
Elias Fukim Lozano Ching

An Algorithm to Generate Random Sphere
Packs in Arbitrary Domains

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática, PUC–Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática

Advisor: Prof. Marcelo Gattass

Rio de Janeiro
August 2014

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

Elias Fukim Lozano Ching

An Algorithm to Generate Random Sphere
Packs in Arbitrary Domains

Dissertation presented to the Programa de Pósgraduação em
Informática of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio, as partial fulfillment of the
requirements for the degree of Mestre.

Prof. Marcelo Gattass
Advisor

Departamento de Informática — PUC–Rio

Prof. Deane de Mesquita Roehl
Departamento de Engenharia Civil — PUC-Rio

Prof. Waldemar Celes Filho
Departamento de Informática — PUC-Rio

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática — PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico da PUC–Rio

Rio de Janeiro — August 21st, 2014

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

Elias Fukim Lozano Ching

Graduated from the UNMSM (Universidad Nacional Mayor
de San Marcos - Perú) in Systems engineering in 2010.

Bibliographic data

Lozano Ching, Elias Fukim

An Algorithm to Generate Random Sphere Packs in
Arbitrary Domains / Elias Fukim Lozano Ching ; advisor:
Marcelo Gattass. — 2014.

75 f. : il. ; 30 cm

1. Dissertação (Mestrado em Informática)-Pontif́ıcia
Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2014.

Inclui bibliografia

1. Informática – Teses. 2. Empacotamento de esferas.
3. Enfoque de avance frontal. 4. Algoritmo geométrico.
5. Campo de distancia. I. Gattass, Marcelo. II. Pontif́ıcia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

Acknowledgments

To my advisor Professor Marcelo Gattass for the guidance and support.

To my parents, Doris and Elias, and brothers, Kiway and Jou.

To the CNPq and the PUC–Rio, for the financial support, without which this

work would not have been realized.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

Abstract

Lozano Ching, Elias Fukim; Gattass, Marcelo. An Algorithm to
Generate Random Sphere Packs in Arbitrary Domains. Rio de
Janeiro, 2014. 75p. MSc Dissertation — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

The Discrete Element Method (DEM) based on spheres can provide

acceptable approximations to many complex physical phenomena both in micro

and macro scale.

Normally a DEM simulation starts with an arrangement of spherical

particles pack inside a given container. For general domains the creation of the

sphere pack may be complex and time consuming, especially if the pack must

comply with accuracy and stability requirements of the simulation.

The objective of this work is to extend a 2D disk packing solution to

generate random assemblies composed by non-overlapping spherical particles.

The constructive algorithm, presented here, uses the advancing front strategy

where spheres are inserted one-by-one in the pack, according to a greed strategy

based on the previously inserted particles. Advance front strategy requires the

existence of an initial set of spheres that defines the boundary of the pack

region. Another important extension presented here is the generalization of

algorithm to deal with arbitrary objects defined by a triangular boundary

mesh. This work presents also some results that allow for some conclusions

and suggestions of further work.

Keywords
Sphere Packing. Advancing-Front Approach. Geometric Algorithm.

Distance Field.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

Resumo

Lozano Ching, Elias Fukim; Gattass, Marcelo. Um Algoritmo de
Geração Randômica de Esferas em Domı́nios Arbitrários. Rio
de Janeiro, 2014. 75p. Dissertação de Mestrado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

O Método dos Elementos Discretos (DEM) com base em esferas pode

fornecer aproximações para diversos fenômenos f́ısicos complexos, tanto em

escala micro quanto macro.

Normalmente uma simulação DEM começa com um arranjo de part́ıculas

esféricas no interior de um determinado recipiente. Para domı́nios gerais a

criação deste pacote de esferas pode ser complexo e demorado, especialmente

se ele deve respeitar requisitos de precisão e de estabilidade da simulação.

O objetivo deste trabalho é estender uma solução de empacotamento de

discos 2D para gerar conjuntos aleatórios compostos por part́ıculas esféricas

não sobrepostas. O algoritmo construtivo proposto utiliza a técnica de frente

de avanço, onde as esferas são inseridas uma a uma no pacote, de acordo com

uma estratégia gulosa baseada nas part́ıculas previamente inseridas. A técnica

de frente de avanço requer a existência de um conjunto inicial de esferas que

definem a fronteira do recipiente. Outra extensão importante proposta aqui é

uma generalização do algoritmo para lidar com objetos arbitrários definidos

por uma malha triangular qualquer. Este trabalho apresenta também alguns

resultados que permitem algumas conclusões e sugestões de trabalhos futuros.

Palavras–chave
Empacotamento de esferas. Enfoque de avance frontal. Algoritmo

geométrico. Campo de distancia.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

Contents

1 Introduction 12

2 Related Work 14

3 Package Generation 18
3.1 Radius generation and particle size-distribution 18
3.2 Neighbour particle search 19
3.3 Generation loop 20
3.4 Halo intersections 21
3.5 Particle insertion 23

4 Initial Fronts Generation 26
4.1 Grid of distance points 26
4.2 Mesh shell creation 32
4.3 Distance field calculation 33
4.4 Initial front selection 36

5 Results 39
5.1 Points in halo intersection 39
5.2 Packages for rectangular containers 41
5.3 Filling arbitrary objects 54
5.4 Point in polyhedron test 63

6 Conclusion and Future Works 68

A Random number generators 70

Bibliography 72

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

List of Figures

3.1 Initial fronts for a box representing the boundary. 18
3.2 Uniform grid. 19
3.3 Different halo outcomes. 21
3.4 Neighborhood box size. 21
3.5 Sampled points in a circle. 21
3.6 Halo intersection in 2D. 22
3.7 Orthogonal vectors for circle plane. 23
3.8 Example of current front, its neighborhood box and inserted particle. 24

4.1 Convex boundary and its bounding box. 26
4.2 Margin AABB. 27
4.3 2D Point in polyhedron tests. 27
4.4 Ray traced through a torus 28
4.5 From 3D to 2D 28
4.6 Invalid collisions 30
4.7 Triangles translation. 32
4.8 Generated shells after the prisms generation. 32
4.9 Triangle voronoi regions. 33
4.10 Distance sign. 34
4.11 Distance field. 35
4.12 Package configuration inside the MAABB. 36
4.13 Finding the closer particles with equal Mp, +ε and −ε). 36
4.14 Trilinear interpolation. 37
4.15 Trilinear interpolation. 37
4.16 Generated Initial Fronts. 37

5.1 Tests varying N◦ points in halo intersection 40
5.2 Number of contacts per particle. 40
5.3 Constant radius (0.08) - 30x30x30 pack - 29519 spheres. 42
5.4 Constant radius (0.08) - Density and porosity ratios 42
5.5 Contacts 43
5.6 Uniform radius variation [0.04-0.08] - 20x40x20 pack - 38454 spheres. 44
5.7 Uniform radius variation [0.04-0.08] - Density and porosity ratios 44
5.8 Uniform radius variation [0.04-0.08] - 20x40x20 pack - Contacts 44
5.9 Uniform radius variation [0.04-0.08] - 20x40x20 pack - Radii

Distribution 45
5.10 Bernoulli test (0.03,0.06) (ρ = 0.5) - 30x30x30 pack - 54918 spheres. 45
5.11 Bernoulli test (0.03,0.06) (ρ = 0.5) - Density and porosity 46
5.12 Bernoulli test (0.03,0.06) (ρ = 0.5) - Number of contacts and

coordination number. 46
5.13 Bernoulli test - Pack 30x30x30 - Radii frequencies 47
5.14 Truncated gaussian radius variation [0.02-0.08] [µ = 0.05 and

σ = 0.02] - 20x20x20 pack - 29711 spheres. 48
5.15 Truncated gaussian radius variation [0.02-0.08] [µ = 0.05 and

σ = 0.02] - Density and porosity ratios 48

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

5.16 Truncated gaussian radius variation [0.02-0.08] [µ = 0.05 and
σ = 0.02] - Frequencies 48

5.17 Truncated gaussian radius variation [0.02-0.08] [µ = 0.05 and
σ = 0.02] - Curve vs Pack 49

5.18 Truncated gaussian radius [0.1-0.3] [µ = 0.2 and σ = 0.05] 49
5.19 Bernoulli 30x30x30 pack (ρ = 0.5) - Radii rejection comparison 50
5.20 Uniform and Gaussian packs - Radii rejection comparison 51
5.21 Uniform and Gaussian packs - Rejected radii remaining frequency 51
5.22 Spheres vs Time(s) 52
5.23 Bernoulli tests - Spheres vs Time(s) 52
5.24 Cylinder - Initial front 55
5.25 Cylinder - Mesh packs 55
5.26 Capsule - Initial front 56
5.27 Capsule - Mesh packs 56
5.28 Torus - Initial front 57
5.29 Torus - Mesh packs 57
5.30 Bunny - Initial front 58
5.31 Bunny - Mesh packs 58
5.32 Knot - Initial front 58
5.33 Knot - Mesh packs 59
5.34 Cylinder times - Packs with constant radii 60
5.35 Capsule times - Packs with constant radii 61
5.36 Torus times - Packs with constant radii 61
5.37 Bunny times - Packs with constant radii 62
5.38 Knot times - Packs with constant radii 62
5.39 Point in polyhedron - Test case 1 63
5.40 Layers of triangles 64
5.41 Point in polyhedron - Test case 2 64
5.42 Layers of triangles 64
5.43 Point in polyhedron - Test case 3 65
5.44 Point in polyhedron - Test case 4 66
5.45 Intersections 66
5.46 Point in polyhedron - Test case 5 66

A.1 1000 values using the Truncated gaussian number generator (µ =
10, σ2 = 9) 71

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

List of Tables

5.1 Pack results varying the number of circle points in a box of (10x10x10) 40
5.2 Equal distribution [0.08] - Coordination numbers 43
5.3 Bernoulli pack with desired ρ and actual ρc probabilities 47
5.4 Bernoulli 30x30x30 pack - N◦ of rejected particles remaining 50
5.5 Uniform 20x40x20 pack - N◦ of rejected particles remaining 51
5.6 Truncated gaussian 20x20x20 pack - N◦ of rejected particles remaining 51
5.7 Pack comparison for the uniform radii variation (28) 53
5.8 Gaussian radii variation results in (34) 53
5.9 Our Gaussian radii variation results 54
5.10 Cylinder - Mesh properties 54
5.11 Cylinder - Initial front and packing parameters 54
5.12 Capsule - Mesh properties 55
5.13 Capsule - Initial front and packing parameters 56
5.14 Torus - Mesh properties 56
5.15 Torus - Initial front and packing parameters 57
5.16 Bunny - Mesh properties 57
5.17 Bunny - Initial front and packing parameters 57
5.18 Knot - Mesh properties 58
5.19 Knot - Initial front and packing parameters 59
5.20 Time consumption for the cylinder pack results 60
5.21 Time consumption for the capsule pack results 60
5.22 Time consumption for the torus pack results 61
5.23 Time consumption for the bunny pack results 61
5.24 Time consumption for the knot pack results 62
5.25 Time consumption for the point in polyhedron tests 67

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

List of Symbols

n Number of particles in the pack

Rmin Minimum radius in the pack

Rmax Maximum radius in the pack

F () Distribution function for the radii creation

lprs List of previously rejected radii

lnrs List of newly rejected radii
~emin Uniform grid lower left point

Lbox Size of the neighbourhood box

Rcurr Radius of the current sphere in the loop

Rnew Radius for the new particle

Rhalo Radius of the halo of a sphere

Np Number of sample points in the halo intersection

P (t) Circle equation

~c3 Circle center

r3 Circle radius
~U First orthogonal vector on the plane of the circle
~V Second orthogonal vector on the plane of the circle
~N Circle normal

ε Displacement factor for the prism calculation

(dx, dy, dz) Distance field resolution

MAABB Margin Axis aligned bounding box of the mesh

ds Margin to create the MAABB

Mp Mesh proximity distance to consider an initial front

R Ray traced for the point in polyhedron test
~Rstart Ray starting point
~Rdir Ray direction

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

1
Introduction

For a long time the arrangement of spherical particles inside a given

container, also called sphere packing, has been an active research topic due to

its academic and industrial importance. In 1611 Kepler stated that are three

types of sphere packings of equal size (cubic lattice, face-centered cubic lattice

and hexagonal lattice) with a density of approximately π
3
√
2

= 0.74048...

(38). This is known as the Kepler conjecture, not proved until 1998 by

Thomas C. Hales. In 1694 Isaac Newton suggested that the highest number

of non-overlapping spheres of the same radius that could be in contact with

a central sphere is 12. This problem is known as the contact or coordination

number, proved in 1953 by Schütte and van der Waerden (38).

