

John Steven Castellanos Prado

Análise de componentes de dutos com perdas de espessura e reparos com materiais compósitos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC-Rio.

Orientador: Prof. José Luiz de França Freire

Rio de Janeiro Outubro de 2014

John Steven Castellanos Prado

Análise de componentes de dutos com perdas de espessura e reparos com materiais compósitos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Luiz de França Freire Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Arthur Martins Barbosa Braga Departamento de Engenharia Mecânica – PUC-Rio

> Dr. Marco Antonio Perez Rosas Det Norske Veritas

Prof. José Eugenio LealCoordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 02 de outubro de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

John Steven Castellanos Prado

Graduou-se em Engenharia Metalúrgica pela Universidad Industrial de Santander (UIS) em 2012. Ingressou no curso de mestrado em Engenharia Mecânica no ano de 2012. Desenvolveu pesquisa simulando reforços de dutos com uso de materiais compósitos.

Ficha Catalográfica

Prado, John Steven Castellanos

Análise de componentes de dutos com perdas de espessura e reparos com materiais compósitos / John Steven Castellanos Prado ; orientador: José Luiz de França Freire. – 2014.

204 f.: il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2014.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Dutos. 3. Corrosão. 4. Reparos não metálicos. 5. Compósitos. 6. Integridade. 7. Estruturas. 8. Strain gages. 9. Elementos finitos. I. Freire, José Luiz de França. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

A mis padres Ana Cristina Prado y Jorge Castellanos por su apoyo incondicional y ejemplo de dedicación. A mis hermanos Andres, Maryi, Gina y Deybi por ser los que me impulsan a ser una mejor persona.

Agradecimentos

Ao meu orientador Professor José Luiz Freire pela paciência, ensinamentos e dedicação durante todo o mestrado.

Ao Professor Ronaldo Vieira pela contribuição dos ensaios experimentais e sua orientação.

À PUC-Rio e à CAPES pelos auxílios concedidos, sem os quis este trabalho não poderia ter sido realizado.

A meus colegas da mecânica que ajudaram na realização da minha dissertação.

A meus amigos colombianos que compartilharam comigo a saudade da nossa terra e das nossas famílias.

A meus amigos equatorianos Marco Guamán e Patricia Pontón por compartilhar sua amizade e receitas de cozinha.

A Margarita Habran pela orientação e ajuda prestada quando cheguei e quando fiquei sim casa.

A minhas vizinhas Lucia e Lourdes por sua atenção e bons desejos durante esta etapa.

Ao amor da minha vida Andrea Herrera que iniciou e terminou junto comigo esta aventura, obrigado por estar a meu lado e me alentar quando as coisas não iam muito bem.

Resumo

Prado, John Steven Castellanos; Freire, José Luiz de França. **Análise de componentes de dutos com perdas de espessura e reparos com materiais compósitos**. Rio de janeiro, 2014. 204p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica de Rio do Janeiro.

Neste trabalho foram estudados quatro geometrias de componentes tubulares, para trabalho sob pressão interna, que continham defeitos tipo perda de espessura metálica em regiões de sua superfície externa e que foram reparados por dois sistemas de materiais compósitos. As seguintes geometrias de espécimes tubulares foram estudadas: dutos com redução de diâmetro, dutos curvados a frio, dutos curvados a quente e uniões tubulares em T. Os dois sistemas de materiais compósitos consistiram de um sistema com mantas de resina epóxi reforçadas por fibra de vidro (ERFV) e outro sistema com mantas de resina epóxi reforçadas por fibra de carbono (ERFC). O método de Elementos Finitos foi usado para simular o comportamento dos espécimes quando submetidos a testes hidrostáticos. As simulações levaram em consideração o comportamento do material dos tubos API 5L Grau B nas suas regiões elástica e plástica, e investigaram o aumento da resistência à ruptura dos tubos com defeitos proporcionados pela presença dos reparos compósitos. Os resultados obtidos com os modelos de elementos finitos, usados para as determinações de distribuições de deformações e de pressões de ruptura, foram comparados com resultados experimentais disponíveis para cada componente tubular. Os resultados destas comparações foram satisfatórios. Posteriormente, foram desenvolvidas equações para determinar espessuras otimizadas para os reparos e os resultados obtidos com estas equações foram comparados com os resultados das simulações por elementos finitos e outros resultados obtidos com equações disponíveis em normas pertinentes. Em conclusão, o método de elementos finitos usado neste trabalho simulou satisfatoriamente o comportamento em testes hidrostáticos de componentes tubulares tipo Tê, com redução concêntrica, curvados a quente e curvados a frio, com defeitos de perda de espessura metálica e que foram reparados com materiais compósitos. Por sua vez, os resultados numéricos auxiliaram na validação de equações analíticas simples que poderão ser usadas na determinação de espessuras otimizadas de sistemas de reparos com materiais compósitos.

Palavras - chave

Dutos; Corrosão; Reparos não metálicos; Compósitos; Integridade; Estruturas; Strain Gages; Elementos Finitos.

Abstract

Prado, John Steven Castellanos; Freire, José Luiz de França (Advisor). Analysis pipeline components with metal loss repaired with composite materials. Rio de janeiro, 2014. 204p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica de Rio do Janeiro.

This dissertation investigates four geometries of pipe components that operate with internal pressure and contain metal loss defects in areas of their external surface. These components were repaired with two systems of composite materials that consisted of epoxy resin reinforced by glass fiber (ERFV) and epoxy resin reinforced by carbon fiber (ERFC). The following tubular specimens were studied: components with concentric diameter reducers, hot curved short radius elbow components, cold curved long radius elbow components and Tcomponents. The finite element method was used to simulate the behavior of the specimens when submitted to hydrostatic tests. The simulations took into consideration the behavior of the material of the pipes API 5L Grade B in their elastic and plastic regions, and investigated the increase in the rupture strength of the pipes with defects that was provided by the presence of composite repairs. The results obtained with the finite element models, used for the determination of distributions of deformation and burst pressures, were compared with experimental results available for each pipe component. The results of these comparisons were satisfactory. Subsequently, simple analytical equations were developed to determine the optimized thicknesses for the composite repair systems and the results obtained from these equations were compared with the results determined with the finite element models and with other results obtained with equations recommended by international relevant standards. In conclusion, the finite element method used in this work satisfactorily simulated the behavior of the selected pipe components with defects of metal loss that were hydrostatically tested and that were repaired with composites materials. The numerical results helped to validate simple analytical equations that can be used in

the determination of the optimized thicknesses of repair systems with composite materials.

