focused intuitionistic system. Negri and

von Plato (15) showed the relation between structural rules in Sequent

Calculus and discharge of formulas in Natural Deduction.

4.3
Sequent Calculus and Natural Deduction

There are propositions with more possible derivations in Sequent Calcu-

lus than in Natural Deduction. For instance, we have two possible derivations

for the proposition (A^B) ! (A_C) in the Sequent Calculus system defined

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 48

in (9):

A ` A R1_
A ` A _ C L1^

A ^ B ` A _ C R !` (A ^ B) ! (A _ C)

A ` A L1^
A ^B ` A R1_

A ^B ` A _ C R !` (A ^ B) ! (A _ C)

and only one in the Natural Deduction system defined in (18):

(1)

A&B
A

A _ C
(1)

(A&B) ! (A _ C)

Thus, to define an isomorphism, we need to choose a more restricted

Sequent Calculus and/or a more liberal Natural Deduction system.

4.3.1
Sequent Calculus

For the Sequent Calculus, we decided to work with the stoup-based

system LJT. LJT is the implicational fragment of LKT which was first

introduced in Joinet’s thesis (13). In fact, the system introduced by Joinet

is a slight di↵erent version of LJT, called ILU to stress that this fragment of

LKT could also be seen as the intuitionistic fragment of Girard’s LU.

In (11), Herbelin defined an extension of the usual �-calculus called

�-calculus. However, for a �-term of the form (. . . (x[u
1

]) . . . [uk]), the LJT

image is a proof with cuts. This term is a � image of the normal term

(. . . (x u
1

) . . . un)1, but in � it is not normal due to the use of explicit

substitution in �. Thus, (11) reports a mapping between � and LJT that

takes normal terms as those shown in � into derivations in LJT with cuts.

In our proposed isomorphism, we avoid this by using a notion of proof

equivalence and di↵erent versions of sequent calculus and natural deduction.

The paper (11) only deals with the implicational fragment of intuitionistic

logic, but in his thesis (12), Herbelin extends the result to the full propositional

fragment of intuitionistic logic. In table 4.1 we present LJT for the full

intuitionistic propositional fragment {^,_,!,¬,?}, where negation (¬) is

seen as a particular case of implication in which the consequence is always a

falsity.

Herbelin’s version of LJT is a slightly di↵erent version of the intuition-

istic fragment of LKT. The di↵erences are: (1) the formulas that form the

disjunction in _ ` are outside the stoup, (2) to apply the right rules the stoup

1
(. . . (x u1) . . . un) is normal in � whenever ui is normal.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 49

must be empty, (3) the rule D keeps a copy of the formula that passed to the

stoup and (4) the left rules for conjunction, which are three:

�,↵; � ` �
�;↵ ^ � ` �

�, �;↵ ` �
�;↵ ^ � ` �

�, �,↵;` �
�;↵ ^ � ` �

Herbelin states that these rules are necessary for cut elimination, but cut

elimination is only shown for the implicational fragment. The version of LJT

presented here is Herbelin’s version, except for the rules of left conjunction,

which are like in Joinet’s thesis.

�;` ↵ �; � ` �
(!`)

�;↵ ! � ` �
�,↵;` �

(`!)

�;` ↵ ! �

�; � ` �
(^ `)

�;↵ ^ � ` �
�;↵ ` �

�;↵ ^ � ` �
�;` ↵ �;` �

(` ^)
�;` ↵ ^ �

�,↵;` � �, �;` �
(_ `)

�;↵ _ � ` �
�;` ↵

(` _)
�;` ↵ _ �

�;` �
�;` ↵ _ �

�;↵ ` �
(? `)

�;? ` �

Ax

�;↵ ` ↵
�,↵;↵ ` �D
�,↵;` �

Table 4.1: LJT rules

A sequent in LJT is of the form �;⇧ ` �, where � is a set of formulas

(possibly empty) and ⇧ and � are sets of at most one formula. The place

occupied by ⇧, that is, the place between ‘;’ and ‘`’, is called stoup and the

formula in the stoup (if any) is called head-formula. In a derivation, the stoup

of the conclusion must be empty.

The following are examples of derivations in LJT:

Ax
A ^ B;A ` A

^ `
A ^ B;A ^B ` A

D
A ^ B;` A

` _
A ^B;` A _B

Ax
A,B;B ` B

D
A,B;` B

`!
B;` A ! B

`!
;` B ! (A ! B)

Ax
A ^ (A ! B);A ` A

^ `
A ^ (A ! B);A ^ (A ! B) ` A

D
A ^ (A ! B);` A

Ax
A ^ (A ! B);B ` B

!`
A ^ (A ! B);A ! B ` B

^ `
A ^ (A ! B);A ^ (A ! B) ` B

D
A ^ (A ! B);` B

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 50

The following are not derivations in LJT:

A ^ B;B ` A _ B
D

A ^ B;A ^B ` A _ B
` _

A ^ B;` A _ B

If we begin the proof of A^B;` A_B by applying

first the rule D, we will not be able to close the derivation.

A,B;` B
`!

B;` A ! B
`!

;` B ! (A ! B)

Although the top-sequent has occurrences of formulas

of the same form (B) in both sides of the sequent, it is not a derivation,

as the top-sequent is not Ax. To turn it into a derivation, we need to

bring an occurrence of B to the stoup by applying D.

Ax
A;A ` A

D
A;` A

Ax
A;B ` B

!`
A;A ! B ` B

^ `
A;A ^ (A ! B) ` B

is not a derivation, for the conclusion has a

formula in the stoup.

An inference rule can be read from the conclusion to its premisses. Note

that we can only apply right rules when the stoup is empty and that we can

bring a formula to the stoup with the rule D but we cannot take a formula

from the stoup. LJT has additive contexts, i.e., the same set � of assumptions

in the premisses of each rule, and even though we need D as a rule in the

system.