The Discrete Element Method (DEM), proposed by Cundall (9), is an

important tool to study the mechanical behavior of phenomena involving

grains in both micro and macro scale represented by disks or spheres in

virtue that they provide an acceptable approximation to many complex

physical phenomena (11). Granular materials, with a vital importance in

many industrial processes, are nowadays present in diverse domains such

in the medical area in the field of radiosurgical treatment planning (12);

pharmaceutical powder and tableting process simulation (25); food modeling

(36); cereal production (26, 32) and geotechnical engineering (22).

Normally a DEM simulation starts with an arrangement of spherical

particles inside a given container. For general domains the creation of the

sphere pack may be complex and time consuming specially if the arrangement

must comply with accuracy and stability requirements of the simulation

(40). Many factors influence a simulation (28), some of which are: the radial

distribution of the particles, the overlaps between them and the density

ratio. This last property depends on the type of material; concrete, rock and

ceramic require a high density pack while soil for example requires a lower

density pack. It is relevant to point out that with experimental tests it was

estimated that a random or irregular close packing with spheres of equal size

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 13

(or mono-disperse arrangement) has a maximum density of approximately

0.64 (18). Another important feature is the coordination number which

determines the transfer of forces in the system (5). In geometric terms the

coordination number is the average number of contacts of a sphere in the pack.

The objective of this work is to extend a 2D disk packing solution

proposed by Ferreira (30) to generate random assemblies composed by

non-overlapping spherical particles. The constructive algorithm presented

by Ferreira uses the advancing front strategy where spheres are inserted

one-by-one in the pack, according to a greedy strategy based on the previously

inserted particles. The method relies on the existence of an initial set of spheres

called the initial front that defines the boundary of the pack region. Ferreira

and many other authors restrict the domain to simple domains, usually

boxes. Another important extension presented here is the generalization of

the algorithm to deal with 3D objects defined by a triangular boundary mesh.

To accomplish this task our algorithm uses a signed distance field (Fuhrmann

et al (13)).

This work is organized as follows; Chapter 2 presents some of the existing

packing generation solutions and attempts to classify them. The packing

algorithm is described in Chapter 3. Chapter 4 presents our strategy to create

the initial front for a general 3D boundary represented by a triangle mesh. The

results and analyses of our algorithms are presented in Chapter 5. Finally, we

present some conclusions and suggest future works.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

2
Related Work

Packing algorithms can be classified in two main categories: dynamic and

constructive or geometric.

The dynamic approach uses Discrete Element (DEM) simulations to create the

sphere packages. These simulations fill progressively the domain with particles

letting them interact with each other according to the equations of motion (21).

The “Isotropic-compression method” inserts particles inside the pack volume

and then moves the walls to compress the package. The particle positions are

randomly chosen and when a collision is detected a new position is calculated.

After a predefined number of rejections the particle is removed. The process

is repeated until the desired density is obtained. Even though the algorithm

leads to good densities it is very time consuming. The “Expansion method”

was conceived as an evolution of the isotropic-compression method. Small

spherical particles are randomly inserted inside the volume, then their radii

are increased until they reach their correspondent radii or until a contact with

another particle is detected. The “Single layer method” creates a set of particles

inside a volume with random positions, then the top wall is moved downwards

in order to compress the package. The wall stops when a certain void ratio is

reached. The “Multi-layer method”, as the name suggests, creates a first set

of particles, then they are compressed by the top wall to tighten the package.

Next, a new set of particles is created above the first layer, this set is also

compressed. The process continues until the volume is filled up with particles.

Dynamic methods yield satisfactory results in terms of producing stable

arrangements and providing contact force information for every particle. Their

drawbacks, however, are the ones inherent to a DEM implementation: it is time

consuming and computational intensive. This restriction limits the number of

particles of the arrangement.

The constructive methods only uses geometrical calculations, therefore they are

more efficient in terms of time and have more control of the package properties

such as the radius size distribution of the particles.

A naive geometric approach generates random positions inside the domain and

only accepts those particles that do not overlap any of the others. This solution

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 15

is very inefficient and generates packages with very low density.

Some constructive methods simulate the gravitational force to make the

deposition of the particles with geometric calculations. A compression

algorithm was developed in (14) to tightly pack a set of sphere particles inside

an arbitrary polyhedron. In the same way as the dynamic multi-layer method,

at each step a disperse pack is generated within the empty space and then a

random direction is assigned to each particle to execute the compression. To

accelerate the process it is used an efficient contact search algorithm called “no

binary search” (29). In (15) poly-sized sphere packages are assembled inside

parallelepipedic domains using dropping and rolling calculations that simulate

the gravitational force with analytical equations. Each sphere is dropped to

hit another particle and then it rolls until it hits another sphere or floor. The

algorithm considers the sphere dropping finished when it reaches a certain

geometric stability.

Another set of geometric algorithms use the advancing front technique firstly

proposed by Feng et al (11). An advancing front method computes the new

particle position based on the information of the previous inserted particles.

Feng et al present two versions of the algorithm in 2D, the “closed form

advancing front” and the “open form advancing front”. In the first approach

three disks in contact with each other are created in the center of the domain.

The three triangle segments formed by its centers conform the initial fronts. For

each front (segment) a new disk is inserted in contact with other two particles

along an outward spiral. The new disk forms two new segments which are

added to the front list while the current segment is discarded as a front. The

open version fills the container layer by layer from bottom to top inserting new

particles from left to right.

Bagi (1) introduced the “inwards packing method”, an advancing front

algorithm designed for polygonal shapes. The method, similar to the method

in this work, uses an initial front composed by disks inside the container placed

in contact with the edges of the domain forming a closed chain. New disks,

created using a defined distribution function, are positioned in contact with two

previous inserted disks and the front is updated. Bagi considers a disadvantage

the lack of density control so there are suggested post packing generation ideas

such as a random elimination of particles to decrease the density and the

use of a dynamic method to compact the pack reducing the porosity. With

some similarities to the solutions of Feng et al and Bagi, Zsaki (40) proposed

a method to fill polygonal domains. The main difference with the previous

approaches is that it does not use an initial front. The method first identifies

the lowest vertex in the left corner to insert the particle seed tangent to two

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 16

edges. Next, new disks are added layer by layer to be tangent to the current

edge and the previous particles. An interesting characteristic of this solution

is its capability of being parallelized (41).

Like our solution, some works focus on the generation of particles inside of non

trivial domain boundaries generally defined by a triangular mesh.

Cui (8) developed a relatively fast and simple method to generate packs

of spheres. The approach handles 2D and 3D boundaries producing dense

arrangements in 2D and less dense in 3D. The methods starts by creating

random points inside the domain, then with these points, triangles (or

tetrahedrons in 3D) are constructed with a Delaunay triangulation. Finally,

a single sphere is inserted in each triangle incircle (or tetrahedron insphere).

The pack quality depends on the triangulation refinement algorithm being

obtained a higher density using equilateral triangles.

Benabbou (2, 3) presents another variation of the initial front approach capable

of handling complex containers composed by triangles (2D) or tetrahedra

(3D). The front, initially representing the domain, is a set of segments in

2D and triangles in 3D using a weighted Delaunay triangulation. Similar

to Bagi’s work, Benabbou’s method proceeds with an inward packing using

initial spheres placed inside the container in contact with the walls. Then new

spheres are inserted tangent to the other spheres and the front list is updated.

Benabbou introduces the concept of “front level” to guarantee the convergence

of the algorithm. The level of a front is defined as the sum of the level of its

particles.

Liu et al (27) proposed a sphere packing algorithm with the objective of

generate high quality meshes with the Delaunay triangulation. The method

packs meshes starting with an initial front constructed by placing particles in

the vertices, edges and faces of the mesh. The algorithm uses Horn’s theorem

(16) to test if a point is inside or outside the polyhedron.

Labra et al (24) use the Stienen model (35), a fast geometrical algorithm that

generates a non-dense set of stationary Poisson points to then proceed with the

void space minimization obtaining a dense pack inside a finite element mesh.

The package optimization considers the minimization of the distances of the

particles to the triangles mesh. Jerier et al (19, 20) improves the ideas in (8) to

create packs with polydisperse spheres inside tetrahedral meshes. They define

a geometric procedure to fill spheres inside tetrahedrons placing particles in

the edges, vertices and in inside the tetrahedrons. Weller et al (39) introduced

a parallel algorithm in the GPU base in the “Apollonian sphere packing” (7)

to fill an arbitrary object with non-overlapping spheres. The basic idea is to fill

the model successively with spheres as big as possible. The objective of Weller

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 17

is to create feasible packs rather than obtain optimal geometrical properties.

Liu et al (28) propose the seed expansion method, and advancing front method

to fill an arbitrary domain. Using a Delaunay tessellation and a distance

function the package is improved inserting new spheres in the void spaces

obtaining dense polidisperse assemblies.

With respect to the techniques relying on the existence of the initial fronts to

support the assembly generation, their major difficulty is to create this set for

a 3D container. Schiftner (33) proposed a way to pack circles or spheres on

arbitrary surfaces introducing a new kind of triangle mesh whose faces incircles

form a pack. Using this method would restrict the packing generation to this

type of meshes or would imply altering a generic mesh to adapt the front

generation. Benabbou (2, 3) places three spheres for each triangle (one in each

vertex) to create the first particles. Similarly in (27) the quality of the initial

front is restricted to the container triangulation and the level of detail of the

mesh. Jerier (20) limits the size of the radii, defined by the mean length of the

mesh, which must be previously tetrahedralized. Our goal here is to avoid these

restrictions and requirements with a simple solution based on distance fields

that yields a set of contacting spheres tangent to the surface of the container.

Our initial front may present some gaps between the spheres that can be larger

than the minimum diameter of the sphere distribution and, as pointed out by

Bagi (1), this may yield some leak. Our method, however, avoids leaking with

the continuous use of the distance field function.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

3
Package Generation

The algorithm’s basic idea is to insert one particle at a time ensuring

that there is no sphere interpenetration and the void space is minimized. There

is a step before the one by one insertion called the initial front generation

which consists of replacing the boundaries of the domain with sphere particles.

Defining a wall boundary with spheres is a valid and a common strategy in the

DEM simulation (31). It happens, however, that most existing algorithms deal

with simple forms, such as boxes or cylinders, where it is a straightforward

task to convert its planes into spheres. We are interested here in general 3D

boundaries and the next chapter presents an algorithm to generate the initial

front for these situations.

Figure 3.1: Initial fronts for a box representing the boundary.

3.1
Radius generation and particle size-distribution

Some algorithms in the literature deal only with assemblies of identical

sphere sizes, while in others the spheres radius can vary according to a certain

probability distribution, F () . Most of the existing algorithms implement only a

uniform distribution between a minimum radius, Rmin , and a maximum, Rmax

. Our algorithm can deal with more general distributions, such as Truncated

gaussian or Bernoulli distributions, that occur in practical particle engineering

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 19

simulations, but we still require the definition of the limits Rmin and Rmax . We

also consider a mechanism to handle possible rejected radii in the generation

loop. In order to maintain the desired radius distribution a rejected radius is

saved to be used in the next opportunity.

3.2
Neighbour particle search

A critical step in the particle methods is to find the closest neighbors

of a given particle. This step is usually in the core of the algorithms and

can be a very time consuming process given that the computational cost is

O(n2) (being n the number of particles). Some algorithms use complex spatial

index structures. Here we adopt a uniform grid. The uniform grid is a simple

and effective space subdivision scheme. It divides the space into a number of

regions or voxels of equal size. As suggested by (10), the optimal voxel size

Figure 3.2: Uniform grid.

is the smaller size that can hold the largest object in the scene in all rotated

positions. Since we are only dealing with sphere particles the voxel size here

depends only on the maximum radius Rmax given as an input.

Considering a uniform grid with a dimension of (sx, sy, sz) (number of voxels

per dimension) and with a lower left point (~emin .x, ~emin .y, ~emin .z), any point

(px, py, pz) belongs to the voxel

v = i+ jsx + ksxsy (3-1)

with

(i, j, k) = (b(px −
~emin.x)

Rmax

c, b(py −
~emin.y)

Rmax

c, b(pz −
~emin.z)

Rmax

c) (3-2)

Each cell of the index grid has a reference to all particles it overlaps.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 20

3.3
Generation loop

Algorithm 3, presented at the end of the chapter, describes the proposed

particle generation. The algorithm is based on an active front of spheres that

is stored in a list. The active front is initialized with the initial front and the

algorithm proceeds inserting and removing spheres from the active front until

it is empty. In each step of the loop the algorithm finds a valid position for a

new sphere using the information of the neighborhood particles. More precisely,

the algorithm selects a sphere in the active front to be the “current sphere”

and tries to create a new sphere touching it. Based on the current sphere the

algorithm proceeds to find the set of nearby particles that can interfere in the

creation of the new sphere. This is accomplished by testing all the spheres in

the active front against a neighborhood box, centered at the current sphere

center. The size Lbox of the neighborhood box is given by:

Lbox = 2(Rcurr + 2.2Rnew) (3-3)

where Rcurr is the radius of the current sphere and Rnew is the radius of the

new sphere.