Keywords

Pipelines; Corrosion; Non-metallic Repairs; Composite Repairs; Integrity; Structures; Strain Gages; Finite Element.

Sumário

1 Introdução	35
1.1. Objetivo geral	36
1.2. Objetivos específicos	36
1.3. Estudos realizados	36
1.4. Materiais compósitos	38
1.5. Testes de pressão hidrostáticos previamente realizados	38
1.6. Roteiro da dissertação	40
2 Fundamentos para a avaliação de integridade de dutos com	
perdas de espessura e reparados com materiais compósitos	42
2.1. Análise de tensões	42
2.2. Critérios de resistência	43
2.3. Tensões em dutos sem defeito	44
2.4. Tensões e critérios de resistência de dutos com defeitos	
longitudinais	44
2.5. Critérios de aceitação para a avaliação de componentes	
estruturais	46
2.5.1. Tensão admissível	46
2.5.2. FAD-Diagrama para avaliação de falha	47
2.5.3. RSF - Fator de resistência remanescente	47
2.6. Critérios de falha para materiais compósitos	48
2.6.1. Critério da máxima tensão	48
2.6.2. Critério da máxima deformação	49
2.6.3. Teoria de Tsai-Hill	50
2.7. Critérios para determinar espessuras de reparos em dutos	
com perda de espessura externa	50
3 Modelagem analítica	53
3.1. Equações analíticas	53
3.2. Determinação das curvas tensão - deformação uniaxial para	

os materiais estudados	57
4 Modelagem numérica	63
4.1. Descrição da modelagem numérica	63
4.2. Dutos com redução concêntrica	69
4.3. Dutos tipo Tê	73
4.4. Dutos curvados a frio	81
4.5. Dutos curvados a quente	86
5 Abordagem experimental	91
5.1. Material	91
5.2. Fechamentos dos tampos	91
5.3. Características gerais, denominações e quantidades	91
5.4. Rebaixos	93
5.5. Instrumentação nos testes de pressão hidrostáticos	95
5.5.1. Medição de pressão	96
5.5.2. Medição do volume de água injetado nos espécimes	96
5.5.3. Pressurização dos espécimes tubulares	96
5.5.4. Leitura e registro de sinais	96
5.5.5. Medição de deformações	97
5.5.6. Incertezas das medidas e taxas de aquisição	103
5.6. Procedimento de teste	103
5.6.1. Determinação da pressão de teste hidrostático	103
5.6.2. Teste de pressão hidrostático	103
6 Comparação, avaliação e discussão dos resultados	105
6.1. Dutos com redução concêntrica	105
6.2. Dutos tipo Tê	113
6.3. Dutos curvados a frio	124
6.4. Dutos curvados a quente	133
6.5. Fatores de resistência remanescente	141
6.6. Espécimes simulados com variação de parâmetros.	142
6.7. Comparação entre as espessuras de reparo determinados	
mediante normas e a equação analítica desenvolvida	150

7 Conclusões e sugestões	155
7.1. Espécimes com redução concêntrica	155
7.2. Espécimes tipo Tê	156
7.3. Espécimes curvados a frio	156
7.4. Espécimes curvados a quente	157
7.5. Sugestões para trabalhos futuros	158
8 Referências bibliográficas	159
Apêndice	163
A Resultados do levantamento dimensional	163
Instrumentos de medição e incerteza	163
Medições dos espécimes curvados a frio	164
Medições dos espécimes curvados a quente	166
Medições dos espécimes com redução concêntrica	168
Medições dos espécimes tipo Tê	171
B Resultados experimentais	174
Dutos curvados a frio	174
Dutos curvados a quente	177
Dutos com redução concêntrica	180
Dutos tipo Tê	183
C Procedimento para calcular as curvas tensão - deformação a	
partir de dados experimentais	186
D Tensões em dutos curvados a quente	194
E Análise de colanso plástico sobre o defeito	202

Listas de figuras

Figura 1.1 - Tipos de dutos analisados [22].	39
Figura 2.1 - Geometria de um defeito longitudinal para avaliação	
[24].	45
Figura 2.2-Manta unidirecional eixos principais 1 (longitudinal), 2	
(transversal) e 3 (normal ao plano da lamina).	49
Figura 3.1 - Tipos de dutos analisados com rebaixos [16].	53
Figura 3.2 - Curva tensão - deformação levantada para o tubo de	
aço API 5L Grau B (MAT 1) a partir dos resultados experimentais	
coletados no ensaio hidrostático do espécime Re3, na seção	
nominal do tubo com diâmetro 12,75 in onde se posicionou a	
roseta extensométrica R1.	59
Figura 3.3 - Curva tensão - deformação levantada para o tubo de	
aço API 5L Grau B (MAT 2) a partir dos resultados experimentais	
coletados no ensaio hidrostático do espécime CQ2, na seção	
nominal do tubo com diâmetro 12,75 in onde se posicionou a	
roseta extensométrica R1.	59
Figura 3.4 - Curva tensão - deformação levantada para o tubo de	
aço API 5L Grau B (MAT 3) a partir dos resultados experimentais	
coletados no ensaio hidrostático do espécime CF4 na seção	
nominal do tubo com diâmetro 12,75 in onde se posicionou a	
roseta extensométrica R1.	60
Figura 3.5 - Comparação entre as curvas pressão-deformação	
circunferencial, na conexão, medidos no centro do defeito do	
espécime Re7 sem reparo com o extensômetro R2C, e calculado	
para o mesmo ponto usando-se o método de elementos finitos e a	
curva tensão - deformação para o MAT 1 apresentada na Figura	
3.2.	61
Figura 3.6 - Curva tensão-deformação levantada para a conexão	
cônica (MAT 4) a partir da modificação dos resultados	