LJT forces a focusing in the derivation. When there is a formula in the

stoup, we are “forced” to apply left rules, breaking the named formula until

either an atomic formula is in the stoup, in which case we have an initial

sequent, or until we apply _ `, in which case the stoup is empty, and we can

choose between applying a right rule and the rule D, in which case the focus

is back to the head-formula. When the bottommost rule applied in a cut-free

derivation is a D-rule, we can identify the sequence of applications of left rules

forced by the stoup with a positive trunk in focused proofs2.

Because of the stoup, the system admits two cuts, a head-cut (CH) which

cuts the formula in the stoup and a middle-cut (CM) which cuts a formula

outside the stoup:

�;� ` A �;A ` B
CH

�;� ` B
�;` A �, A;� ` B

CM
�;� ` B

Definition 7 (Cut-free derivation) We say that a derivation ⇧ is cut-free

in LJT when there is neither applications of CH nor applications of CM in ⇧.

2
This terminology is according to (14)

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 51

The stoup reduces the quantity of cut-free derivations that we usually

have in Sequent Calculus. For instance, instead of the two possible cut-free

Sequent Calculus derivations of (A ^ B) ! (A _ C) we showed, we only have

one in LJT (see figure 4.1).

Ax
A ^B;A ` A

^ `
A ^ B;A ^B ` A

D
A ^ B;` A

` _
A ^B;` A _ C

`!
;` (A ^B) ! (A _ C)

Figure 4.1: Example of a derivation in LJT

4.3.2
Natural Deduction

If we decide to use Gentzen’s Natural Deduction system NJ , there would

be no way to distinguish derivations with more premisses than needed. For

instance, derivations of A^B from A^B and of A^B from A^B,C in LJT

would be translated to the same derivation in NJ .

In order to have a faithful comparison, we decided to use a representation

of Natural Deduction in a Sequent Calculus style. The system ND is presented

in table 4.2.

� ` ↵ ! � � ` ↵
(E!)

� ` �
�,↵ ` �

(I!)

� ` ↵ ! �

� ` ↵ ^ �
(E^)

� ` ↵
� ` ↵ ^ �
� ` �

� ` ↵ � ` �
(I^)

� ` ↵ ^ �

� ` ↵ _ � �,↵ ` � �, � ` �
(E_)

� ` �
� ` ↵

(I_)
� ` ↵ _ �

� ` �
� ` ↵ _ �

� ` ?
(E?)

� ` �
Ax
�,↵ ` ↵

Table 4.2: ND rules

Definition 8 (Major premiss) The premisses � ` ↵ ! �, � ` ↵ ^ �,

� ` ↵ _ � and � ` ? of the rules E!, E^, E_ and E? respectively are called

major premisses . The other premisses are called minor premisses. The sequent

�,↵ ` ↵ in Ax is called initial sequent.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 52

As this system is more known, we believe there is no need to go into as

many explanations as we did in the case of LJT.

A cut rule in Sequent Calculus is usually mapped into a derivation with

a maximal sequent in Natural Deduction, that is, a sequent which is the

conclusion of an introduction rule and major premiss of an elimination rule.

But LJT has two cuts: if one is translated as a derivation with a maximal

sequent, what would the other cut represent in ND? Hence, we add to our

system the following admissable rule, known as substitution rule:

� ` ↵ �,↵ ` �
S

� ` �

Definition 9 The sequent � ` ↵ is the major premiss of S.

Definition 10 (Normal derivation) A derivation ⇧ is normal in ND when

there is neither a maximal sequent nor an application of substitution rule in

⇧. Besides that, no major premiss of ⇧ is the conclusion of an application of

E_.

This restriction is due to the fact that an application of E_ might “hide”

a maximal sequent. For instance, take the derivation in figure 4.2.

⇧
1

� ` C _D

⇧
2

�, C ` A
⇧

3

�, C ` B
I^

�, C ` A ^B
⇧

4

�, D ` A ^B
E_

� ` A ^B
E^

� ` A

Figure 4.2: Example of a derivation in ND

As well-known, such a proof should not be considered as normal and it

should be reduced first by communing the elimination rule of the disjunction

with that on the conjunction and then reducing the sequence formed with the

introduction and elimination rules of the conjunction.

Definition 11 (Detour) A detour in a derivation in ND is either a maximal

sequent or an application of a rule S.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 53

4.4
Definitions

As we are restricting ourselves to normal and cut-free derivations, we are

going to use the term “bijective” rather than “isomorphic”. We say that ND

and LJT are bijective when there exists transformations t
1

from ND to LJT

and t
2

from LJT to ND, such that, if ⇧ is a cut-free derivation in LJT, then

t
1

(t
2

(⇧)) = ⇧ and if ⇧ is a normal derivation in ND, then t
2

(t
1

(⇧)) = ⇧.

The translations between ND and LJT are defined by induction on the

length of derivations. For that, we are going to do the cases for all possible

forms a derivation can have. But, if a derivation has the form

⇧0

�;` A
⌃0

�;B ` C
!`

�;A ! B ` C
D

�;` C

we have a problem, for ⌃0

�;B ` C
is not a derivation (remember that, in a

derivation, there is no head-formula in the conclusion) and then we cannot

apply the induction hypothesis (IH). Hence, to define the translations between

derivations, we need to define translations between pseudo-derivations. Thus,

our translations are based on a pair (p, q) of functions where p is a map between

pseudo-derivations and q is a map between derivations and when we define q,

we may use p, and in some cases of the definition of p we use q.

We are going to use ⇧ for derivations, ⌃ for pseudo-derivations and ,

usually, for either. Before defining the translations, we need to define some

notions.

Definition 12 The sequents �
1

` A
1

, . . . ,�n ` An of a derivation ⇧ in

ND form a sequence if �i ` Ai, 1 i < n is premiss of the rule of which

�i+1

` Ai+1

is the conclusion. In this case, if i < j, we say that �i ` Ai is

above �j ` Aj and that �j ` Aj is below �i ` Ai. The notion is analogous for

sequences in LJT.

Definition 13 The length of a derivation is the number of rules it contains.

Definition 14 The set of pure elimination derivations (PED) in ND is

inductively defined as follows.

– a derivation Ax
� ` A is a PED.

– a normal derivation
⇧

� ` A) B
⇧0

� ` A
E!