The search for the nearby spheres can be accelerated with the help of the

spatial index. Here the spatial index is implemented with a uniform grid.

For all the spheres that intersect the neighborhood box our algorithm creates

their halos. By a halo we mean a concentric sphere with a greater radius. In

the proposed algorithm the intersection of halos defines the locus of the sphere

with a radius Rnew tangent to the current sphere. For this reason the radius

of the halo is given by:
Rhalo = Rcurr +Rnew (3-4)

This equation differs from the one suggested by (30) where the halo is computed

by:
Rhalo = Rcurr +Rmax (3-5)

For a mono-size package both definitions generate the same outcome, but in

the case of a package composed by particles of different radii our modification

produces more compact assemblies as illustrated in Figure 3.3. Now, for every

< currentsphere−neighboursphere > the algorithm proceeds to compute the

intersection of their halos looking for the potential locations to place the new

particle.

The neighborhood box size is justified with the halo intersection concept in

Figure 3.4. We illustrate two sphere insertions with different radii where the

halos are touching creating a single candidate point for the new particle. There

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 21

3.3(a): Previous definition
creates void spaces.

3.3(b): Our definition avoids
empty areas.

Figure 3.3: Different halo outcomes.

are no spheres beyond this distance (the current front radius plus the new

particle diameter) that could generate candidate positions. To guarantee the

search of neighbor particles in this situation the formula uses 2.2 times the

new particle radius.

Figure 3.4: Neighborhood box size.

3.4
Halo intersections

While in 2D, halo intersections yield two points, in 3D the intersection of

two spheres yields a circle with an infinite number of points. A simple solution

for this step is to sample the circle with a predetermined number of equidistant

points, Np having in mind that bigger Np results in more compact assemblies

but the algorithm takes longer.

3.5(a): 18 points 3.5(b): 72 points

Figure 3.5: Sampled points in a circle.

The points in the intercepting circle can be evaluated by:

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 22

P (t) = ~c3 + r3(~U cos (t) + ~V sin (t)), 0 ≤ t < 2π (3-6)

where ~c3 and r3 are the circle’s center and radius and ~U and ~V are unit

orthogonal vectors laying in the plane of the circle. A point (x,y,z) that lays in

the intersection of two spheres with centers and radii (~c1, r1) and (~c2, r2) must

satisfy:
(x− ~c1.x)2 + (y − ~c1.y)2 + (z − ~c1.z)2 − r12 = 0

(x− ~c2.x)2 + (y − ~c2.y)2 + (z − ~c2.z)2 − r22 = 0
(3-7)

Figure 3.6: Halo intersection in 2D.

We observed in Figure 3.6 the creation of two right triangles with equations:

r1
2 = ‖ ~c1c3‖2 + r3

2 (3-8)

r2
2 = (‖ ~c1c2‖ − ‖ ~c1c3‖)2 + r3

2 (3-9)

Because ‖ ~c1c2‖ is the known distance between both spheres we subtract

Equation 3-8 from Equation 3-9 to calculate the distance ‖ ~c1c3‖.

‖ ~c1c3‖ =
‖ ~c1c2‖

2
(1− r2

2 − r12
‖ ~c1c2‖2

) (3-10)

Then, the circle center could be computed as:

~c3 =
‖ ~c1c2‖ − ‖ ~c1c3‖
‖ ~c1c2‖

~c1 +
‖ ~c1c3‖
‖ ~c1c2‖

~c2 (3-11)

Simplified to:
~c3 = (1− a)~c1 + a~c2 (3-12)

with
a =

1

2
(1− r2

2 − r12
‖ ~c1c2‖2

) (3-13)

The radius r3 is computed using the Pythagoras theorem with any of the right

triangles. Here we used Equation 3-8.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 23

r3 =

√
‖ ~c1c3‖2 − r12 (3-14)

To find the first orthogonal vector ~U to the circle normal ~N it is performed

a cross product between the normal and a support vector. We choose an

axis of the system as this support depending of the minimum normal vector

component as detailed in Algorithm 1.

Finally, the second orthogonal vector ~V is the cross product between ~U and

the plane normal.

Algorithm 1 System Axis selection

Input: ~N , intersection circle normal.
Output: ~axis, support vector.

if ~N.x = min(~N.x, ~N.y, ~N.z) then
~axis = (1,0,0)

end if
if ~N.y = min(~N.x, ~N.y, ~N.z) then

~axis = (0,1,0)
end if
if ~N.z = min(~N.x, ~N.y, ~N.z) then

~axis = (0,0,1)
end if

~U =
~N × ~axis

‖ ~N × ~axis‖

~V =
~U × ~N

‖~U × ~N‖

(3-15)

Figure 3.7: Orthogonal vectors for circle plane.

3.5
Particle insertion

Once the set of possible candidates are gathered, the best candidate, if

exists, is selected and the others discarded. Our algorithm follows and insertion

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 24

criteria based on the y, z, x order that seeks to simulate the deposition process.

For example, the points with the lowest y-coordinate (vertical) value receive

the highest rank, then the ones with the lowest z-coordinate value and finally

we use the x-coordinate value as a tiebreaker.

Once all possible intersecting circles are computed the algorithm loops over

the list to see if the new particle’s candidate position is inside the boundaries

and does not collide with any of the surrounding spheres. The new created

sphere is inserted in the active front list, in the assembly and in the spatial

index.

When the number of potential candidates is less than two the current sphere

is removed from the active front because it is likely that it wont generate new

particles and the loop starts again.

It is important to notice that when the algorithm rejects a sphere, the radius

distribution of the assembly is no longer the one specified by the user. To

avoid this change, the algorithm manages two lists: a list of previously rejected

spheres lprs and a list of newly rejected spheres lnrs . The first one contains

a list of all the sphere sizes rejected in previous loop cycles. When a new

sphere radius is needed the stored radius is tried again. If it is again rejected

it is stored in lnrs . Only when lprs is empty then the algorithm uses the

distribution function F () to select a new radius. When an insertion is successful

the values of lnrs are emptied into the lprs vector. In this way we guarantee

that a rejected particle is always tested until it is finally inserted.

Figure 3.8: Example of current front, its neighborhood box and inserted
particle.

Algorithm 2 Select a radius

Input: Rmin ,Rmax ,F () ,lprs

if lprs is empty() then
return GetValue(Rmin ,Rmax ,F ())

else
return pop(lprs)

end if

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 25

Algorithm 3 Assembly Generator

Input: mesh,frontSpheres,Rmin ,Rmax ,F () ,Np

assembly ← emptyList()
lprs = lnrs ← emptyList()
gridOfSpheres ← emptyGrid()
for currentSphere ← transverse(frontSpheres) do

add(currentSphere,gridOfSpheres)
end for
while frontSpheres is not empty do

currentSphere ← retrieve(frontSpheres)
Rnew ← selectARadius(F () ,Rmin , Rmax , lprs)
box ← computeNeighbourhoodBox(currentSphere,Rnew ,Rmax)
neighboringSpheres←gatherSpheresThatInstersect(gridOfSpheres,box)
currentHalo ← generateHalo(currentSphere,Rnew)
candidatePoints ← emptyList()
for currentNeighbor ← transverse(neighboringSpheres) do

neighborHalo ← genereteHalo(currentNeighbor,Rnew)
newPoints ← intersectHalos(currentHalo,neighborHalo,Np)
candidatePoints + = newPoints

end for
numberOfValidPoints ← 0
bestPoint ← aVeryBadPoint()
while candidatePoints is not empty do

currentPoint ← remove(candidatePoints)
newSphere ← sphere(currentPoint,Rnew)
if checkIfInside(mesh,newSphere) and

not intersectAny(neighboringSpheres,newSphere) then
numberOfValidPoints++
if currentPoint is better than bestPoint then

bestPoint ← currentPoint
end if

end if
end while
if numberOfValidPoints > 0 then

bestSphere ← sphere(bestPoint,Rnew)
addAtBeginning(bestSphere,frontSpheres)
addAtBeginning(bestSphere,assembly)
add(bestSphere,gridOfSpheres)
empty lnrs into lprs

else
add(Rnew , lnrs)

end if
if numberOfValidPoints < 2 then

remove(currentSphere,frontSpheres)
end if

end while

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

4
Initial Fronts Generation

This chapter presents an algorithm to generate the initial sphere front for

an arbitrary object defined by a triangular mesh that represents its external

boundary. The proposed algorithm starts with the computation of the distance

field of the mesh using the ideas presented by Fuhrmann et al (13). The

distance field is used here to determine if any point in space, or the sphere

generated in that place, is inside, outside or intersecting any triangle in

the mesh. To illustrate the proposed algorithm let’s consider the 2D mesh

represented in Figure 4.1.

Figure 4.1: Convex boundary and its bounding box.

Note also that the algorithm is not restricted to convex boundaries, although,

for simplicity, the explanation uses convex figures.

4.1
Grid of distance points

The first step creates the grid of points that holds the distances to the

boundary. The distance field must enclose the object and its vicinity where

spheres may be created. To this end the distance field is created inside an axis

aligned boundary box with a margin MAABB to enclose the initial sphere

front. If we assume the front is composed of spheres with Rmax , the margin

ds can be given by:
ds ≥ 3Rmax (4-1)

The grid resolution is defined by the number of points in each Cartesian

direction: dx, dy and dz. To store and accelerate the point search it is used

a uniform grid, storing a single point inside each voxel.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 27

4.2(a): Minimum margin 4.2(b): Distance points inside

Figure 4.2: Margin AABB.

The goal in this first step is to compute, for each grid point, the distance to the

boundary and the triangle that defines this distance, i. e.: the closest triangle.

Initially all distances in the interior points are assigned a negative infinite value

and the ones outside the mesh a positive infinite value.

This assignment can be performed with a “point in polyhedron” test based in

the even-odd rule. From each distance point a ray in an arbitrary direction is

created.
R = ~Rstart + t(~Rdir), 0 ≤ t (4-2)

If the ray intersects an even number of triangles in the mesh (Figure 4.3(a)),

the point is outside. But if the number of intersections is odd, then the point

is inside (Figure 4.3(b)).

4.3(a): Two intersections. 4.3(b): One intersection.

Figure 4.3: 2D Point in polyhedron tests.

Figure 4.4 shows a ray R intersecting a triangle mesh representing a torus. The

ray, has an axis aligned bound box with a small margin only in the Y and Z

axis used to gather all the triangle candidates for a further intersection test.

To simplify the triangle search we decide to trace rays using the X system

axis direction (~Rdir =(1,0,0)). The second and most significant advantage of

this choice is that now the problem becomes a “point in triangle” test. This

is graphically described in Figure 4.5. The triangles are projected into a YZ

plane where the ray becomes a point and the ray-triangle intersection in 3D is

reduced to a 2D problem.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 28

Figure 4.4: Ray traced through a torus

Figure 4.5: From 3D to 2D

We found it convenient to implement the “point in triangle” test computing

the barycentric coordinates of the ray because in this way it is easy to detect

an edge or vertex collision. Algorithm 4 describes the procedure to compute

the barycentric coordinates, note that only the Y and Z coordinates of the

input points were used.

Every time the ray R executes a “point in triangle” test and finds collisions,

these are classified as: vertex, edge or face. The detected 2D collisions should

not be accepted as 3D collisions yet, because our choice to only consider the

Y and Z values and discard the X coordinate would probably lead to the

computation of a “point in triangle” for a point placed in a lower X coordinate

value than ~Rstart .x, more likely belonging to an indexed triangle in the same

voxel as the ~Rstart . The filtering of valid intersections must verify that the

corresponding 3D intersection point has a higher or equalX value thanRstart.x.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 29

Algorithm 4 2D Baricentric Coordinates

Input: ~P , ~A, ~B, ~C
Output: u, v, w

~a = (0, 0)
~b = (~B.y - ~A.y, ~B.z - ~A.z)

~c = (~C.y - ~A.y, ~C.z - ~A.z)

~p = (~P .y - ~A.y, ~P .z - ~A.z)

d = ~b.x * ~c.y - ~c.x * ~b.y;
u = (~p.x * (~b.y - ~c.y) + ~p.y * (~c.x - ~b.x) + d) / d;
v = (~p.x * ~c.y - ~p.y * ~c.x) / d;

w = (~p.y * ~b.x - ~p.x * ~b.y) / d;

If the 2D collision falls onto a vertex, the 3D X coordinate belongs to the 3D

triangle vertex. For edges and faces extra calculations must be made. For the

further equations we denote ~R′, the projection of the ray R on the edge or

face.