experimentais gerados nos ensaios hidrostáticos dos espécimes	
Re3 e Re7.	62
Figura 4.1 - Elemento Solid 187 3D [20].	63
Figura 4.2 - Curva tensão - deformação das mantas de resina	
epóxi reforçada por fibra de vidro e por fibra de carbono (ERFV,	
ERFC).	66
Figura 4.3 - Condições de contorno Re, simetria na seção verde	
em relação ao eixo X.	69
Figura 4.4 - Tensão circunferencial na posição B e tensões de von	
Mises nas posições A e C para o espécime Re3.	70
Figura 4.5 - Tensão de von Mises para o espécime Re3, a ruptura	
acontece a 267 bar e tensão de von Mises de 426 MPa	
(correspondente ao limite de ruptura do material MAT 1 usado).	71
Figura 4.6 - Tensão circunferencial na posição B e tensões de von	
Mises nas posições A e C para o espécime Re1.	72
Figura 4.7 - Tensão de von Mises para o espécime Re1, a ruptura	
acontece a 274 bar e tensão de von Mises de 426 MPa	
(correspondente ao limite de ruptura do material MAT 1 usado).	72
Figura 4.8 - Tensão de von Mises na posição A e B para o	
espécime Re7.	73
Figura 4.9 - Tensão de von Mises para o espécime Re7 a ruptura	
acontece a 205 bar e tensão de von Mises de 510	
(correspondente ao limite de ruptura do material MAT 4 usado).	73
Figura 4.10 - Condições de contorno Te, simetria na seção verde	
em relação ao eixo X.	74
Figura 4.11 - Coordenadas utilizadas na simulação de cada	
reparo.	75
Figura 4.12 - Deformação circunferencial nas posições B e C para	
o espécime Tê2.	76
Figura 4.13 - Tensão circunferencial nas posições B e C, para o	
espécime Tê2.	76
Figura 4.14 - Deformação circunferencial para o espécime Tê2 a	
ruptura acontece a 237 e deformação de 1,4% (correspondente	
ao limite de ruptura do compósito ERFC usado).	77

rigura 4.15 - Terisão de von Mises para o especime Tez simulado	
sob uma pressão de 237bar.	78
Figura 4.16 - Deformação circunferencial nas posições B e C para	
o espécime Tê7.	79
Figura 4.17 - Tensão circunferencial nas posições B e C, para o	
espécime Tê2.	79
Figura 4.18 - Tensão de von Mises para o espécime Tê7 simulado	
sob uma pressão de 240 bar.	80
Figura 4.19 - Tensão de von Mises para o espécime Tê4, a	
ruptura acontece a 97,5 bar e tensão de von Mises de 426 MPa	
(correspondente ao limite de ruptura do material MAT 1 usado).	80
Figura 4.20 - Condições de contorno CF, simetria na seção verde	
em relação ao eixo X e simetria na seção roxa em relação ao eixo	
Z.	81
Figura 4.21-Duto com e sem ovalização.	82
Figura 4.22 - Curva pressão - deformação longitudinal posição R1	
e circunferencial na posição R1 e U3 testados experimentalmente	
(TPH) até a ruptura no espécime CF5.	82
Figura 4.23 - Tensão circunferencial na posição B e tensões de	
von Mises nas posições A e C para o espécime CF7.	83
Figura 4.24 - Tensão de von Mises para o espécime CF7, a	
ruptura acontece a 309 bar e tensão de von Mises de 485 MPa	
(correspondente ao limite de ruptura do material MAT 2 usado).	84
Figura 4.25 - Tensão circunferencial na posição B e tensões de	
von Mises nas posições A e C para o espécime CF4.	85
Figura 4.26 - Tensão de von Mises para o espécime CF4, a	
ruptura acontece a 315 bar e tensão de von Mises de 485 MPa	
(correspondente ao limite de ruptura do material MAT 2 usado).	85
Figura 4.27 - Tensão de von Mises para o espécime CF5 quando	
acontece a ruptura sob uma pressão 105 bar.	86
Figura 4.28 - Condições de contorno CQ, simetria na seção	
vermelha em relação ao eixo X e simetria na seção verde em	
relação ao eixo Z.	87
Figura 4.29 - Perfil de espessura nos espécimes curvos a quente.	87

Figura 4.30 - Tensão circunferencial na posição B, tensão de von	
Mises nas posições A e C para o espécime CQ3.	88
Figura 4.31 - Tensão circunferencial para o espécime CQ3, a	
ruptura acontece a 300 bar e tensão de circunferencial de 233	
MPa (correspondente ao limite de ruptura do material MAT 3	
usado).	88
Figura 4.32 - Tensão circunferencial na posição B, tensão de von	
Mises nas posições A e C para o espécime CQ2.	89
Figura 4.33 - Tensão de von Mises para o espécime CQ2, a	
ruptura acontece a 370 bar e tensão de von Mises de 616 MPa	
(correspondente ao limite de ruptura do material MAT 3 usado).	90
Figura 4.34 - Tensão de von Mises para o espécime CQ7, a	
ruptura acontece a 52 bar e tensão de von Mises de 616 MPa	
(correspondente ao limite de ruptura do material MAT 3 usado).	90
Figura 5.1 - Dimensão nominal dos dutos testados.	92
Figura 5.2 - Curvas a quente e a frio Ø12 ¾", corte transversal do	
tubo na região do rebaixo.	94
Figura 5.3 - Curvas a quente e a frio Ø12 ¾", vista longitudinal,	
rebaixo localizado no extradorso equidistante das extremidades.	94
Figura 5.4 - Conexões Tê Ø12 ¾" com ramal Ø10 ¾".	94
Figura 5.5 - Redução concêntrica Ø12 ¾" para Ø10 ¾".	95
Figura 5.6 - Confecção dos rebaixos para cada tipo de espécime,	
CF, CQ, Re e Tê respectivamente.	95
Figura 5.7 - Espécimes depois de serem feitos os rebaixos por	
eletro- erosão.	95
Figura 5.8 - Localização dos extensômetros nos dutos curvados a	
frio (ERFV).	97
Figura 5.9 - Localização dos extensômetros nos dutos curvados a	
quente (ERFV).	98
Figura 5.10 - Localização dos extensômetros nos dutos com	
redução concêntrica (ERFV).	98
Figura 5.11 - Localização dos extensômetros nos dutos tipo Tê	
(FRFV).	99