� ` B
is a PED if ⇧ is.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 54

– a normal derivation
⇧

� ` A ^B
E^

� ` A
is a PED if ⇧ is.

– a normal derivation
⇧

� ` A ^ B
E^

� ` B
is a PED if ⇧ is.

– a normal derivation
⇧

� ` A _ B
⇧

1

�, A ` C
⇧

2

�, B ` C
E_

� ` C

is a PED if

⇧ is.

– a normal derivation
⇧

� ` ?
E?

� ` A
is a PED if ⇧ is.

Definition 15 The major sequence of a PED ⇧ in ND is a sequence of

sequents �
1

` A
1

, . . . ,�n ` An such that

1. �
1

` A
1

is an initial sequent of ⇧,

2. �i ` Ai, 1 i < n, are major premisses and

3. �n ` An is the conclusion of ⇧.

The derivation of figure 4.3 is a PED with the sequents � ` A ! (B !
C), � ` B ! C, � ` C forming its major sequence.

Definition 16 Let ⇧ be a PED in ND and let � ` B be a sequent that belongs

to the major sequence of ⇧ and is not an initial sequent. A pseudo-derivation

⌃ of ⇧ is the tree obtained from ⇧ by removing every sequent occurrence above

� ` B.

A pseudo-derivation can be seen as an “unfinished” PED. As an example,
Ax

� ` A
Ax

� ` A ! B
E!

� ` B � ` B ! C
E!

� ` C

and � ` C are pseudo-derivations

of the derivation of figure 4.3. As the derivation of figure 4.2 is not a PED,

there is no pseudo-derivation associated to it.

Definition 17 A cut-free derivation ⇧ in LJT is a pure left derivation (PLD)

if there exists a sequence of sequents �
1

;A
1

` B
1

, . . . , �n;An ` Bn, �n+1

;`
Bn+1

such that

– �
1

;A
1

` B
1

is either an initial sequent (which means that A
1

= B
1

) or

the conclusion of a _ `-rule.
– �i;Ai ` Bi, 1 < i n, is the conclusion of the application of the left rule

of which �i�1

;Ai�1

` Bi�1

is a premiss and,

– �n+1

;` Bn+1

is the conclusion of the derivation and it is the only sequent

in the sequence that has no formula in the stoup.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 55

Note that, in a cut-free derivation, �i;Ai ` Bi, 1 < i n, are premisses of left

rules. Such a sequence is called the major sequence of ⇧.

In other words, a PLD is a derivation without occurrences of right-rules

in its main branch. The derivation of figure 4.4 is a PLD with the sequents

�;C ` C, �;B ! C ` C, �;A ! (B ! C) ` C, �;` C forming its major

sequence.

Definition 18 Let ⇧ be a PLD in LJT and let �;A ` B be a sequent that

belongs to the major sequence of ⇧. A pseudo-derivation ⌃ of ⇧ is the tree

obtained from ⇧ by removing every sequent occurrence below �;A ` B.

A pseudo-derivation can be seen as a PLD where the bottom part

is missing. As an example,

Ax
�;A ` A

D
�;` A

Ax
�;B ` B

!`
�;A ! B ` B

D
�;` B

Ax
�;C ` C

!`
�;B ! C ` C

and

Ax
�;C ` C are pseudo-derivations of the derivation of figure 4.4. As the

derivation of figure 4.1 is not a PLD, there is no pseudo-derivation associated

to it.

The notions of sequence, major sequence and length of a pseudo-

derivation can be easily derived from the previous definitions.

Lemma 1 A cut-free derivation ⇧ is a PLD i↵ the bottommost rule applied

in ⇧ is D.

Proof : ()) Straight from the definition. (() By induction over the structure

of ⇧. ⌅
From the previous lemma we infer that, as ⇧ is a PLD, the uppermost

rule applied in ⇧ is also an elimination rule.

Lemma 2 A normal derivation ⇧ is a PED i↵ the bottommost rule applied

in ⇧ is an elimination rule.

Proof : ()) Straight from the definition. (() By induction over the structure

of ⇧. ⌅

Lemma 3 If ⇧ is a PED in ND, then, if there is an application r of E_ in

the major sequence of ⇧, then r is the topmost rule applied in ⇧.

Proof : If r is not the last rule applied in ⇧, then the conclusion of r is a

major premiss and by definition 10, ⇧ is not normal. Hence, ⇧ is not a PED.

⌅

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 56

Corollary 1 In the major sequence of a PED in ND, there is at most one

application of E_.

Observation 1 If ⇧ is a PED in ND, then ⇧ is either of the form

Ax
� ` A ^ B

E^
� ` A
⌃0

or

Ax
� ` B ^ A

E^
� ` A
⌃0

or
Ax

� ` A ! B
⇧0

� ` A
E!

� ` B
⌃0

or

Ax
� ` ?

E?
� ` A
⌃0

or
Ax

� ` A _B
⇧

1

�, A ` D
⇧

2

�, B ` D
E_

� ` D

Lemma 4 If �;A
1

` B
1

, . . . ,�;An ` Bn,�;An+1

` Bn+1

is a major sequence,

then B
1

= · · · = Bn = Bn+1

.

Proof : Just note that in any left rule, both the premiss which contains a

head-formula and the conclusion have a formula of the same form in the right

side of the sequents. ⌅

4.5
Translation between normal derivations

Now that we have both ND and LJT defined, let us see some examples

of derivations in both systems.