If the 2D collision belongs to an edge (Figure 4.6(a)), we consider the

parametric equation:

~R′ = ~V1 + t(~V2 − ~V1), 0 ≤ t ≤ 1 (4-3)

Decomposed in its three components:

~R′.x = ~V1.x+ t(~V2.x− ~V2.x), 0 ≤ t ≤ 1

~R′.y = ~V1.y + t(~V2.y − ~V2.y), 0 ≤ t ≤ 1

~R′.y = ~V1.z + t(~V2.z − ~V2.z), 0 ≤ t ≤ 1

(4-4)

Note that both ~R′.y and ~R′.z are known because the Y and Z values of the

ray remain constant. The value of t can be found using any of following two

equations, depending on the edge gradient. By substitution of t in 4-4 we can

get the value of R′.x

t =


R′.y− ~V1.y
~V2.y− ~V1.y

, if ~V2.y 6= ~V1.y

R′.z− ~V1.z
~V2.z− ~V1.z

, otherwise
(4-5)

If the 3D collision belongs to a face (Figure 4.6(b)), we consider the plane

equation of the triangle which uses the triangle normal ~n:

~n · (~V1 − ~R′) = 0 (4-6)

In this equation only the ~R′.x is unknown so we express:

~R′.x = ~V1.x+
~n.y(~V1.y − ~R′.y) + ~n.z(~V1.z − ~R′.z)

~n.x
(4-7)

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 30

4.6(a): Edge behind the ray 4.6(b): Triangle behind the ray

Figure 4.6: Invalid collisions

In 3D, when the ray intercepts the triangle in one of its edges or vertex the

algorithm finds two or more triangles at the same point, causing an erroneous

count of mesh intersections by the “point in polyhedron” algorithm. Kalay (23)

suggests a strategy to decide whether this point should be accounted for or

not computing the inner product of the ray direction and the outward normal

of the triangle. If the result is positive the ray is leaving the region. If it is

negative the ray is entering it. If in all the intercepting triangles at a point the

ray is either entering or leaving the algorithm counts one interception. But if

some are leaving and others are entering it counts no interception. In this case

is assumed that the ray is tangent to the mesh at that point.

For each ray R two hash maps are managed; one for the ray-vertex intersections

vertexMap and another for the ray-edge intersections edgeMap. If the

barycentric coordinates correspond to a vertex, the triangle vertex is inserted in

its respective map along with the dot product of ~Rdir with the triangle normal,

but since the value of ~Rdir =(1,0,0) is constant, then the result will always be

the X component of the normal. The same logic is performed for an edge

intersection, but inserting the intersecting edge. Only if the ray hits the face

of a triangle then the counter for the number of intersections is incremented.

Finally, the list of dot products of each map must be checked. Only if the sign

of all the values in each list is the same then we consider the intersection and

increment the counter. Algorithm 5 summarizes the process.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 31

Algorithm 5 Point in polyhedron

Input: ~P , triangleGrid

intersections ← 0
vertexMap← emptyMap() //key: common vertex, value: list of dot products
edgeMap ← emptyMap() //key: common edge, value: list of dot products
~rayIni ← ~P
~rayEnd ← (triangleGrid. ~max.x ~P .y, ~P .z)
~rayDir ← (1,0,0)

rayBox ← computeMarginYZAABB(~rayIni, ~rayEnd)
foundTriangles ← gatherTrianglesThatInstersect(triangleGrid, rayBox)
for currentTriangle ← transverse(foundTriangles) do

~A ← GetVertex(currentTriangle, 0)
~B ← GetVertex(currentTriangle, 1)
~C ← GetVertex(currentTriangle, 2)

(u, v, w) ← Get2DBaricentricCoordinates(~P , ~A, ~B, ~C)
if (0 ≤ u ≤ 1) AND (0 ≤ v ≤ 1) AND (0 ≤ w ≤ 1) then

if u == 0 AND v == 0 AND ~C.x ≥ ~rayIni.x then

AddToMap(vertexMap, ~C, currentTriangle. ~normal.x)

else if u == 0 AND w == 0 AND ~B.x ≥ ~rayIni.x then

AddToMap(vertexMap, ~B, currentTriangle. ~normal.x)

else if w == 0 AND v == 0 AND ~A.x ≥ ~rayIni.x then

AddToMap(vertexMap, ~A, currentTriangle. ~normal.x)

else if u == 0 AND GetXValue(~BC, ~rayIni) ≥ ~rayIni.x then

AddToMap(edgeMap, ~BC, currentTriangle. ~normal.x)

else if v == 0 AND GetXValue(~AC, ~rayIni) ≥ ~rayIni.x then

AddToMap(edgeMap, ~AC, currentTriangle. ~normal.x)

else if w == 0 AND GetXValue(~AB, ~rayIni) ≥ ~rayIni.x then

AddToMap(edgeMap, ~AB, currentTriangle. ~normal.x)

else if GetXValue(~A, currentTriangle. ~normal) ≥ ~rayIni.x then
intersections++

end if
end if

end for
for (~Vc, listOfDotProducts) ← transverse(vertexMap) do

if AllSignsAreEqual(listOfDotProducts) then
intersections++

end if
end for
for (~Ec, listOfDotProducts) ← transverse(edgeMap) do

if AllSignsAreEqual(listOfDotProducts) then
intersections++

end if
end for
if intersections MOD 2 == 0 then

return outside
else

return inside
end if

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 32

4.2
Mesh shell creation

Prior to the creation of the distance field the algorithm constructs an

outer and an inner shell of the mesh. To accomplish this, a prism is built for

every triangle, see Figure 4.7(a). The top and bottom base of the prism are,

respectively, the reference triangle translated of positive +ε and negative -ε

and the direction of its normal. Note that the use of ε for both the margin

of the distance field and the outer shell ensures that the latter is inside the

distance field grid.
+ε ≤ ds (4-8)

The algorithm also stores the prism bounding box for future reference (see

Algorithm 6).

4.7(a): Prism
generation.

4.7(b): Prism
bounding box.

Figure 4.7: Triangles translation.

The result of the prisms creation generates two shells as presented in Figure 4.8,

this will serve to identify the closer points with positive distances (those who

are outside the mesh) and negative distances (those who are inside the mesh).

Figure 4.8: Generated shells after the prisms generation.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 33

Algorithm 6 Processing of Triangles

Input: triangle, +ε , -ε .

triangle.normal ← ComputeNormal(triangle)
t1 ← CreateTriangle(triangle, +ε)
t2 ← CreateTriangle(triangle, -ε)
triangle.box ← computeAABB(t1,t2)

4.3
Distance field calculation

To calculate the distance field we iterate over the list of mesh triangles.

For each triangle is used the bounding box, computed in the shells creation,

intersecting it with the uniform grid of points. In this way we gather all the

distance points of the intersecting voxels inside the bounding box.

For each point its distance to the closest point in the current triangle is

computed. One efficient way to find the closest point is using the voronoi

regions (Figure 4.9). The point P is orthogonally projected onto the triangle

plane. Then, it is checked to which region the point projection Pp belongs. If it

is a vertex region, then the closest point is the corresponding triangle vertex.

If the point falls onto an edge region, then the closest point is one of the edge

points and if the point falls onto the face region the closest point is the point

Pp itself. For a better understanding of how to determine if a point belongs to

a vertex or an edge voronoi triangle region we suggest to review (10) that also

discusses some optimizations to reduce expensive vector cross products.

4.9(a): Vertex regions 4.9(b): Edge regions 4.9(c): Face region

Figure 4.9: Triangle voronoi regions.

The sign of the distance depends on the position of the point in relation to

the normal of the triangle (Figure 4.10). If the absolute value of the recently

obtained distance is smaller than the current absolute distance of the point to

the mesh, then the distance and the triangle reference is replaced for the point.

A sign replacement issue may occur due to the successive processing of the

triangles updating closer points shared by more than one triangle. Fuhrmann

(13) explains that when two triangle normals form a convex angle, changing a

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 34

Algorithm 7 Closest triangle point from Point

Input: triangle, point.
Output: closesTrianglePoint.

voronoiRegions ← computeVoronoiRegions(triangle)
pointInPlane ← orthogonalProjection(triangle, point)
if pointInPlane in vertexRegion(voronoiRegions) then

vertex = getVertex(voronoiRegions, pointInPlane)
closesTrianglePoint ← vertex

else if pointInPlane in edgeRegion(voronoiRegions) then
edge = getEdge(voronoiRegions, pointInPlane)
closesTrianglePoint ← getPointInEdge(edge, pointInPlane)

else
closesTrianglePoint ← pointInPlane

end if

4.10(a): Positive
distance (above the
triangle)

4.10(b): Negative
distance (below the
triangle)

Figure 4.10: Distance sign.

common point from a positive to a negative value is allowed while the opposite

is not. And when the triangle normals form a non-convex angle, the change

from a negative to positive distance is allowed, while the change from a positive

to a negative distance is forbidden.

After the execution of this step we can see in Figure 4.11 the appearance of

four differentiated areas; there is one with infinite negative values, another

with positive infinite values, a third with finite negative values and a last one

with finite positive values. Now we can affirm that if the distance of any point

is negative then it must be inside the mesh.

We summarized the distance field calculation in Algorithm 8.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 35

Figure 4.11: Distance field.

Algorithm 8 Distance Field Calculation

Input: meshContainer, (dx, dy, dz) , Rmax , +ε , -ε .

MAABB ← computeMAABB(meshContainer, Rmax)
distancePoints ← definePointsLocation(MAABB , (dx, dy, dz))
computeInitialDistances(distancePoints, meshContainer)
for currentTriangle ← transverse(meshContainer) do

triangleProcessing(currentTriangle,+ε ,-ε)
closerDistancePoints ← findPointsThatIntersect(distancePoints,

currentTriangle.box)
while closerDistancePoints is not empty do

currentPoint ← remove(closerDistancePoints)
closestTrianglePoint ← findClosestPoint(currentTriangle,

currentPoint)
newDistance ← (closestTrianglePoint - currentPoint).length()
if absoluteValue(currentPoint.distance) > newDistance then

sign ← getSign(closestTrianglePoint, currentTriangle.normal,
currentPoint)

currentPoint.distance ← newDistance * sign
currentPoint.triangle ← currentTriangle

end if
end while

end for

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 36

4.4
Initial front selection

To proceed with the initial front generation (Algorithm 9), we start by

filling the MAABB with spheres. It can be used just a regular package, like

the one in Figure 4.12, or a package resulting from the assembly generation

described in the previous chapter in the case of the intention to create a front

composed by particles of different radii.

Figure 4.12: Package configuration inside the MAABB.

Next, only those particles placed within a certain distance Mp to the mesh are

selected according to the following restriction:

0 < Mp ≤ min(−ε,+ε) (4-9)

The mesh proximity value can not be higher than the minimum factor of

displacement because those points beyond the mesh shells will have an infinite

value and we will not be able to adjust their positions.

Figure 4.13 illustrates a threshold distance of twice a particle radius to admit

spheres from inside and outside the mesh. The gray particles represent the

ones that were rejected. The higher the threshold the more spheres are chosen

to be part of the front.

Figure 4.13: Finding the closer particles with equal Mp, +ε and −ε).

To compute the distance of an arbitrary point in space we use a trilinear

interpolation of the closer distance points (Figure 4.14).

In Figure 4.15 we can see that for each circle center are gathered all the closer

distance points. Then all the triangles in the mesh related to this set of points

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 37

Figure 4.14: Trilinear interpolation.

are identified. Next we find the closest triangle to the circle center. Finally, the

circle position is adjusted using the closet mesh triangle normal.

Figure 4.15: Trilinear interpolation.

The result is shown in Figure 4.16. We must remark that the initial front

assembled here will not be part of the final sphere pack. The front will be used

as seed for the packing generation and along with the distance field it will work

as a barrier to contain the pack. Additionally, the interpenetrations between

them are not handled and do not constitute an obstacle.