rigura 5.12 - Localização dos extensometros no duto curvado a	
frio sem reparo.	100
Figura 5.13 - Localização dos extensômetros no duto curvado a	
quente sem reparo.	100
Figura 5.14 - Localização dos extensômetros no duto com	
redução concêntrica sem reparo.	101
Figura 5.15 - Localização dos extensômetros no duto tipo Tê sem	
reparo.	102
Figura 6.1 - Deformação circunferencial ERE, MEF e equações	
analíticas na posição R1 sob pressão de 140 bar.	106
Figura 6.2 - Tensão circunferencial MEF e equações analíticas na	
posição R1 sob pressão de 140 bar.	106
Figura 6.3 - Tensão de von Mises MEF e equações analíticas na	
posição R1 sob pressão de 140 bar.	107
Figura 6.4 - Curvas pressão - deformações circunferenciais para a	
superfície externa do reparo sobre a região central do defeito	
determinadas pelas soluções experimental e numérica para o	
espécime Re1 reparado com mantas de fibra de carbono.	108
Figura 6.5 - Curvas pressão - deformações circunferenciais para a	
superfície externa do reparo sobre a região central do defeito	
determinadas pelas soluções experimentais e numérica para o	
espécime Re3 reparado com mantas de fibra de vidro.	108
Figura 6.6 - Curvas pressão - deformações circunferenciais para a	
região central do tubo de 12,75 in determinadas pelas soluções	
experimental e numérica do espécime Re3 reparado com mantas	
de fibra de vidro.	109
Figura 6.7 - Curvas pressão - deformações circunferenciais para a	
região central do tubo de 12,75 in determinadas pelas soluções	
experimental e numérica do espécime Re1 reparado com mantas	
de fibra de carbono.	110
Figura 6.8-Curvas pressão - deformações circunferenciais para a	
região central do defeito determinadas pelas soluções	
experimental e numérica do espécime Re7 sem reparo.	111

rigura 6.9 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime Re3	
reparado com compósito ERFV.	112
Figura 6.10 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime Re1	
reparado com compósito ERFC.	112
Figura 6.11 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime Re7	
sem reparo.	113
Figura 6.12 - Deformação circunferencial ERE, MEF e equações	
analíticas na posição R1 sobre o tubo de 12,75 in sob pressão de	
140 bar.	114
Figura 6.13 - Tensão circunferencial MEF e equações analíticas	
na posição R1 sobre o tubo de 12,75 in.	114
Figura 6.14 - Tensão de von Mises mediante MEF e equações	
analíticas na posição R1 sobre o tubo de 12,75 in.	115
Figura 6.15 - Curvas pressão - deformações circunferenciais para	
a superfície externa do reparo sobre a região central do defeito	
nas posições R2 e R3, determinadas pelas soluções	
experimentais e numéricas para o espécime Tê2 reparado com	
mantas de fibra de carbono.	116
Figura 6.16 - Curvas pressão - deformações circunferenciais para	
a região central do tubo de 12,75 in determinadas pelas soluções	
experimental e numérica do espécime Tê2 reparado com mantas	
de fibra de carbono.	117
Figura 6.17 - Curvas pressão - deformações circunferenciais e	
longitudinais para a superfície externa do reparo sobre a região	
central do defeito na posição R2, determinadas pelas soluções	
experimentais (ERE) e numéricas (elementos finitos) para o	
espécime Tê7 reparado com mantas de fibra de vidro.	117
Figura 6.18 - Curvas Pressão - Deformações circunferenciais e	
longitudinais determinadas para a superfície externa do reparo	
sobre a região central do defeito na posição R3, determinadas	
pelas soluções experimentais (ERE) e numérica (elementos	

finitos) para o espécime Tê7 reparado com manta de fibra de	
vidro.	118
Figura 6.19 - Curva variação das deformações circunferenciais e	
longitudinais determinadas pelo modelo de elementos finitos para	
a espessura de reparo na posição R2 no espécime Tê7 sob uma	
pressão de 240 bar.	119
Figura 6.20 - Curvas pressão - deformações circunferenciais para	
a região central do tubo de 12,75 in determinadas pelas soluções	
experimental e numérica do espécime Tê7 reparado com manta	
de fibra de vidro.	120
Figura 6.21 - Curvas pressão - deformações circunferenciais para	
a região central do defeito na posição R3 determinadas pelas	
soluções experimental e numérica no espécime Tê4 sem reparo.	120
Figura 6.22 - Curvas pressão - deformações circunferenciais para	
a região central do defeito na posição R2 determinadas pelas	
soluções experimental e numérica no espécime Tê4 sem reparo.	121
Figura 6.23 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime Tê2	
reparado com compósito ERFC.	122
Figura 6.24 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime Tê7	
reparado com compósito ERFV.	123
Figura 6.25 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime Tê4	
sem reparo.	124
Figura 6.26 - Deformação circunferencial ERE, MEF e equações	
Analíticas na posição R1 sobre o tubo sob pressão de 140 bar.	125
Figura 6.27 - Duto com e sem ovalização (A), estado de tensões a	
$90^{\circ} e 0^{\circ}$ (B).	126
Figura 6.28 - Deformação circunferencial (C), longitudinal (L) fora	
do defeito no TPH e MEF (h= 4 mm) para o espécime CF5.	126
Figura 6.29 - Deformação circunferencial (C), longitudinal (L) no	
tubo fora do defeito determinadas pelas soluções experimental	