The only possible cut-free/normal derivations of A ! (B ! (B ! (A !
B))) in LJT and in ND, respectively, are:

Ax
A,B;B ` B

D
A,B;` B

`!
A,B;` A ! B

`!
A,B;` B ! (A ! B)

`!
A;` B ! (B ! (A ! B))

`!
;` A ! (B ! (B ! (A ! B)))

Ax
A,B ` B

I!
A,B ` A ! B

I!
A,B ` B ! (A ! B)

I!
A ` B ! (B ! (A ! B))

I!` A ! (B ! (B ! (A ! B)))

The following derivations examplify a reason to keep a copy of the

formula when we apply the rule D. In the LJT derivation, we used the premiss

A ^ (A ! B) twice:

Ax
A ^ (A ! B);A ` A

^ `
A ^ (A ! B);A ^ (A ! B) ` A

D
A ^ (A ! B);` A

Ax
A ^ (A ! B);B ` B

!`
A ^ (A ! B);A ! B ` B

^ `
A ^ (A ! B);A ^ (A ! B) ` B

D
A ^ (A ! B);` B

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 57

Ax
A ^ (A ! B) ` A ^ (A ! B)

E^
A ^ (A ! B) ` A ! B

Ax
A ^ (A ! B) ` A ^ (A ! B)

E^
A ^ (A ! B) ` A

E!
A ^ (A ! B) ` B

Let us compare the derivations of C from � = {A, A ! B, A ! (B !
C)} in ND (figure 4.3) and in LJT (figure 4.4), where the bold formulas are

the active formulas of the major sequence of the derivations.

Ax
� ` A

Ax
� ` A ! B

E!
� ` B

Ax
� ` A

Ax
� ` A ! (B ! C)

E!
� ` B ! C

E!
� ` C

Figure 4.3: Example of a pure elimination derivation in ND

Ax
�;A ` A

D
�;` A

Ax
�;A ` A

D
�;` A

Ax
�;B ` B

!`
�;A ! B ` B

D
�;` B

Ax
�;C ` C

!`
�;B ! C ` C

!`
�;A ! (B ! C) ` C

D
�;` C

Figure 4.4: Example of a pure elimination derivation in LJT

There are some things we want to call attention to in this example:

1. The bold formulas belong to sequents that form the major sequence of

each derivation.

2. Note that in the ND derivation those formulas are in the right side of

the sequents and in the LJT derivation they are in the left side of the

sequents, in the stoup.

3. Note also that their “order” is inverted, that is, A ! (B ! C), for

instance, is in the head of the sequence in ND, but in the bottom in

LJT.

4. Note also the relation between (a) the conclusion of the ND derivation

and the initial sequent of the major sequence of the LJT derivation and

(b) the initial sequent of the major sequence of the ND derivation and

the premiss of the bottomost rule (rule D) applied in the LJT derivation.

5. All the formulas contracted in the LJT derivation form axioms in the

ND derivation.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 58

6. In the ND derivation, the premisses of the sequents that belong to the

same major sequence are the same. Conversely, in the LJT derivation,

the sequents that belong to the same major sequence have conclusions

of the same form.

Hence, we need to define a translation that takes head-formulas in LJT

to the right side of sequents in ND, formulas that goes to the stoup through

the rule D in LJT to axioms in ND and the bottommost left rule applied in a

derivation in LJT to the uppermost elimination rule applied in a derivation in

ND.

Before defining the translations, we present two trivial results:

Lemma 5 Let
 i

�i;�i ` Ai

, 1 i n, be (pseudo-)derivations in LJT. If

�
1

;�
1

` A
1

�n;�n ` An r
�;� ` A

, n = 1, 2, is a rule in LJT, then

1. If r is a right rule or a rule D (which means that � = ;), then

1

�
1

;�
1

` A
1

 n

�n;�n ` An r
�;` A

is a derivation in LJT.

2. If r is a left rule (which means that � = {B}), then

1

�
1

;�
1

` A
1

 n

�n;�n ` An r
�;B ` A

is a pseudo-derivation of a derivation

in LJT.

Proof : The proof is straight from the definition of derivation and of pseudo-

derivation. Note that, as there is a head-formula in the conclusion of r in item

2, r cannot be a right rule. ⌅

Lemma 6 Let
�
1

` A
1

. . . �n ` An r
� ` A

be a rule in ND and
⇧i

�i ` Ai

,

1 i n, be normal derivations in ND.

1. If r is an introduction rule, then
⇧

1

�
1

` A
1

. . .
⇧n

�n ` An r
� ` A

is a deri-

vation in ND.

2. If r is an elimination rule with �n ` An as major premiss and � ` A
⌃

is a pseudo-derivation of a derivation in ND, then

(a)

⇧
1

�
1

` A
1

. . .
⇧n

�n ` An r
� ` A
⌃

is a derivation in ND.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 59

(b)

⇧
1

�
1

` A
1

. . .

⇧n�1

�n�1

` An�1

�n ` An r
� ` A
⌃

is a pseudo-derivation of a

derivation in ND.

Proof : The proof is straight from the definition of pseudo-derivation and of

derivation in ND.

⌅

Definition 19 (f) Let ⌃ be a pseudo-derivation of a derivation ⇧ in LJT. If

g is a translation from cut-free derivations in LJT to normal derivations in

ND, then the translation f of pseudo-derivations in LJT to pseudo-derivations

in ND is defined recursively as follows:

If ⌃ = Ax
�;C ` C , then f(⌃) = � ` C.

If ⌃ =
⇧0

�;` A
⌃0

�;B ` C
!`

�;A ! B ` C
, then f(⌃) =

g(⇧0)

� ` A � ` A ! B
E!

� ` B
f(⌃0)

If ⌃ =
⌃0

�;A ` C
^ `

�;A ^B ` C
, then f(⌃) =

� ` A ^ B
E^

� ` A
f(⌃0)

If ⌃ =
⌃0

�;B ` C
^ `

�;A ^B ` C
, then f(⌃) =

� ` A ^ B
E^

� ` B
f(⌃0)

If ⌃ =
⇧

1

�, A;` C
⇧

2

�, B;` C
_ `

�;A _ B ` C

,

then f(⌃) = � ` A _ B

g(⇧
1

)

�, A ` C

g(⇧
2

)

�, B ` C
E_

� ` C

If ⌃ =
⌃0

�;A ` C
? `

�;? ` C
, then f(⌃) =

� ` ?
E?

� ` A
f(⌃0)

Note the role that C plays on the translation. All the sequents of the major

sequence of ⌃ have conclusion C, but C “disappears” in the translation. It is

so because the active formula of the major sequents in LJT are in the left side

of the sequents while the active formulas in the major sequents of ND are on

the right side of the sequent. The conclusion C only appears in the conclusion

of g(⇧).