Figure 4.16: Generated Initial Fronts.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 38

Algorithm 9 Initial Fronts Generation

Input: mesh, distanceField, Mp , Rmin , F () , Np .
Output: meshFronts

meshFronts ← empty()
boxFronts ← generateFronts(distanceField.MAABB)
spheres ← assemblyGenerator(mesh,boxFronts,Rmin ,Rmin ,F () ,Np)
while spheres is not empty do

currentSphere ← remove(spheres)
closerPoints ← findCloserPoints(distanceField,currentSphere.position)
distance ← trilinearInterpolation(closerPoints,currentSphere.position)
if absoluteValue(distance) <= Mp then

minDistance ← aVeryBadPoint()
while closerPoints is not empty do

currentPoint ← remove(closerPoints)
triangle ← currentPoint.triangle
closestTrianglePoint ← findClosestPoint(triangle,

currentSphere.position)
newDistance ← (closestTrianglePoint -

currentSphere.position).length()
if absoluteValue(minDistance) > newDistance then

minDistance ← newDistance
normal ← triangle.normal

end if
end while
currentSphere.position += normal * (currentSphere.radius -

minDistance)
meshFronts.addAtBeginning(currentSphere);

end if
end while

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

5
Results

This chapter presents test results based on a C++ implementation of the

algorithms described in this dissertation running on an Intel Core i5-3330 @

3.00GHz with 8GB of RAM memory under Windows 7 64-bit.

In the first part of this chapter we use rectangular containers to evaluate several

aspects of the proposed algorithm. We start with the evaluation of the influence

of the number of points per halo intersection described in the assembly

generation both in time and in number of generated spheres. Next, we study

the density, porosity and coordination number of the package generated with

the proposed algorithm with different radii distribution functions. To conclude

the study with rectangular containers we present some results regarding its

efficiency.

The second part of the chapter presents results for containers with arbitrary

geometry: cylinder, capsule, torus, bunny and knot. We start with the

evaluation of the density of the package generated with the proposed algorithm

with a constant and a uniform radii distribution function.

Finally the third part presents results for the point in polyhedron algorithm.

5.1
Points in halo intersection

In this test we fill a box of dimension (10, 10, 10) with several particle

size distributions. For each assembling pack we vary the numbers of equidistant

points in the circle to test its influence both in processing time and in the final

assembly. We consider here three types of packs: one with a constant radius

size (0.3), another with a uniform radii varying between [0.2 - 0.4] and a third

pack with a uniform radii varying between [0.1 - 0.5] to test a ratio of 1:5.

Table 5.1 exhibits the results (time and number of particles) for the three

scenarios. In Figure 5.1(a) we can see that the time grows linearly with the

number of points in the circle for all cases. That was expected because the

number of candidate points is in the core of the algorithm.

With respect to the number of particles Figure 5.1(b) shows that with more

points there are more spheres. This was also expected, with more points

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 40

Table 5.1: Pack results varying the number of circle points in a box of
(10x10x10)

Points
Constant [0.3] Uniform [0.2-0.4] Uniform[0.1-0.5]
N◦ of

Spheres
Time

N◦ of
Spheres

Time
N◦ of

Spheres
Time

3 33762 8.8 31446 7.4 25107 7.2
9 36560 12.0 34254 11.1 26694 10.3
18 38081 17.3 35378 16.3 27803 15.1
72 39619 45.5 36618 47.6 28710 44.7
180 39955 107. 37260 110. 29136 99.5
360 40126 196. 36861 211. 29683 204.

3 72 180 360

0

50

100

150

200

Points per circle Np

T
im

e(
s)

Constant[0.3]

Uniform[0.2− 0.4]

Uniform[0.1− 0.5]

5.1(a): Points vs Time(s)

3 72 180 360
0

2.51

2.97

3.69

4.01

·104

Points per circle Np

N
◦
S
p
h
er
es

Constant[0.3]

Uniform[0.2− 0.4]

Uniform[0.1− 0.5]

5.1(b): Points vs N◦ Spheres

Figure 5.1: Tests varying N◦ points in halo intersection

increases the probability of finding a valid position. The curves in the figures

indicate that over 72 points there is no gain in increasing them. Using 360

candidates creates nearly the same number of spheres than using 180 points,

and consumes a much more time.

In the tests that follow in this chapter we use 72 points per halo intersection.

Figure 5.2: Number of contacts per particle.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 41

5.2
Packages for rectangular containers

The quality analysis of the generated assemblies is based on conventional

geometric properties also presented in (20, 6, 28, 24).

– The density (d) or volume fraction, is the ratio between the total volume

of all the N particles in the assembly and the container volume Vc.

Considering that we only use spherical particles:

d =
1

Vc

N∑
i=1

4

3
πr3i (5-1)

– The porosity (p), is the ratio between the total volume of the void spaces

not occupied by the particles and the container volume Vc. Since the

addition of all the particles and void spaces volumes gives the container

volume this property is calculated as:

p = 1.0− d (5-2)

– The mean coordination number (z), characterizing the local density of

the packing. The coordination number is a sphere property representing

the number of neighbor particles in contact (c). The mean is computed

with:

z =
1

N

N∑
i=1

ci (5-3)

Even though some works (1) contemplate the contacts among the

particles and the container walls, here we just count the inter particle

contacts taking advantage of the uniform grid of particles created in the

packing algorithm (Figure 5.2).

To claim a sphere S1 in contact with another sphere S2 it is considered

a threshold distance of 5% the sum of both radii.

The following test cases are composed by rectangular boxes with different

dimensions similar to the experiments in (34). The dimension of a container

is represented by the number of particles of the maximum radius in each

dimension. For every radii distribution function we present the pack density,

porosity, mean coordination number, contact frequency and when applies the

radii frequency.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 42

Figure 5.3: Constant radius (0.08) - 30x30x30 pack - 29519 spheres.

Equal distribution

The first test considers an assembly with spheres of the same radius.

Figure 5.4 presents in the left side the resulting density and porosity values

and in the right side a closer view of the density values between [0.547 - 0.585].

Considering that with experimental tests it is reach a maximum density of

approximately 0.64 for packs with constant particle radius (18) our algorithm

achieves values with a difference of less than 0.1. Table 5.2 shows the achieved

coordination number for each rectangular box tested. According to Bennett’s

hypothesis (4), the mean number of contacts to guarantee the stability in a

mono-disperse pack is 6. Figure 5.5(b) plots the values between [6.17 - 6.91]

and Figure 5.5(a) shows the number of contact occurrences in a 30x30x30 pack.

We can say then that our solution obtains stable arrangements.

1 30 50 70 90 110 140

·103
0

0.2

0.4

0.54

0.64

0.8

1

N◦ Spheres

Density

Porosity

5.4(a): Wider view

1 30 50 70 90 110 140

·103

0.55

0.57

0.58

N◦ Spheres

D
en

si
ty

5.4(b): Narrow view

Figure 5.4: Constant radius (0.08) - Density and porosity ratios

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 43

Table 5.2: Equal distribution [0.08] - Coordination numbers
Length
Width 10x10 20x20 30x30 40x40 50x50
Height

10 6.17 6.54 6.74 6.76 6.92
20 6.19 6.49 6.61 6.65 6.72
30 6.22 6.45 6.57 6.60 6.66
40 6.22 6.44 6.54 6.57 6.63
50 6.22 6.44 6.53 6.56 6.60

2 3 4 5 6 7 8 9 10 11

0

0,2

0,4

0,6

0,8

1
·104

N◦ contacts

F
re
q
u
en

cy

5.5(a): Frequency - 30x30x30 pack

1 30 50 70 90 110 140

·103

6

6.2

6.4

6.6

6.8

6.9

N◦ Spheres

C
o
or
d
in
at
io
n
n
u
m
b
er

5.5(b): Coordination number

Figure 5.5: Contacts

Uniform distribution

With the same container dimensions, assemblies using a uniform radii

variation were created with a ratio of 2 between the minimum and maximum

radius. The density in a poli-disperse arrangement presents a higher ratio (or

lower porosity ratio) than a mono-disperse arrangement because with different

particle sizes the algorithm achieves less rejections for the minimum radius in

the insertion step, the experiments show that the density, going from 0.583 to

0.589, tends to stabilize at the value of 0.586 (Figure 5.7).

The mean coordination falls between [5.98 - 6.40]. Figure 5.8 maps the

frequency of the contact numbers. We can observe the appearance of

occurrences for 0, 1, 12 and 13 contacts in comparison with the constant radius

size experiment, but still persists the predominance of 6 and 7. Figure 5.9 shows

that the uniform distribution was preserved in the final pack.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 44

Figure 5.6: Uniform radius variation [0.04-0.08] - 20x40x20 pack - 38454
spheres.

0.2 5 10 15 20 25 30

·104
0

2

4

6

8

10
·10−1

N◦ Spheres

Density

Porosity

5.7(a): Wider view

0.2 5 10 15 20 25 30

·104
5.82

5.84

5.86

5.88

·10−1

N◦ Spheres

D
en

si
ty

5.7(b): Narrow view

Figure 5.7: Uniform radius variation [0.04-0.08] - Density and porosity ratios

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

2000

4000

6000

8000

N◦ contacts

F
re
q
u
en

cy

5.8(a): Frequency

0.2 5 10 15 20 25 30

·104

6

6.2

6.4

6.5

N◦ Spheres

C
o
or
d
in
at
io
n
n
u
m
b
er

5.8(b): Coordination number

Figure 5.8: Uniform radius variation [0.04-0.08] - 20x40x20 pack - Contacts

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 45

4 5 6 7
·10−2

0

1,000

2,000

3,000

4,000

Radii values

F
re
q
u
en
cy

Figure 5.9: Uniform radius variation [0.04-0.08] - 20x40x20 pack - Radii
Distribution

Bernoulli distribution

In this type of distribution we only consider two sizes of spheres with a

desired probability ρ used as a parameter to create particles with the maximum

radius. We explore the packing with a wider variation of the ratio between the

radii size (1:2, 1:3, 1:4) for a ρ = 0.5. Here the density has the tendency to

increase with a bigger container or higher number of particles (Figure 5.11(a))

in the ranges of (1:2)[0.577-0.599], (1:3)[0.561-0.600] and (1:4)[0.553-0.579].

Concerning the mean coordination number (Figure 5.12(b)), it also has

the tendency to increase with the number of particles: (1:2)[5.95-6.50],

(1:3)[5.69-6.20] and (1:4)[5.59-5.94]. The contact numbers occurrences in

Figure 5.12(a) shows the appearance of values from 13 to 17 in comparison to

the previous tests.

Figure 5.10: Bernoulli test (0.03,0.06) (ρ = 0.5) - 30x30x30 pack - 54918
spheres.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 46

0.2 2 7 12 17 22 27

·104

0.55

0.56

0.57

0.58

0.59

0.6

N◦ Spheres

D
en
si
ty

1 : 2
1 : 3
1 : 4

0.2 2 7 12 17 22 27

·104

0.4

0.41

0.42

0.43

0.44

0.45

N◦ Spheres

P
o
ro
si
ty

1 : 2
1 : 3
1 : 4

Figure 5.11: Bernoulli test (0.03,0.06) (ρ = 0.5) - Density and porosity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

0.2

0.4

0.6

0.8

1

1.2

·104

N◦ contacts

F
re
q
u
en

cy

1:2 1:3 1:4

0.2 2 7 12 17 22 27

·104

5.6

5.8

6

6.2

6.4

6.5

N◦ Spheres

C
o
or
d
in
a
ti
o
n
n
u
m
b
er

1 : 2
1 : 3
1 : 4

Figure 5.12: Bernoulli test (0.03,0.06) (ρ = 0.5) - Number of contacts and
coordination number.

To test the contact frequency inside a 30x30x30 pack we use three

probabilities (ρ = 0.25, 0.50, 0.75) to create particles with the maximum

radius. Figure 5.13(a) shows that for each probability were tested three packs

varying the ratio between the minimum and maximum radius. Table 5.3

proves that the pack results respect, with a small margin of error, the given

probability for the maximum radius. With a higher probability the algorithm

inserts fewer particles inside the rectangular boxes because spheres with bigger

size occupy more space.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 47

ρ = 0.25 ρ = 0.50 ρ = 0.75

1 : 2 1 : 3 1 : 4 1 : 2 1 : 3 1 : 4 1 : 2 1 : 3 1 : 4

0

0.1

0.2

0.3

0.7

0.85

·105

7
0
,2
0
9 8
5
,6
9
5

8
6
,7
6
7

2
7
,6
4
2

2
9
,4
0
3

2
9
,3
9
6

9
,6
9
1

1
0
,0
0
1

1
0
,0
3
12
2
,8
6
8

2
8
,6
3
6

2
9
,0
9
5

2
7
,3
4
4

2
9
,0
5
3

2
9
,1
9
1

2
8
,6
9
7

2
9
,2
2
9

2
9
,2
5
7

F
re
q
u
en

cy

Rmin Rmax

Figure 5.13: Bernoulli test - Pack 30x30x30 - Radii frequencies

Table 5.3: Bernoulli pack with desired ρ and actual ρc probabilities
ρ = 0.25 ρ = 0.50 ρ = 0.75

Radii Particles ρc Particles ρc Particles ρc
0.030 70209 0.754 27642 0.503 9691 0.246
0.060 22868 0.246 27344 0.497 29697 0.754

error(0.004) error(0.003) error(0.004)
0.020 85695 0.750 29403 0.503 10001 0.255
0.060 28636 0.250 29053 0.497 29229 0.745

error(0.000) error(0.003) error(0.005)
0.015 86767 0.749 29396 0.502 10031 0.255
0.060 29095 0.251 29191 0.498 29257 0.745

error(0.001) error(0.002) error(0.005)

Truncated Gaussian distribution

The Truncated gaussian generator receives as parameters the desired

mean µ and standard deviation σ for the radii, besides the Rmin and Rmax to

discard numbers out of this range. This experiment attempts to create packs

with µ = 0.05 and σ = 0.02 resulting in a density between [0.595-0.605] and a

mean coordination number between [6.07-6.50] (Figure 5.16(b)). The contact

frequency histogram is presented in Figure 5.16(a).