(ERE) e numérica (elementos finitos) com h1= 4 mm, h2= 6 mm	
para o espécime CF5.	127
Figura 6.30 - Curvas pressão - deformações circunferenciais no	
tubo fora do reparo determinadas pelas soluções experimentais	
(ERE) e numéricas (elementos finitos) com h=4, 8, 18 mm na	
região elástica.	128
Figura 6.31 - Curvas pressão - deformações circunferenciais para	
a superfície externa do reparo sobre a região central do defeito	
determinadas pelas soluções experimentais (ERE) e numéricas	
(elementos finitos) para os espécimes CF4 e CF7.	129
Figura 6.32 - Deformação circunferencial (MEF e ERE	
circunferencial) no espécime CF7 na região fora do defeito até a	
ruptura.	130
Figura 6.33 - Deformação circunferencial (MEF e ERE	
circunferencial) no espécime CF4 na região fora do defeito até a	
ruptura.	130
Figura 6.34 - Deformação circunferencial (MEF e ERE	
circunferencial) do espécime CF5 no defeito até a ruptura.	131
Figura 6.35 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime CF7	
reparado com compósito ERFV.	131
Figura 6.36 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime CF4	
reparado com compósito ERFC.	132
Figura 6.37 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime CF5	
sem reparo.	132
Figura 6.38 - Deformação circunferencial ERE, MEF e equações	
analíticas na posição R1 sobre o tubo nominal.	133
Figura 6.39 - Tensão circunferencial mediante MEF e equações	
analíticas na posição R1 sobre o tubo nominal.	134
Figura 6.40 - Tensão de von Mises mediante MEF e equações	
analíticas na posição R1 sobre o tubo nominal.	134

Figura 6.41 - Curvas pressão - deformações circunferenciais para	
a superfície externa do reparo sobre a região central do defeito	
determinadas pelas soluções experimental e numérica para o	
espécime CQ3 reparado com mantas de fibra de vidro.	135
Figura 6.42 - Curvas pressão - deformações circunferenciais para	
a superfície externa do reparo sobre a região central do defeito	
determinadas pelas soluções experimental e numérica para o	
espécime CQ2 reparado com mantas de fibra de carbono.	135
Figura 6.43 - Curvas pressão - deformações circunferenciais para	
a região central do tubo nominal (R1), determinadas pelas	
soluções experimental e numérica para o espécime CQ3 reparado	
com mantas de fibra de vidro.	136
Figura 6.44 - Curvas pressão - deformações circunferenciais	
determinadas para a região central do tubo nominal (R1),	
determinadas pelas soluções experimental e numérica para o	
espécime CQ2 reparado com mantas de fibra de carbono.	137
Figura 6.45 - Curvas pressão - deformações circunferenciais para	
a região central do defeito determinadas pelas soluções	
experimental e numérica do espécime CQ7 sem reparo.	137
Figura 6.46 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime	
CQ3 reparado com compósito ERFV.	138
Figura 6.47 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime	
CQ2 reparado com compósito ERFC.	139
Figura 6. 48 - Comparações de rupturas entre o modelo de	
elementos finitos e o resultado experimental para o espécime	
CQ7 sem reparo.	140
Figura 6.49 - Deformações máximas atuantes no espécime em	
redução concêntrica na conexão sobre o defeito de espessura	
remanescentes de 2 mm, diâmetro médio de 300 mm e espessura	
inicial de 9,7 mm sob uma pressão de 25 MPa. Os materiais	
compósitos dos reparos são uma manta de resina epóxi reforçada	

143 elásticas dadas na Tabela 4.2. Figura 6.50 - Deformações máximas atuantes no espécime em redução concêntrica sobre o defeito de espessura remanescentes de 4 mm, diâmetro médio de 300 mm e espessura inicial de 9,7 mm sob uma pressão de 25 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por fibra de carbono com propriedades elásticas 144 dadas na Tabela 4.2. Figura 6.51 - Deformações máximas atuantes no espécime em redução concêntrica sobre o defeito de espessura remanescentes de 6 mm, diâmetro médio de 300 mm e espessura inicial de 9,7 mm sob uma pressão de 25 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por fibra de carbono com propriedades elásticas 144 dadas na Tabela 4.2. Figura 6.52 - Deformações máximas atuantes no espécime Tipo Tê sobre o defeito de espessura remanescentes de 4 mm, diâmetro de 323 mm e espessura inicial de 9,7 mm sob uma pressão de 20 MPa. O material compósito de reparo é uma manta de resina epóxi reforçada por fibra de carbono com propriedades 145 elásticas dadas na Tabela 4.2. Figura 6.53 - Deformações máximas atuantes no espécime Tipo Tê sobre o defeito de espessura remanescentes de 4 mm, diâmetro de 323 mm e espessura inicial de 9,7 mm sob uma pressão de 25 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por fibra de carbono com propriedades elásticas dadas na Tabela 4.2. 146 Figura 6.54 - Deformações máximas atuantes no espécime curvado a frio sobre o defeito de espessura remanescentes de 2 mm, diâmetro de 322 mm e espessura inicial de 9,4 mm sob uma pressão de 25 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por fibra de carbono com propriedades elásticas dadas na Tabela 4.2. 147