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 60

Lemma 7 Let g be a translation from cut-free derivations in LJT to normal

derivations in ND. If ⌃ is a pseudo-derivation in LJT, then f(⌃) is a pseudo-

derivation in ND.

Proof : The proof is by induction on the length of ⌃ and follows straight from

the definition of f (definition 19). We show one case as an example:

Let ⌃=
⇧0

�;` A
⌃0

�;B ` C
!`

�;A ! B ` C
. By def. 19, f(⌃) =

g(⇧0)

� ` A � ` A ! B
E!

� ` B
f(⌃0)

.

By hypothesis, g(⇧0) is a derivation in ND and by induction hypothesis f(⌃0)

is a pseudo-derivation of a derivation in ND. Hence, by lemma 6, f(⌃) is a

pseudo-derivation of a derivation in ND.

⌅

Definition 20 Let ⇧ be a cut-free derivation of LJT. The translation g of

cut-free derivations in LJT to normal derivations in ND is defined recursively

as follows:

Basic case: If ⇧ =
Ax

�;A ` A
D

�;` A
, then g(⇧) = Ax

�, A ` A

(`!) If ⇧ =
⇧0

�, A;` B
`!

�;` A ! B
, then g(⇧) =

g(⇧0)

�, A ` B
I!

� ` A ! B

(` ^) If ⇧ =
⇧

1

�;` A
⇧

2

�;` B
` ^

�;` A ^ B

, then g(⇧) =
g(⇧

1

)

� ` A

g(⇧
2

)

� ` B
I^

� ` A ^ B

(` _) If ⇧ =
⇧0

�;` A
` _

�;` A _ B
, then g(⇧) =

g(⇧0)

� ` A
I_

� ` A _ B

If ⇧ =
⇧0

�;` B
` _

�;` A _ B
, then g(⇧) =

g(⇧0)

� ` B
I_

� ` A _B

(D) If ⇧ =
⌃0

�, A;A ` B
D

�, A;` B
, then g(⇧) =

Ax
�, A ` A

f(⌃0)

Theorem 3 If ⇧ is a cut-free derivation in LJT, then g(⇧) is a normal

derivation in ND.

Proof : The proof is by induction on the length of ⇧ and follows straight from

the definition 20 and lemma 7. We show one case as an example:

Let ⇧ =
⌃0

�, A;A ` B
D

�, A;` B
. By definition 20, g(⇧) =

Ax
�, A ` A

f(⌃0)
. As

every sub-derivation of ⌃0 is smaller than ⇧, by induction hypothesis and

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 61

by lemma 7, f(⌃0) is a pseudo-derivation of a derivation in ND. Hence, by

lemma 6, g(⇧) is a derivation in ND. ⌅

Definition 21 Let ⌃ be a pseudo-derivation of a PED ⇧ in ND. If t is a

translation from cut-free derivations in LJT to normal derivations in ND, then

the translation s of pseudo-derivations in ND to pseudo-derivations in LJT is

defined recursively as follows, where � ` C is the conclusion of ⇧:

1. If ⌃ = � ` C, then s(⌃) = Ax
�;C ` C

2. If ⌃ =
� ` A ^ B

E^
� ` A
⌃0

, then s(⌃) =
s(⌃0)

�;A ` C
^ `

�;A ^B ` C

3. If ⌃ =
� ` B ^ A

E^
� ` A
⌃0

, then s(⌃) =
s(⌃0)

�;A ` C
^ `

�;B ^ A ` C

4. If ⌃ =

⇧0

� ` A � ` A ! B
E!

� ` B
⌃0

, then s(⌃) =
t(⇧0)

�;` A

s(⌃0)

�;B ` C
!`

�;A ! B ` C

5. If ⌃ = � ` A _ B
⇧

1

�, A ` C
⇧

2

�, B ` C
E_

� ` C

,

then s(⌃) =
t(⇧

1

)

�, A;` C

t(⇧
2

)

�, B;` C
_ `

�;A _ B ` C

6. If ⌃ =
� ` ?

E?
� ` A
⌃0

, then t(⌃) =
s(⌃0)

�;A ` C
? `

�;? ` C

Lemma 8 Let t be a translation from normal derivations in ND to cut-free

derivations in LJT. If ⌃ is a pseudo-derivation in ND, then s(⌃) is a pseudo-

derivation in LJT.

Proof : The proof is by induction on the length of ⌃ and follows straight from

the definition of s (definition 21). We show one case as an example:

Let ⌃ = � ` A _ B
⇧

1

�, A ` C
⇧

2

�, B ` C
E_

� ` C

. By the definition 21,

s(⌃) =
t(⇧

1

)

�, A;` C

t(⇧
2

)

�, B;` C
_ `

�;A _B ` C
By hypothesis, both t(⇧

1

) and t(⇧
2

) are derivations in LJT. Hence, by

lemma 6, s(⌃) is a pseudo-derivation of a derivation in ND. ⌅

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 62

Definition 22 Let ⇧ be a normal derivation in ND. The translation t of

normal derivations in ND to cut-free derivations in LJT is defined recursively

as follows, where � ` C is the conclusion of ⇧:

Basic case: If ⇧ = Ax
� ` A , then t(⇧) =

Ax
�;A ` A

D
�;` A

(I!) If ⇧ =
⇧0

�, A ` B
I!

� ` A ! B
, then t(⇧) =

t(⇧0)

�, A;` B
`!

�;` A ! B

(I^) If ⇧ =
⇧

1

� ` A
⇧

2

� ` B
I^

� ` A ^B
, then t(⇧) =

t(⇧
1

)

�;` A

t(⇧
2

)

�;` B
` ^

�;` A ^ B

(I_) If ⇧ =
⇧0

� ` A
I_

� ` A _ B
, then t(⇧) =

t(⇧0)

�;` A
` _

�;` A _ B

If ⇧ =
⇧0

� ` B
I_

� ` A _ B
, then t(⇧) =

t(⇧0)

�;` B
` _

�;` A _ B

(E!, E^, E_, E?) As the last rule applied in ⇧ is an elimination rule then,

by lemma 2, ⇧ is a PED. Hence, ⇧ has one of the forms shown in

observation 1 and the translation is as follows:

If ⇧ =
Ax

� ` A ^ B
E^

� ` A
⌃0

, then t(⇧) =

s(⌃0)

�;A ` C
^ `

�;A ^ B ` C
D

�;` C

If ⇧ =

Ax
� ` B ^ A

E^
� ` A
⌃0

, then t(⇧) =

s(⌃0)

�;A ` C
^ `

�;B ^ A ` C
D

�;` C

If ⇧ =

⇧0

� ` A
Ax

� ` A ! B
E!