Figure 5.17 compares the normalized frequency values for a 20x20x20 pack with

the Gaussian curve of µ = 0.05 and σ = 0.02. The analysis of the generated

radii presents a current mean µc = 0.04987 and current standard deviation

σc = 0.015. We observe that the radii sizes were trimmed by the Rmin and

Rmax values.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 48

Figure 5.14: Truncated gaussian radius variation [0.02-0.08] [µ = 0.05 and
σ = 0.02] - 20x20x20 pack - 29711 spheres.

0.3 6 14 22 30 38 46.3

·104
0

2

4

6

8

10
·10−1

N◦ Spheres

Density

Porosity

5.15(a): Wide view

0.3 6 14 22 30 38 46.3

·104
0.59

0.6

0.6

0.6

0.6

0.6

0.61

N◦ Spheres

D
en

si
ty

5.15(b): Narrow view

Figure 5.15: Truncated gaussian radius variation [0.02-0.08] [µ = 0.05 and
σ = 0.02] - Density and porosity ratios

0 1 2 3 4 5 6 7 8 9 10111213141516

0

1000

2000

3000

4000

5000

N◦ contacts

F
re
q
u
en

cy

5.16(a): Frequency

0.3 6 14 22 30 38 46.3

·104

6.1

6.2

6.3

6.4

6.5

N◦ Spheres

C
o
or
d
in
at
io
n
n
u
m
b
er

5.16(b): Coordination number

Figure 5.16: Truncated gaussian radius variation [0.02-0.08] [µ = 0.05 and
σ = 0.02] - Frequencies

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 49

−2 0 2 4 6 8 10
·10−2

0

5

10

15

20

Radii values

F
re
q
u
en

cy

Figure 5.17: Truncated gaussian radius variation [0.02-0.08] [µ = 0.05 and
σ = 0.02] - Curve vs Pack

Another experiment with a wider particle size range [0.1 - 0.3] and desired

parameters [µ = 0.2 and σ = 0.05] displays the following pack radii frequency

(Figure 5.18). The particle configuration has a current mean µc = 0.1994 and

5 10 15 20 25 30
·10−2

0

2

4

6

8

Radii values

F
re
q
u
en

cy

Figure 5.18: Truncated gaussian radius [0.1-0.3] [µ = 0.2 and σ = 0.05]

current standard deviation σc = 0.044.

Particle rejection

A particular behavior of our packing algorithm is the preference to insert

particles with smaller sizes because those have a higher probability to fit into

empty spaces not colliding any other previously inserted sphere. That is the

justification to use a control mechanism to handle rejected radii and try to

insert them again in further loop cycles. We performed some tests without the

mechanism of control to examine these situations.

In Figure 5.19 are plotted the radii frequencies for two bernoulli packs adopting

ρ = 0.5 without particle rejection (filled bars with the same values as in

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 50

1:2 1:3 1:4

Rmin Rmax

4

14

25

·104

44 023

1,41 · 105

2,56 · 105

26 438 28 337 28 683
F
re
q
u
en

cy

Figure 5.19: Bernoulli 30x30x30 pack (ρ = 0.5) - Radii rejection comparison

Figure 5.13) and with rejections (empty wider bars) labeling in this last case

the number of particles per radius. Even though we use the probability ρ = 0.5,

the amount of spheres with Rmin far exceeds the amount of particles with

Rmax . This difference becomes highly evident with a higher ratio between the

minimum and maximum sizes.

Table 5.4 presents the number of particles in both lnrs and lprs lists after the

generation of packs with different ρ probabilities and particle size ratios. The

number of rejected radii remaining is very small in comparison to the number of

particles in the pack and presents an increase when the ρ probability is higher.

For all the test cases in this distribution the rejections lists are composed only

of the Rmax value.

Table 5.4: Bernoulli 30x30x30 pack - N◦ of rejected particles remaining
ρ = 0.25 ρ = 0.50 ρ = 0.75

1:2
N◦ pack particles 93077 54986 38388
lprs + lnrs 474 390 518
Remaining (%) 0.51% 0.71% 1.35%

1:3
N◦ pack particles 114331 58456 39230
lprs + lnrs 223 274 467
Remaining (%) 0.20% 0.47% 1.19%

1:4
N◦ pack particles 115862 58587 39288
lprs + lnrs 158 265 426
Remaining (%) 0.14% 0.45% 1.08%

Figures 5.20(a) and 5.20(b) show again, for the Uniform and Truncated

gaussian radius variation, that when our algorithm does not use the control

mechanism (empty bars) the produced radii do not respect the desired

distribution (filled bars) and has the tendency to insert smaller particles.

Tables 5.6 and 5.5 present the number of particles in the rejections lists after

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 51

4 5 6 7
·10−2

4 5 6 7
·10−2

2,000

3,000

4,000

5,000

Radii values

F
re
q
u
en
cy

5.20(a): Uniform 20x40x20

2 3 4 5 6 7
·10−2

2 3 4 5 6 7
·10−2

500

1,000

1,500

2,000

2,500

Radii values

F
re
q
u
en

cy

5.20(b): Truncated gaussian 20x20x20

Figure 5.20: Uniform and Gaussian packs - Radii rejection comparison

the packs generation. Both numbers represent a small percentage of the total

spheres in the pack. Figure 5.21 plots the frequency of the radii occurrences in

both experiments. The algorithm tends to reject radii with the higher value.

Table 5.5: Uniform 20x40x20 pack - N◦ of rejected particles remaining
N◦ pack particles 38454
lprs + lnrs 399
Remaining (%) 1.04%

Table 5.6: Truncated gaussian 20x20x20 pack - N◦ of rejected particles
remaining

N◦ pack particles 29711
lprs + lnrs 186
Remaining (%) 0.63%

4 5 6 7
·10−2

10

27

59

70

80

94

Radii values

F
re
q
u
en
cy

5.21(a): Uniform 20x40x20

2 3 4 5 6 7
·10−2

1

5

9

14
17

22

27

34

Radii values

F
re
q
u
en
cy

5.21(b): Truncated gaussian 20x20x20

Figure 5.21: Uniform and Gaussian packs - Rejected radii remaining frequency

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 52

Performance

To illustrate the efficiency of the package generation algorithm in

rectangular containers this section presents the time required to create packs

with each radii distribution function. Figures 5.22 and 5.23 show the required

time to create assemblies inside rectangular containers.

The algorithm managed to pack 465K particles in 11 minutes for the truncated

Gaussian distribution function and 250K particles in 9 minutes in the Bernoulli

tests.

0.1 6.5 16.5 26.5 36.5 46.5

·104

3

200

400

600

700

N◦ Spheres

T
im

e(
s)

Constant
Uniform
Gaussian

Figure 5.22: Spheres vs Time(s)

0.2 5 10 15 20 25

·104

2

100

200

300

350

N◦ Spheres

T
im

e(
s)

Bernoulli(1:2)

Bernoulli(1:3)

Bernoulli(1:4)

Figure 5.23: Bernoulli tests - Spheres vs Time(s)

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 53

Comparison with other packing solutions

Liu et al. (28) define two scenarios to compare their algorithm with

previous solutions. Both scenarios take a unitary cube as a container and

use a uniform radii variation for the packs with; a) Rmin = 1.7 × 10−2,

Rmax = 3.4 × 10−2 and b) Rmin = 5.1 × 10−3, Rmax = 5.1 × 10−2. In the

first test our coordination number was only lower than the one obtained by

Liu et al. (28), our density ratio value was the same as the obtained by Jerier

et al. (19). In the second test our coordination number was only better than

the result of Lubachevsky et al. and our density was the lowest of all. We must

say that both Jerier and Liu solutions perform a refilling operation after the

package generation to insert more particles inside the void spaces increasing

the density and coordination number. Our solution does not.

Table 5.7: Pack comparison for the uniform radii variation (28)

Algorithm Machine
Coordination

number
Density Time(min)

(a) (b) (a) (b) (a) (b)
Jerier et al. (19) Intel Core2, 2GHz 6.1 7.0 0.59 0.66 20 28
Lubachevsky et al. Intel Core2, 2GHz 5.5 3.0 0.64 0.69 120 577
Liu et al. (28) Intel Core2, 2.53GHz 9.2 8.1 0.61 0.69 2 4
Our algorithm Intel Core5, 3.00GHz 6.2 5.8 0.59 0.60 0.14 0.06

We also compare our packs with the ones generated with the solution proposed

by Yu Shi (34) using a single rectangular box of 30x30x35 for a Truncated

Gaussian radii variation using three particle size ranges varying in each range

the standard deviation of the pack. Table 5.8 presents the results of Yu Shi

and Table 5.9 presents ours. We can see that the densities and coordination

numbers are very close.

Table 5.8: Gaussian radii variation results in (34)

Density
Coordination

number
Radius
range

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

0.34-3.00 0.600 0.594 0.593 0.592 0.591 5.71 5.66 5.62 5.57 5.64
0.50-2.00 0.592 0.592 0.591 0.591 0.593 5.80 5.83 5.84 5.83 5.81
0.67-1.50 0.585 0.586 0.586 0.587 0.584 5.89 5.88 5.89 5.89 5.89

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 54

Table 5.9: Our Gaussian radii variation results

Density
Coordination

number
Radius
range

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

0.34-3.00 0.622 0.611 0.614 0.611 0.610 5.49 5.38 5.35 5.48 5.42
0.50-2.00 0.607 0.603 0.604 0.599 0.601 5.95 5.86 5.86 5.86 5.85
0.67-1.50 0.593 0.589 0.594 0.596 0.589 6.02 6.03 6.01 6.05 6.05

5.3
Filling arbitrary objects

To validate the effectiveness of the initial front creation integrated with

the assembly generation for triangle meshes we used different geometries as

pack containers. The tests contemplate the constitution of packs with equal

and uniform size variations using a Np = 18. Also, we wanted to create two

types of initial front to let us experiment with the two approaches to fill the

MAABB : a regular package with fixed particle positions and a random pack

resulting from our proposed algorithm with a uniform particle size variation.

When creating the MAABB pack it was used an Np = 9, because in this case

we are not interested in getting a dense pack.

Convex boundaries

The first test considers a simple geometry commonly used in the package

generation beside boxes, a cylinder. Then we generate spheres inside a mesh

representing a capsule.

Table 5.10: Cylinder - Mesh properties
Triangles Dimension Volume Distance Field Resolution

192 (2.14,4.00,2.14) 14.31 60x120x60

Table 5.11: Cylinder - Initial front and packing parameters
Initial front radii range [0.05] [0.04-0.06]
Mesh pack radii range [0.04-0.06] [0.05] [0.04-0.06] [0.05]
+ε 0.180 0.150 0.180 0.150
-ε 0.120 0.100 0.120 0.100
Mp 0.060 0.060 0.072 0.072
Type of MAABB pack Regular Random
Initial front 4434 4414 4960 4905
Pack particles 14031 14317 13912 14325
Density 0.530 0.524 0.530 0.524

Figure 5.24 and Figure 5.26 illustrate the set of spheres conforming the initial

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 55

5.24(a): Regular pack 5.24(b): Uniform
distribution

Figure 5.24: Cylinder - Initial front

front for the cylinder and the capsule. It is accentuated in Figure 5.24(a) and

Figure 5.26(a) the fronts regular composition in contrast with the random

fronts in Figure 5.24(b) and Figure 5.26(b).

5.25(a): Equal size 5.25(b): Uniform
distribution

Figure 5.25: Cylinder - Mesh packs

Table 5.12: Capsule - Mesh properties
Triangles Dimension Volume Distance Field Resolution

272 (6.37,3.49,3.49) 48.01 81x41x41

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 56

5.26(a): Regular pack 5.26(b): Uniform distribution

Figure 5.26: Capsule - Initial front

5.27(a): Equal size 5.27(b): Uniform distribution

Figure 5.27: Capsule - Mesh packs

Table 5.13: Capsule - Initial front and packing parameters
Initial front radii range [0.04] [0.03-0.05]
Mesh pack radii range [0.03-0.05] [0.04] [0.03-0.05] [0.04]
+ε 0.150 0.120 0.150 0.120
-ε 0.100 0.080 0.100 0.080
Mp 0.044 0.044 0.055 0.055
Type of MAABB pack Regular Random
Initial front 5272 5293 5989 5973
Pack particles 27688 28253 27718 28177
Density 0.536 0.532 0.535 0.531

Non-convex boundaries

The next experiments consider non-convex meshes: the torus (Figures

5.28 and 5.29), the bunny (Figures 5.30 and 5.31) and the knot (Figures 5.32

and 5.33).