por fibra de vidro e outra por fibra de carbono com propriedades

Figura 6.55 - Deformações máximas atuantes no espécime curvado a crio sobre o defeito de espessura remanescentes de 4 mm, diâmetro de 322 mm e espessura inicial de 9,4 mm sob uma pressão de 25 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por 147 fibra de carbono com propriedades elásticas dadas na Tabela 4.2. Figura 6.56 - Deformações máximas atuantes no espécime curvado a frio sobre o defeito de espessura remanescentes de 6 mm, diâmetro de 322 mm e espessura inicial de 9,4 mm sob uma pressão de 25 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por fibra de carbono com propriedades elásticas dadas na Tabela 4.2 148 Figura 6.57 - Deformações máximas atuantes no espécime curvado a quente sobre o defeito de espessura remanescentes de 2 mm, diâmetro de 323 mm e espessura inicial de 9,6 mm sob uma pressão de 24 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por fibra de carbono com propriedades elásticas dadas na 149 Tabela 4.2. Figura 6.58 - Deformações máximas atuantes no espécime curvado a quente sobre o defeito de espessura remanescentes de 6 mm, diâmetro de 323 mm e espessura inicial de 9,6 mm sob uma pressão de 24 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por fibra de carbono com propriedades elásticas dadas na Tabela 4.2. 149 Figura 6.59 - Deformações máximas atuantes no espécime curvado a quente sobre o defeito de espessura remanescentes de 6mm, diâmetro de 323 mm e espessura inicial de 9,6 mm sob uma pressão de 24 MPa. Os materiais compósitos dos reparos são uma manta de resina epóxi reforçada por fibra de vidro e outra por fibra de carbono com propriedades elásticas dadas na Tabela 4.2. 150

rigura 6.60 - Fatores de incremento para componentes de dutos	
[5].	151
Figura A.1 - Medidas gerais dos espécimes curvos a frio.	164
Figura A.2 - Medidas nos rebaixos dos espécimes curvos a frio.	164
Figura A.3 - Medidas de espessuras de parede espécimes curvos	
a frio.	166
Figura A.4 - Medidas gerais dos espécimes curvos a quente.	166
Figura A.5 - Medidas nos rebaixos dos espécimes curvos a	
quente.	167
Figura A. 6 - Medidas de espessuras de parede dos espécimes	
curvos a quente.	167
Figura A.7 - Medidas gerais dos espécimes com redução	
concêntrica.	168
Figura A.8 - Medidas de rebaixos dos espécimes com redução	
concêntrica.	169
Figura A.9 - Medidas de espessura de parede dos espécimes com	
redução concêntrica.	171
Figura A.10 - Medidas gerais dos espécimes tipo Tê.	171
Figura A.11 - Medidas de rebaixos dos espécimes tipo Tê.	172
Figura A.12 - Medidas de espessuras de parede dos espécimes	
tipo Tê.	173
Figura B.1 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes curvos a frio, extensômetros	
localizados fora do reparo.	174
Figura B.2 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes CF3 e CF6, extensômetros localizados	
no reparo (ERFV) sobre o rebaixo.	174
Figura B.3 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes CF1 e CF2, extensômetros localizados	
no reparo (ERFV) sobre o rebaixo.	175
Figura B.4 - Curva pressão - Deformação circunferencial e	
longitudinal dos espécimes CF4 e CF7 testados até a ruptura,	
extensômetros localizados fora do reparo.	175

Figura B.5 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes CF4 e CF7 testados até a ruptura,	
extensômetros localizados no reparo sobre o rebaixo.	176
Figura B.6 - Curva pressão - deformação circunferencial e	
longitudinal do espécime CF5 testado até a ruptura sem reparo,	
extensômetros no defeito.	176
Figura B.7 - Deformações duto fora do defeito sem reparo até a	
ruptura.	176
Figura B.8 - Espécime CF7 (ERFV) com ruptura no defeito a	
308,5 bar (A). Espécime CF4 (ERFC) com ruptura fora do defeito	
a 320 bar (B). Espécime CF5 (sem reparo) com ruptura no defeito	
a 106,5 bar (C).	177
Figura B.9 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes curvos a quente, extensômetros	
localizados fora do reparo.	177
Figura B.10 - Curva Pressão - deformação circunferencial e	
longitudinal dos espécimes CQ5 e CQ6, extensômetros	
localizados no reparo (ERFV) sobre o rebaixo.	177
Figura B.11 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes CQ1 e CQ4, extensômetros	
localizados no reparo (ERFC) sobre o rebaixo.	178
Figura B.12 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes CQ2 e CQ3 testados até a ruptura,	
extensômetros localizados fora do reparo.	178
Figura B.13 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes CQ2 e CQ3 testados até a ruptura,	
extensômetros localizados no reparo sobre o rebaixo.	178
Figura B.14 - Curva pressão - deformação circunferencial e	
longitudinal do espécime CQ7 testado até a ruptura sem reparo,	
extensômetros no defeito.	179
Figura B.15 - Duto CQ3 ruptura no defeito a 297,5 bar.	179
Figura B.16 - Duto CQ2 ruptura fora do defeito a 370 bar (A), duto	
CQ7 ruptura no defeito a 50,4 bar (B).	179

Figura B.17 - Curva pressão - deformação circunterencial e	
longitudinal dos espécimes com redução concêntrica,	
extensômetros localizados fora do reparo.	180
Figura B.18 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes Re4 e Re5, extensômetros localizados	
no reparo (ERFV) sobre o rebaixo.	180
Figura B.19 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes Re2 e Re6, extensômetros localizados	
no reparo (ERFC) sobre o rebaixo.	181
Figura B.20 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes Re1 e Re3 testados até a ruptura,	
extensômetros localizados fora do reparo.	181
Figura B.21 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes Re1 e Re3 testados até a ruptura,	
extensômetros localizados no reparo sobre o rebaixo.	181
Figura B.22 - Curva pressão - deformação circunferencial e	
longitudinal do espécime Re7 testado até a ruptura,	
extensômetros localizados fora do reparo.	182
Figura B.23 - Espécime Re3 (ERFV) com ruptura fora do defeito a	
276,5 bar (A). Espécime Re1 (ERFC) com ruptura fora do defeito	
a 284,7 bar. Espécime Re7 (sem reparo) com ruptura no defeito a	
106,5 bar (C).	182
Figura B.24 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes tipo Tê, extensômetros localizados	
fora do reparo.	183
Figura B.25 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes Tê1 e Tê3, extensômetros localizados	
no reparo (ERFV) sobre o rebaixo.	183
Figura B.26 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes Tê5 e Tê6, extensômetros localizados	
no reparo (ERFC) sobre o rebaixo.	184
Figura B.27 - Curva pressão - deformação circunferencial e	
longitudinal dos espécimes Tê2 e Tê7 testados até a ruptura,	
extensômetros localizados fora do reparo.	184