� ` B
⌃0

, then t(⇧) =

t(⇧0)

�;` A

s(⌃0)

�;B ` C
!`

�;A ! B ` C
D

�;` C

If ⇧ =
Ax

� ` A _ B
⇧

1

�, A ` C
⇧

2

�, B ` C
E_

� ` C

,

then t(⇧) =

t(⇧
1

)

�, A;` C

t(⇧
2

)

�, B;` C
_ `

�;A _B ` C
D

�;` C

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 63

If ⇧ =

Ax
� ` ?

E?
� ` A
⌃0

, then t(⇧) =

s(⌃0)

�;A ` C
^ `

�;? ` C
D

�;` C

Theorem 4 If ⇧ is a normal derivation in ND, then t(⇧) is a cut-free

derivation in LJT.

Proof : The proof is by induction on the length of ⇧ and follows straight from

definition 22 and lemma 8. We show one case as an example:

Let ⇧ =

⇧0

� ` A
Ax

� ` A ! B
E!

� ` B
⌃0

. By def. 22, t(⇧) =

t(⇧0)

�;` A

s(⌃0)

�;B ` C
!`

�;A ! B ` C
D

�;` C

,

where � ` C is the conclusion of ⇧.

As every sub-derivation of ⌃0 is smaller than ⇧, by lemma 8, s(⌃0) is a

pseudo-derivation of a derivation in LJT and by induction hypothesis, t(⇧0) is

a cut-free derivation in LJT. Hence, by lemma 5, t(⇧) is a derivation in LJT.

⌅

Lemma 9 If g(t(⇧)) = ⇧, for every normal derivation ⇧ in ND, then for

every pseudo-derivation ⌃ of ⇧

f(s(⌃)) = ⌃.

Proof : The proof is by induction on the length of ⌃. Let ⌃ be a pseudo-

derivation of a derivation ⇧ whose conclusion is � ` C.

If ⌃ = � ` C, then f(s(⌃)) = f
⇣

Ax
�;C ` C

⌘
= � ` C.

If ⌃ =

⇧
1

� ` A � ` A ! B
E!

� ` B
⌃

1

, then

f (s (⌃)) = f

0

@
t(⇧

1

)

�;` A

s(⌃
1

)

�;B ` C
!`

�;A ! B ` C

1

A =

g(t(⇧
1

))

� ` A � ` A ! B
E!

� ` B
f(s(⌃

1

))

By hypothesis, g(t(⇧
1

)) = ⇧
1

and by IH, f(s(⌃
1

)) = ⌃
1

. Hence,

f(s(⌃)) = ⌃.

If ⌃ =
� ` A ^B

E^
� ` A
⌃

1

, then

f (s (⌃)) = f

0

@
s(⌃

1

)

�;A ` C
^ `

�;A ^ B ` C

1

A =
� ` A ^B

E^
� ` A

f(s(⌃
1

))

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 64

By IH, f(s(⌃
1

)) = ⌃
1

. Hence, f(s(⌃)) = ⌃.

If ⌃ =
� ` A ^B

E^
� ` B
⌃

1

, then

f (s (⌃)) = f

0

@
s(⌃

1

)

�;B ` C
^ `

�;A ^ B ` C

1

A =
� ` A ^B

E^
� ` B

f(s(⌃
1

))

By IH, f(s(⌃
1

)) = ⌃
1

. Hence, f(s(⌃)) = ⌃.

If ⌃ = � ` A _B
⇧

1

�, A ` C
⇧

2

�, B ` C
E_

� ` C

, then f (s (⌃)) =

f

0

@
t(⇧

1

)

�, A;` C

t(⇧
2

)

�, B;` C
_ `

�;A _ B ` C

1

A = � ` A _B

g(t(⇧
1

))

�, A ` C

g(t(⇧
2

))

�, B ` C
E_

� ` C

By hypothesis, g(t(⇧
1

)) = ⇧
1

and g(t(⇧
2

)) = ⇧
2

. Hence, f(s(⌃)) = ⌃.

If ⌃ =
� ` ?

E?
� ` A
⌃

1

, then f (s (⌃)) = g

0

@
s(⌃

1

)

�;A ` C
^ `

�;? ` C

1

A =
� ` ?

E^
� ` A

f(s(⌃
1

))

By IH, f(s(⌃
1

)) = ⌃
1

. Hence, f(s(⌃)) = ⌃.

⌅

Theorem 5 For every normal derivation ⇧ in ND,

g(t(⇧)) = ⇧.

Proof : The proof is by induction on the length of ⇧. For the basic case, we

have that g (t (Ax
� ` C)) = g

Ax

�;C ` C
Cont

�;` C

!
= Ax
� ` C

Let r be the bottommost rule applied in ⇧. Then, we have the following

cases:

If ⇧ =
⇧

1

�, A ` B
I!

� ` A ! B

, then

g (t (⇧)) = g

0

@
t(⇧

1

)

�, A;` B
`!

�;` A ! B

1

A =
g(t(⇧

1

))

�, A ` B
I!

� ` A ! B

By IH, g(t(⇧
1

)) = ⇧
1

. Hence, g(t(⇧)) = ⇧.