Table 5.14: Torus - Mesh properties
Triangles Dimension Volume Distance Field Resolution

576 (3.81,0.76,3.81) 4.16 61x21x61

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 57

Table 5.15: Torus - Initial front and packing parameters
Initial front radii range [0.03] [0.02-0.04]
Mesh pack radii range [0.02-0.04] [0.03] [0.02-0.04] [0.03]
+ε 0.12 0.09 0.12 0.09
-ε 0.08 0.06 0.08 0.06
Mp 0.03 0.03 0.04 0.04
Type of MAABB pack Regular Random
Initial front 6236 6244 7788 7805
Pack particles 17329 18695 17387 18699
Density 0.520 0.508 0.519 0.508

5.28(a): Regular pack 5.28(b): Uniform distribution

Figure 5.28: Torus - Initial front

5.29(a): Equal size 5.29(b): Uniform distribution

Figure 5.29: Torus - Mesh packs

Table 5.16: Bunny - Mesh properties
Triangles Dimension Volume Distance Field Resolution

34817 (3.11,3.08,2.41) 6.04 60x60x60

Table 5.17: Bunny - Initial front and packing parameters
Initial front radii range [0.03] [0.02-0.04]
Mesh pack radii range [0.02-0.04] [0.03] [0.02-0.04] [0.03]
+ε 0.12 0.09 0.12 0.09
-ε 0.08 0.06 0.08 0.06
Mp 0.03 0.03 0.04 0.04
Type of MAABB pack Regular Random
Initial front 6482 6483 8189 8118
Pack particles 25771 27688 25550 27696
Density 0.531 0.518 0.531 0.519

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 58

5.30(a): Regular pack 5.30(b): Uniform distribution

Figure 5.30: Bunny - Initial front

5.31(a): Equal size 5.31(b): Uniform distribution

Figure 5.31: Bunny - Mesh packs

Table 5.18: Knot - Mesh properties
Triangles Dimension Volume Distance Field Resolution

640 (7.17,3.52,7.60) 33.68 111x71x111

5.32(a): Regular pack 5.32(b): Uniform distribution

Figure 5.32: Knot - Initial front

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 59

5.33(a): Equal size 5.33(b): Uniform distribution

Figure 5.33: Knot - Mesh packs

Table 5.19: Knot - Initial front and packing parameters
Initial front radii range [0.06] [0.05-0.07]
Mesh pack radii range [0.05-0.07] [0.06] [0.05-0.07] [0.06]
+ε 0.210 0.180 0.210 0.180
-ε 0.140 0.120 0.140 0.120
Mp 0.066 0.066 0.077 0.077
Type of MAABB pack Regular Random
Initial front 9239 9291 10796 10878
Pack particles 18216 18359 18107 18351
Density 0.500 0.493 0.500 0.493

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 60

Performance

In the following tables and pie charts it is summarized the spent time for

each important step in the process. We remark the speed of using a regular

package to fill the MAABB in comparison to the use of a random pack. The

distance field computation does not constitute a bottleneck. The step which

requires most time is the packing of the mesh.

Table 5.20: Time consumption for the cylinder pack results
Initial front radii range [0.05] [0.04-0.06]
Mesh pack radii range [0.04-0.06] [0.05] [0.04-0.06] [0.05]

Task Time(s)
Prism generation 0.00 0.00 0.00 0.00
Point creation 1.81 1.79 1.78 1.79
Distance field computation 83.7 70.2 82.6 54.7
Type of pack inside MAABB Regular Random
MAABB package 0.13 0.12 6.24 6.13
Front selection & relocation 1.61 1.33 1.01 1.00
Pack generation 298. 283. 329. 343.

5.34(a): Regular MAABB pack 5.34(b): Random MAABB pack

Figure 5.34: Cylinder times - Packs with constant radii

Table 5.21: Time consumption for the capsule pack results
Initial front radii range [0.04] [0.03-0.05]
Mesh pack radii range [0.03-0.05] [0.04] [0.03-0.05] [0.04]

Task Time(s)
Prism generation 0.00 0.00 0.00 0.00
Point creation 0.75 0.75 0.74 0.74
Distance field computation 3.34 2.79 3.37 2.54
Type of pack inside MAABB Regular Random
MAABB package 0.36 0.36 14.4 13.9
Front selection & relocation 4.27 3.76 1.65 1.64
Pack generation 443. 459. 493. 496.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 61

5.35(a): Regular MAABB pack 5.35(b): Random MAABB pack

Figure 5.35: Capsule times - Packs with constant radii

Table 5.22: Time consumption for the torus pack results
Initial front radii range [0.03] [0.02-0.04]
Mesh pack radii range [0.02-0.04] [0.03] [0.02-0.04] [0.03]

Task Time(s)
Prism generation 0.00 0.00 0.00 0.00
Point creation 0.47 0.50 0.49 0.48
Distance field computation 0.65 0.64 0.65 0.58
Type of pack inside MAABB Regular Random
MAABB package 0.40 0.40 22.4 22.1
Front selection & relocation 1.38 1.41 2.82 3.08
Pack generation 287. 300. 316. 326.

5.36(a): Regular MAABB pack 5.36(b): Random MAABB pack

Figure 5.36: Torus times - Packs with constant radii

Table 5.23: Time consumption for the bunny pack results
Initial front radii range [0.03] [0.02-0.04]
Mesh pack radii range [0.02-0.04] [0.03] [0.02-0.04] [0.03]

Task Time(s)
Prism generation 0.17 0.02 0.02 0.02
Point creation 2.34 2.31 2.28 2.29
Distance field computation 8.24 5.52 8.15 5.56
Type of pack inside MAABB Regular Random
MAABB package 0.91 0.91 47.9 48.9
Front selection & relocation 2.79 3.00 4.05 4.29
Pack generation 504. 526. 519. 570.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 62

5.37(a): Regular MAABB pack 5.37(b): Random MAABB pack

Figure 5.37: Bunny times - Packs with constant radii

Table 5.24: Time consumption for the knot pack results
Initial front radii range [0.06] [0.05-0.07]
Mesh pack radii range [0.05-0.07] [0.06] [0.05-0.07] [0.06]

Task Time(s)
Prism generation 0.00 0.00 0.00 0.00
Point creation 6.40 6.57 6.30 6.18
Distance field computation 26.7 22.8 26.8 19.7
Type of pack inside MAABB Regular Random
MAABB package 1.01 1.05 47.2 45.3
Front selection & relocation 4.00 4.18 6.39 6.02
Pack generation 470. 513. 595. 577.

5.38(a): Regular MAABB pack 5.38(b): Random MAABB pack

Figure 5.38: Knot times - Packs with constant radii

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 63

5.4
Point in polyhedron test

Besides the “Point in polyhedron” test there is an alternative method to

determine if a point is inside or outside a mesh called the “Winding number”.

The method counts the number of times the mesh winds around a point.

For every face it is computed the solid angle Ω(p) formed by the point. All

the angles are summed and only if the result is ω(p) = 0 then the point is

considered outside (17).

ω(p) =

f∑
i=1

1

4π
Ω(p) (5-4)

We will use this method to compare the results of our “Point in polyhedron”

implementation. The test cases will render all the triangles gathered by the

AABB with a margin of the ray R . The triangle colors will depend on the

type of collision: red for vertex, green for edge and blue for face intersection.

Test case 1

Figure 5.39: Point in polyhedron - Test case 1

This test case will allow us to identify two situations. The first layer of

triangles do not need to be taken in consideration for the collision test because

they are behind the ray, nevertheless the 2D “point in triangle” will find an

edge collision. Nevertheless the algorithm will compute the real X coordinates

of the points and discard the triangles. The ray passes through the middle of

three triangle pairs, and the algorithm was able to identify every edge collision

as one intersection. The test point p = (−1.8945, 0.0,−0.14032) intersects in

our implementation three times the mesh. Using the “Winding number” we

have a ω(p) = 1.0 identifying the point as inside the mesh.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 64

5.40(a): First 5.40(b): Second and
third

5.40(c): Fourth

Figure 5.40: Layers of triangles

Test case 2

Figure 5.41: Point in polyhedron - Test case 2

5.42(a): First and second 5.42(b): Third

Figure 5.42: Layers of triangles

The second test traces a ray starting from the point p =

(−1.29806,−0.32990,−0.34508) located inside the mesh. The issue with

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 65

this ray is that it passes through one edge and two vertices (each one shared

by 6 triangles). Our “Point in polyhedron” algorithm counts only three

intersections. The “Winding number” computes a value of ω(p) = 1.0 for the

point.

Test case 3

5.43(a): Mesh 5.43(b): Single layer

Figure 5.43: Point in polyhedron - Test case 3

This example shows a ray starting at point p = (−0.29806,−0.38094,

−0.34508) tangent to the mesh. The AABB of the ray intercepts three triangles

but only hits one edge. Because the dot products of the ray direction ~Rdir

and the triangle normals have different signs, the collision is not counted and

the point is recognized to be outside. This interpretation is confirmed by the

“Winding number” output ω(p) = 0.0

Test case 4

This case is similar to the previous example, the ray starting at the

point p = (−1.3626, 2.7450,−0.37704) is tangent to the mesh. But now the

ray intersects a vertex shared by 5 triangles. Since the dot products of the

triangle normals and the ~Rdir have different signs, the collision is not counted

as a mesh intersections. One again the “Winding number” value is ω(p) = 0.0.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 66

Figure 5.44: Point in polyhedron - Test case 4

5.45(a): Zoom 5.45(b): Triangles

Figure 5.45: Intersections

Test case 5

We left for the last example the simplest situation. A point p =

(−0.0806, 0.13432,−0.59241) outside the mesh intersects two triangles through

their faces. There is a third triangle gathered by the ray AABB but does not

intersect the ray. The “Winding number” output for this case is ω(p) = 0.0.

5.46(a): Mesh 5.46(b): Two layers

Figure 5.46: Point in polyhedron - Test case 5

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 67

Performance

It was executed the computation of all the points in the distance fields

of different meshes using the two available methods. We contemplate the sum

of every individual call to the method and then it was calculated a mean time

for a single call based on the distance field resolution.

Table 5.25: Time consumption for the point in polyhedron tests

Mesh
(N◦

triangles
f)

Distance
Field

Resolution
dxxdyxdz

Total Time(s)
Mean Time(s)

per Point

Winding
Number

Point
in

polyhedron

Winding
Number

Point
in

polyhedron
Capsule (272) 81x41x41 8.0 0.9 59× 10−6 6× 10−6

Torus (576) 61x21x61 9.7 0.5 125× 10−6 6× 10−6

Bunny (34817) 60x60x60 2042. 1.9 9456× 10−6 9× 10−6

Knot (640) 111x71x111 122. 5.6 140× 10−6 6× 10−6

Cylinder (192) 60x120x60 5.8 1.4 13× 10−6 3× 10−6

Clearly the “Point in polyhedron” consumes a lot less time. The disadvantage

of the “Winding number” is that has a O(dxdydzf) complexity. The bunny

mesh, for example, took almost half an hour due to its high number of faces.

In contrast, our method took only 2 seconds.

For every point in all the distance fields, the outcomes for our implementation

matched the outcome of the winding number method.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

6
Conclusion and Future Works

In this work we introduced a 3D packing method for spherical particles

derived from a 2D advancing front solution. The proposed algorithm generates

packages with acceptable geometric properties in a reasonable time in all

tested containers. The use of a distance field was effective in the proposed

algorithm. Comparing with the 2D version the proposed algorithm yields

tighter assemblies due to a better halo definition.

Due to its nature, the average number of contact points in the assemblies

produced by the proposed algorithm is just above 6, regardless of the

complexity of the mesh container and the radius distribution function. In the

case of monodisperse assemblies this number of contacts is enough to prove

that our packages are stable.

The resulting density is also almost constant. Around 0.6 for rectangular

containers, which is close to the maximum 0.64 density for monodisperse

assemblies, and 0.5 for arbitrary meshes.

The suggested discretization of the intersection halo is around 72, or 5◦ degrees

in order to get packs with high densities.