Figura B.28 - Curva pressao - deformação circunferencial e	
longitudinal do espécime Tê7 testado até a ruptura,	
extensômetros localizados no reparo (ERFV) sobre o defeito.	184
Figura B.29 - Curva pressão - deformação circunferencial e	
longitudinal do espécime Tê2 testado até a ruptura,	
extensômetros localizados no reparo (ERFC) sobre o defeito.	185
Figura B.30 - Curva pressão - deformação circunferencial e	
longitudinal do espécime Tê4 testado até a ruptura sem reparo,	
extensômetros no defeito.	185
Figura B.31 - Espécime Tê7 (ERFV) com ruptura no defeito a	
244,4 bar (A). Espécime Tê2 (ERFC) com ruptura no defeito a 236	
bar. Espécime Tê4 (sem reparo) com ruptura no defeito a 95,6 bar	
(C).	185
Figura C.1 - Curva pressão - deformação.	187
Figura C.2 - Curva tensão - deformação real, plotados a partir dos	
dados de deformações elásticas e plásticas da Tabela C.4.	192
Figura C.3 - Curva tensão - deformação real, o ponto A identifica a	
interseção da prolongação das deformações elásticas e plásticas.	192
Figura D.1 - Perfil de espessuras utilizado na simulação.	196
Figura D.2 - Tensões circunferencias para um componente de	
duto curvado (R=1056 mm) e espessura variável sob pressão de	
10 MPa.	196
Figura D.3 - Tensões circunferenciais determinadas a partir do	
modelo numérico e equação analítica para um ponto localizado a	
90 graus para um componente de duto curvado de espessura	
variável.	197
Figura D.4 - Tensões circunferenciais determinadas a partir do	
modelo numérico e equação analítica para um ponto localizado a	
180 graus para um componente de duto curvado de espessura	
variável.	197
Figura D.5 - Tensões circunferenciais determinadas a partir do	
modelo numérico e equação analítica para um ponto localizado a	
270 graus para um componente de duto curvado de espessura	
variável	198

Figura D.6 - Tensão de von Mises para o componente de tubo	
curvado e espessura variável, a ruptura acontece a 35,7 MPa.	198
Figura D.7 - Tensões circunferenciais para um componente de	
duto curvado (R=1056 mm) e espessura constante sob pressão	
de 10 MPa.	199
Figura D.8 - Tensões circunferenciais determinadas a partir do	
modelo numérico e equação analítica para um ponto localizado a	
90 graus para um componente de duto curvado de espessura	
constante.	200
Figura D.9 - Tensões circunferenciais determinadas a partir do	
modelo numérico e equação analítica para um ponto localizado a	
180 graus para um componente de duto curvado de espessura	
constante.	200
Figura D.10 - Tensões circunferenciais determinadas a partir do	
modelo numérico e equação analítica para um ponto localizado a	
270 graus para um componente de duto curvado de espessura	
constante.	201
Figura D.11 - Tensão de von Mises para o componente de tubo	
curvado e espessura constante, a ruptura acontece a 34,3 MPa.	201
Figura E.1 - Tensão de von Mises para o espécime em redução	
concêntrica, sob pressão interna de 3MPa (A), 10MPa (B) e 20,5	
(MPa) simulado a partir da curva tensão - deformação do material	
MAT 1.	203

Lista de Tabelas

Tabela 1.1 - Tipos de reparos e testes de pressão hidrostáticos	
(TPH) realizados para cada espécime.	40
Tabela 2.1 - Métodos para a determinação de pressão em dutos	
com perda de espessuras metálica acentuada na direção	
longitudinal [24, 26, 27].	46
Tabela 2.2 - Deformações admissíveis para mantas de	
compósitos em função do tempo de vida do reparo.	51
Tabela 4.1 - Propriedades dos tubos de aço API 5L Grau B.	64
Tabela 4.2 - Propriedades das mantas de resina epóxi reforçada	
por fibra de vidro e carbono.	66
Tabela 4.3 - Resumo dos espécimes simulados. Dutos em	
redução concêntrica (Re), curvados a quente (CQ), curvados a	
frio (CF) e tipo Tê, com reparos constituídos de mantas de resina	
epóxi reforçados por fibra de vidro e fibra de carbono (ERFV -	
ERFC).	68
Tabela 5.1 - Tipos de reparos e testes de pressão hidrostático	
(TPH) feitos para cada espécime.	93
Tabela 6.1 - Pressões e posições de ruptura dos espécimes Re3,	
Re1 e Re7 obtidos a partir de modelos numéricos e resultados	
experimentais.	113
Tabela 6.2 - Pressões e posições de ruptura dos espécimes Tê4,	
Tê7 e Tê2 obtidos a partir de modelos numéricos e resultados	
experimentais.	121
Tabela 6.3 - Pressões e posições de ruptura dos espécimes Tê4,	
Tê7 e Tê2 obtidos a partir de modelos numéricos e resultados	
experimentais.	133
Tabela 6.4 - Pressões e posições de ruptura dos espécimes CQ3,	
CQ2 e CQ7 obtidos a partir de modelos numéricos e resultados	
experimentais.	140