If ⇧ =
⇧

1

� ` A
⇧

2

� ` B
I^

� ` A ^ B
, then

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 65

g (t (⇧)) = g

0

@
t(⇧

1

)

�;` A

t(⇧
2

)

�;` B
` ^

�;` A ^ B

1

A =

g(t(⇧
1

))

� ` A

g(t(⇧
2

))

� ` B
I^

� ` A ^B
By IH, g(t(⇧

1

)) = ⇧
1

and g(t(⇧
2

)) = ⇧
2

. Hence, g(t(⇧)) = ⇧

If ⇧ =
⇧

1

� ` A
I_

� ` A _ B
, then

g (t (⇧)) = g

0

@
t(⇧

1

)

�;` A
` _

�;` A _ B

1

A =
g(t(⇧

1

))

� ` A
I_

� ` A _ B

By IH, g(t(⇧
1

)) = ⇧
1

. Hence, g(t(⇧)) = ⇧.

If ⇧ =
⇧

1

� ` B
I_

� ` A _ B
, then

g (t (⇧)) = g

0

@
t(⇧

1

)

�;` B
` _

�;` A _ B

1

A =
g(t(⇧

1

))

� ` B
I_

� ` A _ B

By IH, g(t(⇧
1

)) = ⇧
1

. Hence, g(t(⇧)) = ⇧.

If the last rule applied in ⇧ is an elimination rule then, by lemma 2, ⇧

is a PED and has one of the forms shown in observation 1. We have the

following cases, where � ` C is the conclusion of ⇧:

If ⇧ =

⇧
1

� ` A
Ax

� ` A ! B
E!

� ` B
⌃

1

, then

g (t (⇧)) = g

0

BB@

t(⇧
1

)

�;` A

s(⌃
1

)

�;B ` C
!`

�;A ! B ` C
D

�;` C

1

CCA =

g(t(⇧
1

))

� ` A
Ax

� ` A ! B
E!

� ` B
f(s(⌃

1

))

By IH, g(t(⇧
1

)) = ⇧
1

and by lemma 9 and IH, f(s(⌃
1

)) = ⌃
1

. Hence,

g(t(⇧)) = ⇧.

If ⇧ =

Ax
� ` A ^B

E^
� ` A
⌃

1

, then

g (t (⇧)) = g

0

BB@

s(⌃
1

)

�;A ` C
^ `

�;A ^B ` C
D

�;` C

1

CCA =

Ax
� ` A ^ B

E^
� ` A

f(s(⌃
1

))

By lemma 9 and IH, f(s(⌃
1

)) = ⌃
1

. Hence, g(t(⇧)) = ⇧.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 66

If ⇧ =

Ax
� ` A ^B

E^
� ` B
⌃

1

, then

g (t (⇧)) = g

0

BB@

s(⌃
1

)

�;B ` C
^ `

�;A ^B ` C
D

�;` C

1

CCA =

Ax
� ` A ^ B

E^
� ` B

f(s(⌃
1

))

By lemma 9 and IH, f(s(⌃
1

)) = ⌃
1

. Hence, g(t(⇧)) = ⇧.

If ⇧ =
Ax

� ` A _B
⇧

1

�, A ` C
⇧

2

�, B ` C
E_

� ` C

, then g (t (⇧)) =

g

0

BB@

s(⇧
1

)

�, A;` C

s(⇧
2

)

�, B;` C
_ `

�;A _ B ` C
D

�;` C

1

CCA = Ax
� ` A _B

g(s(⇧
1

))

�, A ` C

g(s(⇧
2

))

�, B ` C
� ` C

By hypothesis, g(s(⇧
1

)) = ⇧
1

and g(s(⇧
2

)) = ⇧
2

. Hence, g(t(⇧)) = ⇧.

If ⇧ =

Ax
� ` ?

E?
� ` A
⌃

1

, then

g (t (⇧)) = g

0

BB@

s(⌃
1

)

�;A ` C
^ `

�;? ` C
D

�;` C

1

CCA =

Ax
� ` ?

E^
� ` A

f(s(⌃
1

))

By lemma 9 and IH, f(s(⌃
1

)) = ⌃
1

. Hence, g(t(⇧)) = ⇧.

⌅

Lemma 10 If t(g(⇧)) = ⇧, for every cut-free derivation ⇧ in LJT, then for

every pseudo-derivation ⌃ of ⇧,

s(f(⌃)) = ⌃.

Proof : The proof is by induction on the length of ⌃. Let ⌃ be a pseudo-

derivation of a cut-free derivation ⇧. We have that:

If ⌃ = Ax
�;C ` C , then f(s(⌃)) = f(� ` C) = Ax

�;C ` C .

If ⌃ =
⇧

1

�;` A
⌃

1

�;B ` C
!`

�;A ! B ` C

, then

s (f (⌃)) = s

0

BB@

g(⇧
1

)

� ` A � ` A ! B
E!

� ` B
f(⌃

1

)

1

CCA =
t(g(⇧

1

))

�;` A

s(f(⌃
1

))

�;B ` C
!`

�;A ! B ` C

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 67

By hypothesis, t(g(⇧
1

)) = ⇧
1

and by IH, s(f(⌃
1

)) = ⌃
1

. Hence,

s(f(⌃)) = ⌃.

If ⌃ =
⌃

1

�;B ` C
^ `

�;B ^ A ` C

, then

s (f (⌃)) = s

0

@
� ` B ^ A

E^
� ` B
f(⌃

1

)

1

A =
s(f(⌃

1

))

�;B ` C
^ `

�;B ^ A ` C

By IH, s(f(⌃
1

)) = ⌃
1

. Hence, s(f(⌃)) = ⌃.

If ⌃ =
⌃

1

�;B ` C
^ `

�;A ^ B ` C

, then

s (f (⌃)) = s

0

@
� ` A ^ B

E^
� ` B
f(⌃

1

)

1

A =
s(f(⌃

1

))

�;B ` C
^ `

�;A ^B ` C

By IH, s(f(⌃
1

)) = ⌃
1

. Hence, s(f(⌃)) = ⌃.

If ⌃ =
⇧

1

�, A;` C
⇧

2

�, B;` C
_ `

�;A _ B ` C

, then s (f (⌃)) =

s

0

@ � ` A _ B

g(⇧
1

)

�, A ` C

g(⇧
2

)

�, B ` C
_ `

� ` C

1

A =
t(g(⇧

1

))

�, A;` C

t(g(⇧
2

))

�, B;` C
_ `

�;A _ B ` C

By hypothesis, t(g(⇧
1

)) = ⇧
1

and t(g(⇧
2

)) = ⇧
2

. Hence, s(f(⌃)) = ⌃.