As for future work, there are certain aspects that could be explored to improve

the packing generation. A suggestion is to find an analytic solution for the best

position for a new particle in the intersection halo. A different approach might

consider insert particles tangent to three previously inserted spheres instead of

using the halo intersection. This way the new particle will have to check only

two possible positions. It is expected that both alternatives should produce

packages in less time. A possible difficulty is to find a criteria of how to select

the triplet of spheres.

We also suggest that in the insertion of a new sphere the algorithm could

consider different directions to improve the fitting of the spheres.

As the halo intersection tests suggest, the number of sampled points can be

used to slightly increase the porosity ratio, nonetheless this is not enough as

some simulations requires. Hence, a future work could study the application

of some mechanism of control to produce packs with a given porosity ratio.

A property of interest related to the porosity is the permeability, which is the

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 69

pack ability to allow fluids to pass through it. An idea to study this property

within our algorithm is with the update of the distance field on each particle

insertion to obtain a distance field of the voids.

As for the front generation, we could improve the assembly of spheres on the

surface of the containers with the relocation of those spheres to avoid any

interpenetration. With less spheres in the front the algorithm becomes more

efficient.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

A
Random number generators

The proposed assembly and front generation algorithms have as an input

the desired distribution function for the radii creation. We will explain how

the radii based on random number generators we created.

For the number generation we use the common function for random generation

numbers in C++ rand(). Since this function creates numbers in the range of

[0-RAND MAX] we divide the result by RAND MAX to obtain numbers

in the range of [0-1]. In the case of the Uniform distribution we produce the

particle radii by the following algorithm.

Algorithm 10 Uniform number generator

Input: minimumRadius, maximumRadius.
Output: newRadius.

random ← rand() / RAND MAX
newRadius ← minimumRadius + random * (maximumRadius -
minimumRadius)

For the Bernoulli distribution we use an additional parameter, a probability ρ

to create radii with the minimum value.

Algorithm 11 Bernoulli number generator

Input: minimumRadius, maximumRadius, probability.
Output: newRadius.

if rand() / RAND MAX < 1.0 - probability then
newRadius ← minimumRadius

else
newRadius ← maximumRadius

end if

Our Truncated gaussian distribution generator implements a polar version

of the Box Muller transform (37) which creates a pair of random numbers

with standard normal distribution (µ = 0 and σ2 = 1) in a single execution.

Then the numbers are scaled and translated multiplying them by the desired

standard deviation and adding the desired mean. Only those numbers between

the minimum and maximum radius are accepted.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 71

Algorithm 12 Truncated gaussian number generator

Input: minimumRadius, maximumRadius, mean, standardDeviation.
Output: newRadius.

static n2 ← 0
static n2Cached ← 0
repeat

if not n2Cached then
repeat

x ← 2 * rand() / RAND MAX - 1
y ← 2 * rand() / RAND MAX - 1
r = x * x + y * y

until r != 0 and r <= 1
d ← sqrt(-2 * log(r) / r)
n1 ← x * d
n2 ← y * d
n2Cached ← 1
newRadius ← mean + n1 * standardDeviation

else
n2Cached ← 0
newRadius ← mean + n2 * standardDeviation

end if
until newRadius >= minimusRadius and newRadius <= maximumRadius

−2 0 2 4 6 8 10 12 14 16 18

0

10

20

30

40

50

60

70

80

Random number values

F
re
q
u
en

cy

Figure A.1: 1000 values using the Truncated gaussian number generator
(µ = 10, σ2 = 9)

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

Bibliography

[1] BAGI, K. Granular Matter. An algorithm to generate random dense

arrangements for discrete element simulations of granular assemblies, journal,

v.7, n.1, p. 31–43, 2005.

[2] BENABBOU, A.; BOROUCHAKI, H.; LAUG, P. ; LU, J. Sphere

packing and applications to granular structure modeling.

In: PROCEEDINGS OF THE 17TH INTERNATIONAL MESHING

ROUNDTABLE, p. 1–18. Springer, 2008.

[3] BENABBOU, A.; BOROUCHAKI, H.; LAUG, P. ; LU, J. International

journal for numerical methods in engineering. Geometrical

modeling of granular structures in two and three dimensions. application to

nanostructures, journal, v.80, n.4, p. 425–454, 2009.

[4] BENNETT, C. H. Journal of Applied Physics. Serially deposited

amorphous aggregates of hard spheres, journal, v.43, n.6, p. 2727–2734, 1972.

[5] BEZRUKOV, A.; BARGIE L, M. ; STOYAN, D. Particle & Particle

Systems Characterization. Statistical analysis of simulated random

packings of spheres, journal, v.19, n.2, p. 111–118, 2002.

[6] BEZRUKOV, A.; STOYAN, D. ; BARGIEL, M. Image Anal. Stereol.

Spatial statistics for simulated packings of spheres, journal, v.20, p. 203–206,

2001.

[7] BORKOVEC, M.; DE PARIS, W. ; PEIKERT, R. Fractals. The fractal

dimension of the apollonian sphere packing, journal, v.2, n.04, p. 521–526,

1994.

[8] CUI, L.; O SULLIVAN, C. Granular Matter. Analysis of a triangulation

based approach for specimen generation for discrete element simulations,

journal, v.5, n.3, p. 135–145, 2003.

[9] CUNDALL, P. A.; STRACK, O. D. Geotechnique. A discrete numerical

model for granular assemblies, journal, v.29, n.1, p. 47–65, 1979.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 73

[10] ERICSON, C. Real-Time Collision Detection. The Morgan Kaufmann

Series in Interactive 3D Technology. Elsevier Science, 2004.

[11] FENG, Y.; HAN, K. ; OWEN, D. International Journal for

Numerical Methods in Engineering. Filling domains with disks: an

advancing front approach, journal, v.56, n.5, p. 699–713, 2003.

[12] FLICKINGER, J. C.; WU, A.; MAITZ, A. H.; KALEND, A. M. ;

OTHERS. International Journal of Radiation Oncology* Biology*

Physics. Treatment planning for gamma knife radiosurgery with multiple

isocenters, journal, v.18, n.6, p. 1495–1501, 1990.

[13] FUHRMANN, A.; SOBOTKA, G. ; GROSS, C. Distance fields

for rapid collision detection in physically based modeling. In:

PROCEEDINGS OF GRAPHICON 2003, p. 58–65, 2003.

[14] HAN, K.; FENG, Y. ; OWEN, D. Powder Technology. Sphere packing

with a geometric based compression algorithm, journal, v.155, n.1, p. 33–41,

2005.

[15] HITTI, K.; BERNACKI, M. Applied Mathematical Modelling.

Optimized dropping and rolling (odr) method for packing of poly-disperse

spheres, journal, v.37, n.8, p. 5715–5722, 2013.

[16] HORN, W. P.; TAYLOR, D. L. Computer Vision, Graphics, and

Image Processing. A theorem to determine the spatial containment of a

point in a planar polyhedron, journal, v.45, n.1, p. 106–116, 1989.

[17] JACOBSON, A.; KAVAN, L. ; SORKINE-HORNUNG, O. ACM Trans.

Graph. Robust inside-outside segmentation using generalized winding

numbers., journal, v.32, n.4, p. 33, 2013.

[18] JALALI, P.; LI, M. The Journal of Chemical Physics. An estimate of

random close packing density in monodisperse hard spheres, journal, v.120,

n.2, 2004.

[19] JERIER, J.-F.; IMBAULT, D.; DONZE, F.-V. ; DOREMUS, P.

Granular Matter. A geometric algorithm based on tetrahedral meshes

to generate a dense polydisperse sphere packing, journal, v.11, n.1, p. 43–52,

2009.

[20] JERIER, J.-F.; RICHEFEU, V.; IMBAULT, D. ; DONZÉ, F.-V.

Computer Methods in Applied Mechanics and Engineering.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 74

Packing spherical discrete elements for large scale simulations, journal, v.199,

n.25, p. 1668–1676, 2010.

[21] JIANG, M.; KONRAD, J. ; LEROUEIL, S. Computers and

geotechnics. An efficient technique for generating homogeneous specimens

for dem studies, journal, v.30, n.7, p. 579–597, 2003.

[22] JIANG, M.; YU, H.-S. Application of discrete element method to

geomechanics. Springer, 2006.

[23] KALAY, Y. E. Computer Graphics and Image Processing.

Determining the spatial containment of a point in general polyhedra, journal,

v.19, n.4, p. 303–334, 1982.

[24] LABRA, C.; ONATE, E. Communications in Numerical Methods

in Engineering. High-density sphere packing for discrete element method

simulations, journal, v.25, n.7, p. 837–849, 2009.

[25] LEWIS, R. W.; GETHIN, D. T.; YANG, X. S. ; ROWE, R. C.

International journal for numerical methods in engineering.

A combined finite-discrete element method for simulating pharmaceutical

powder tableting, journal, v.62, n.7, p. 853–869, 2005.

[26] LI, J.; WEBB, C.; PANDIELLA, S. ; CAMPBELL, G. Food and

bioproducts processing. A numerical simulation of separation of crop

seeds by screening effect of particle bed depth, journal, v.80, n.2, p. 109–117,

2002.

[27] LIU, J.; LI, S. ; CHEN, Y. Acta Mechanica Sinica. A fast and practical

method to pack spheres for mesh generation, journal, v.24, n.4, p. 439–447,

2008.

[28] LIU, J.; YUN, B. ; ZHAO, C. International Journal for Numerical

and Analytical Methods in Geomechanics. An improved specimen

generation method for dem based on local delaunay tessellation and distance

function, journal, v.36, n.5, p. 653–674, 2012.

[29] MUNJIZA, A.; ANDREWS, K. International Journal for Numerical

Methods in Engineering. Nbs contact detection algorithm for bodies of

similar size, journal, v.43, n.1, p. 131–149, 1998.

[30] PINTO, A. L. F. Algoritmo para geração de arranjos de particulas

para utilização no método dos elementos discretos. 2009. Master’s

thesis - Pontif́ıcia Universidade Católica do Rio de Janeiro.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

An Algorithm to Generate Random Sphere Packs in Arbitrary Domains 75

[31] PÖSCHEL, T.; SCHWAGER, T. Computational Granular

Dynamics: Models and Algorithms. SCIENTIFIC COMPUTATION.

Springer, 2005.

[32] SAKAGUCHI, E.; FAVIER, J. International Agrophysics. Analysis of

the shear behaviour of a grain assembly using dem simulation, journal, v.14,

n.2, p. 241–248, 2000.

[33] SCHIFTNER, A.; HÖBINGER, M.; WALLNER, J. ; POTTMANN, H.

Packing circles and spheres on surfaces. In: ACM TRANSACTIONS

ON GRAPHICS (TOG), volume 28, p. 139. ACM, 2009.

[34] SHI, Y.; ZHANG, Y. Simulation of random packing of

spherical particles with different size distributions. In: ASME

2006 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND

EXPOSITION, p. 539–544. American Society of Mechanical Engineers, 2006.

[35] STOYAN, D. International Statistical Review. Random sets: Models

and statistics, journal, v.66, n.1, p. 1–27, 1998.

[36] SUN, Y.; XU, W. International Journal of Computer Applications

in Technology. Simulation of food mastication based on discrete element

method, journal, v.39, n.1, p. 3–11, 2010.

[37] THOMAS, D. B.; LUK, W.; LEONG, P. H. ; VILLASENOR, J. D. ACM

Comput. Surv. Gaussian random number generators, journal, v.39, n.4,

Nov. 2007.

[38] WEAIRE, D.; ASTE, T. The pursuit of perfect packing. CRC Press,

2008.

[39] WELLER, R.; ZACHMANN, G. Protosphere: A gpu-assisted

prototype guided sphere packing algorithm for arbitrary objects.

In: ACM SIGGRAPH ASIA 2010 SKETCHES, p. 8. ACM, 2010.

[40] ZSAKI, A. Computers and Geotechnics. An efficient method for

packing polygonal domains with disks for 2d discrete element simulation,

journal, v.36, n.4, p. 568–576, 2009.

[41] ZSAKI, A. International journal for numerical and analytical

methods in geomechanics. Parallel generation of initial element

assemblies for two-dimensional discrete element simulations, journal, v.33,

n.3, p. 377–389, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1213293/CA

	An Algorithm to Generate Random Sphere Packs in Arbitrary Domains
	Abstract
	Contents
	Introduction
	Related Work
	Package Generation
	Radius generation and particle size-distribution
	Neighbour particle search
	Generation loop
	Halo intersections
	Particle insertion

	Initial Fronts Generation
	Grid of distance points
	Mesh shell creation
	Distance field calculation
	Initial front selection

	Results
	Points in halo intersection
	Packages for rectangular containers
	Filling arbitrary objects
	Point in polyhedron test

	Conclusion and Future Works
	Random number generators
	Bibliography