l abela 6.5 - Comparação de fatores de resistencia remanescente	
com e sem reparo.	141
Tabela 6.6 - Dados utilizados no cálculo de espessuras de	
reparos em dutos com redução concêntrica, tipo Tê e curvados.	152
Tabela 6.7 - Comparação de espessuras de reparo calculados por	
as normas ASME PCC2, ISO 24817 e a equação desenvolvida	
para um duto com redução concêntrica reparado com ERFC, sob	
pressão de 25,4 MPa.	153
Tabela 6.8 - Comparação de espessuras de reparo calculados por	
as normas ASME PCC2, ISO 24817, a equação desenvolvida e	
modelo de elementos finitos para um duto curvado a quente	
reparado com ERFC, sob pressão de 23,5 MPa.	153
Tabela 6.9 - Comparação de espessuras de reparo calculados por	
as normas ASME PCC2, ISO 24817, a equação desenvolvida e	
modelo de elementos finitos para um duto curvado a frio reparado	
com ERFC, sob pressão de 25 MPa.	153
Tabela 6.10 - Comparação de espessuras de reparo calculados	
por as normas ASME PCC2, ISO 24817, a equação desenvolvida	
e modelo de elementos finitos para um duto tipo Tê reparado com	
ERFC, sob pressão de 19 MPa.	154
Tabela A.1 - Instrumentos de medição e incerteza.	163
Tabela A.2 - Valores das medidas gerais dos espécimes curvos a	
frio.	164
Tabela A.3 - Valores das medidas nos rebaixos dos espécimes	
curvos a frio.	165
Tabela A.4 - Valores das medidas de espessuras de parede	
curvos a frio.	165
Tabela A.5 - Valores das medidas dos espécimes curvos a	
quente.	166
Tabela A.6 - Valores das medidas nos rebaixos dos espécimes	
curvos a quente.	167
Tabela A.7 - Valores das medidas de espessuras de parede dos	
espécimes curvos a quente.	168

Tabela A.8 - Valores das medidas gerais dos espécimes com	
redução concêntrica.	169
Tabela A.9 - Valores das medidas de rebaixos dos espécimes	
com redução concêntrica.	169
Tabela A.10 - Valores das medidas de espessura de parede dos	
espécimes com redução concêntrica.	170
Tabela A.11 - Valores das medidas gerais dos espécimes tipo Tê.	172
Tabela A.12 - Valores das medidas de rebaixos dos espécimes	
tipo Tê.	172
Tabela A.13 - Valores das medidas de espessuras de parede dos	
espécimes tipo Tê.	173
Tabela C.1 - Resultados de deformações circunferenciais e	
longitudinais para o espécime Re3.	186
Tabela C.2 - Deformações elásticas e plásticas para as direções	
circunferenciais (εc), longitudinais (εl) e radiais (εr).	188
Tabela C.3 - Deformações equivalentes elásticas e plásticas, e	
tensões equivalentes.	190
Tabela C.4 - Deformações e tensões equivalentes reais.	191
Tabela C.5 - Valores de deformações plásticas e tensões	
equivalentes reais utilizados no programa para simular o material	
MAT-1.	193
Tabela C.6 - Valores de deformações plásticas e tensões	
equivalentes reais utilizados no programa para simular os	
materiais MAT 2 MAT 3 e MAT 4	104

Lista de símbolos

 σ = tensão.

 σ_x = tensão na direção X.

 σ_v = tensão na direção Y.

 σ_z = tensão na direção Z.

 σ_{Tresca} = tensão equivalente de Tresca.

 S_v = Limite de escoamento.

SMYS= Resistência mínima de escoamento espeficicada.

 S_{flow} = Resistência ao colapso plástico.

RSF= Fator de Resistência Remanescente.

RSF_a= Fator de Resistência Remanescente admissível.

 $L_{\it DC}$ = Carga limite ou de colapso plástico do componente com defeito.

 L_{UC} = Carga limite ou de colapso plástico do componente sem defeito.

MAWP= Máxima pressão de operação admissível, determinada pelo código de projeto.

 $MAWP_r$ = Máxima pressão de operação admissível para o componente com defeito.

TPH=Teste de pressão hidrostático.

MEF=modelo de elementos finitos.

∨= coeficiente de Poisson.

ε₁= deformação na direção principal 1.

 ε_2 = deformação na direção principal 2.

 ε_c = deformação circunferencial.

 ε_1 = deformação longitudinal.

 P_u = pressão de ruptura.

 S_u = resistência ultima a tração.

 σ_R =tensão no material compósito.

 t_R = espessura de material compósito.

E= módulo de elasticidade do aço.

 $E_{H=}$ módulo de encruamento do aço para uma curva bilinear.

 ε_{v} = deformação que define escoamento no aço.

 $E_{R=}$ módulo de elasticidade do material compósito na direção circunferencial.

 t^* = espessura remanescente.

 F_{CF} = fator geométrico do espécime curvado a frio.

 F_{CO} = fator geométrico do espécime curvado a quente.

 $F_{T\hat{\mathbf{e}}}$ = fator geométrico do espécime Tipo Tê.

R1=posição do extensômetro, localizado no tubo nominal equidistante entre a tampa e o reparo.

R2=posição do extensômetro localizado no centro do defeito em dutos no reparados ou sobre o reparo em dutos consertados no tubo de 12,75 in de diâmetro.

R3= posição do extensômetro localizado no centro do defeito em dutos no reparados ou sobre o reparo em dutos consertados no tubo de 10,75 in de diâmetro.

U3=posição do extensômetro a 90 graus da posição R1.

SMYS= Specified Minimum Yield Strength por seus siglas em inglês.

ERFV= reparos constituídos de mantas de resina epóxi reforçados por fibra de vidro.

ERFC= reparos constituídos de mantas de resina epóxi reforçados por fibra de carbono.

ERE= Extensômetros de resistência elétrica.