If ⌃ =
⌃

1

�;A ` C
? `

�;? ` C

, then

s (f (⌃)) = s

0

@
�;` ?

E?
�;` A

f(⌃
1

)

1

A =
s(f(⌃

1

))

�;A ` C
? `

�;? ` C

By IH, s(f(⌃
1

)) = ⌃
1

. Hence, s(f(⌃)) = ⌃.

⌅

Theorem 6 For every cut-free derivation ⇧ in LJT,

t(g(⇧)) = ⇧.

Proof : Let ⇧ be a cut-free derivation in LJT. The proof is by induction on

the length of ⇧. We have the following cases:

If ⇧ =
Ax

�;A ` A
Cont

�;` A
, then t (g (⇧)) = t (Ax

� ` A) =
Ax

�;A ` A
Cont

�;` A

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 68

If ⇧ =
⇧

1

�, A;` B
`!

�;` A ! B

, then

t (g (⇧)) = t

0

@
g(⇧

1

)

�, A ` B
I!

� ` A ! B

1

A =
t(g(⇧

1

))

�, A;` B
`!

�;` A ! B

By IH, t(g(⇧
1

)) = ⇧
1

. Hence, t(g(⇧)) = ⇧.

If ⇧ =
⇧

1

�;` A
⇧

2

�;` B
` ^

�;` A ^ B

, then

t (g (⇧)) = t

g(⇧

1

)

� ` A

g(⇧
2

)

� ` B
I^

� ` A ^ B

!
=

t(g(⇧
1

))

�;` A

t(g(⇧
2

))

�;` B
` ^

�;` A ^ B

By IH, t(g(⇧
1

)) = ⇧
1

and t(g(⇧
2

)) = ⇧
2

. Hence, t(g(⇧)) = ⇧.

If ⇧ =
⇧

1

�;` A
` _

�;` A _ B

, then

t (g (⇧)) = t

g(⇧

1

)

� ` A
I_

� ` A _ B

!
=

t(g(⇧
1

))

�;` A
` _

�;` A _ B

By IH, t(g(⇧
1

)) = ⇧
1

. Hence, t(g(⇧)) = ⇧.

If ⇧ =
⇧

1

�;` B
` _

�;` A _ B

, then

t (g (⇧)) = t

g(⇧

1

)

� ` B
I_

� ` A _ B

!
=

t(g(⇧
1

))

�;` B
` _

�;` A _ B

By IH, t(g(⇧
1

)) = ⇧
1

. Hence, t(g(⇧)) = ⇧.

If ⇧ =

⇧
1

�;` A
⌃

1

�;B ` C
!`

�;A ! B ` C
D

�;` C

, then

t (g (⇧)) = t

0

BB@

g(⇧
1

)

� ` A
Ax

� ` A ! B
E!

� ` B
f(⌃

1

)

1

CCA =

t(g(⇧
1

))

�;` A

s(f(⌃
1

))

�;B ` C
!`

�;A ! B ` C
D

�;` C

By IH, t(g(⇧
1

)) = ⇧
1

and by lemma 10 and IH, s(f(⌃
1

)) = ⌃
1

. Hence,

t(g(⇧)) = ⇧.

If ⇧ =

⌃
1

�;B ` C
^ `

�;A ^ B ` C
D

�;` C

, then

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 69

t (g (⇧)) = t

0

@
Ax

� ` A ^ B
E^

� ` B
f(⌃

1

)

1

A =

s(f(⌃
1

))

�;B ` C
^ `

�;A ^ B ` C
D

�;` C

By lemma 10 and IH, s(f(⌃
1

)) = ⌃
1

. Hence, t(g(⇧)) = ⇧.

If ⇧ =

⌃
1

�;B ` C
^ `

�;B ^ A ` C
D

�;` C

, then

t (g (⇧)) = t

0

@
Ax

� ` B ^ A
E^

� ` B
f(⌃

1

)

1

A =

s(f(⌃
1

))

�;B ` C
^ `

�;B ^ A ` C
D

�;` C

By lemma 10 and IH, s(f(⌃
1

)) = ⌃
1

. Hence, t(g(⇧)) = ⇧.

If ⇧ =

⇧
1

�, A;` C
⇧

2

�, B;` C
_ `

�;A _ B ` C
D

�;` C

, then t (g (⇧)) =

t

0

@ Ax
� ` A _B

g(⇧
1

)

�, A ` C

g(⇧
2

)

�, B ` C
_ `

� ` C

1

A =

t(g(⇧
1

))

�, A;` C

t(g(⇧
2

))

�, B;` C
�;A _B ` C

D
�;` C

By IH, t(g(⇧
1

)) = ⇧
1

and t(g(⇧
2

)) = ⇧
2

. Hence, t(g(⇧)) = ⇧.

If ⇧ =

⌃
1

�;A ` C
? `

�;? ` C
D

�;` C

, then

t (g (⇧)) = t

0

@
Ax

� ` ?
E?

� ` A
f(⌃

1

)

1

A =

s(f(⌃
1

))

�;A ` C
? `

�;? ` C
D

�;` C

By lemma 10 and IH, s(f(⌃
1

)) = ⌃
1

. Hence, t(g(⇧)) = ⇧.

⌅
From theorems 5 and 6, we have that the translations defined between

ND and LJT are bijective.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

On some relations between Natural Deduction and Sequent Calculus 70

4.6
Conclusion

We achieved a bijection between normal derivations of Natural Deduction

and cut-free derivations of Sequent Calculus. In order to complete the proof-

theoretical isomorphism between the systems we have to show that the

reduction steps are pair related. In order to do this, the translations (f, g)

and (s, t) must be extended to translate any derivation, and not just normal

and cut-free ones. Finally, we need to show that the extended translations

preserve reductions up to equivalent derivations, which enable us to define a

translation between conversions. This is done in next chapter.

DBD
PUC-Rio - Certificação Digital Nº 1012684/CA

