
1
Introduction

Dynamically typed languages such as Lua avoid static types in favor

of simplicity and flexibility, because the absence of static types means that

programmers do not need to bother with abstracting types that should be

validated by a type checker. Instead, dynamically typed languages use run-

time type tags to classify the values they compute, so their implementation

can use these tags to perform run-time (or dynamic) type checking [Pie02].

This simplicity and flexibility allows programmers to write code that

might require a complex type system to statically type check, though it may

also hide bugs that will be caught only after deployment if programmers do not

properly test their code. In contrast, static type checking helps programmers

detect many bugs during the development phase. Static types also provide a

conceptual framework that helps programmers define modules and interfaces

that can be combined to structure the development of programs.

Thus, early error detection and better program structure are two ad-

vantages of static type checking that can lead programmers to migrate their

code from a dynamically typed to a statically typed language, when their

simple scripts evolve into complex programs [THF06]. Dynamically typed lan-

guages certainly help programmers during the beginning of a project, because

their simplicity and flexibility allows quick development and makes it easier to

change code according to changing requirements. However, programmers tend

to migrate from dynamically typed to statically typed code as soon as the pro-

ject has consolidated its requirements, because the robustness of static types

helps programmers link requirements to abstractions. This migration usually

involves different languages that have different syntaxes and semantics, which

usually requires a complete rewrite of existing programs instead of incremental

evolution from dynamic to static types.

Ideally, programming languages should offer programmers the option

to choose between static and dynamic typing: optional type systems [Bra04]

and gradual typing [ST06] are two similar approaches for blending static and

dynamic typing in the same language. The aim of both approaches is to

offer programmers the option to use type annotations where static typing is

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 1. Introduction 12

needed, allowing the incremental migration from dynamic to static typing.

The difference between these two approaches is the way they treat run-time

semantics. While optional type systems do not affect run-time semantics,

gradual typing uses run-time checks to ensure that dynamically typed code

does not violate the invariants of statically typed code.

Programmers and researchers sometimes use the term gradual typing

to mean the incremental evolution of dynamically typed code into statically

typed code. For this reason, gradual typing may also refer to optional type

systems and other approaches that blend static and dynamic typing to help

programmers incrementally migrate from dynamic to static typing without

having to switch to a different language, though all these approaches differ

in the way they handle static and dynamic typing together. We use the term

gradual typing to refer to the work of Siek and Taha [ST06].

In this work we present the design and evaluation of Typed Lua: an

optional type system for Lua that is rich enough to preserve some of the Lua

idioms that programmers are already familiar with, but that also includes new

constructs that help programmers structure Lua programs.

Lua is a small imperative language with first-class functions (with proper

lexical scoping) where the only data structure mechanism is the table – an

associative array that can represent arrays, records, maps, modules, objects,

etc. Tables also have syntactic sugar and metaprogramming support through

operator overloading built into the language. Unlike other scripting languages,

Lua has very limited coercion among different data types.

Lua prefers to provide mechanisms instead of fixed policies due to its

primary use as an embedded language for configuration and extension of other

applications. This means that even features such as a module system and object

orientation are a matter of convention instead of default language constructs.

The result is a fragmented ecosystem of libraries, and different ideas among

Lua programmers on how they should use the language features, or how they

should structure programs.

The lack of standard policies is a challenge for the design of an optional

type system for Lua. For this reason, we are not relying entirely on the

semantics of the language to design our type system. We also run a mostly

automated survey of Lua idioms used in a large corpus of Lua libraries, which

also has helped in the design of Typed Lua.

So far, Typed Lua is a Lua extension that allows statically typed

code to coexist and interact with dynamically typed code through optional

type annotations. In addition, it adds default constructs that programmers

can use to better structure Lua programs. The Typed Lua compiler warns

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 1. Introduction 13

programmers about type errors, but always generates Lua code that runs in

unmodified Lua implementations. Programmers can enjoy some of the benefits

of static types even without converting existing Lua modules to Typed Lua –

they can export a statically typed interface to a dynamically typed module,

and statically typed users of the module can use the Typed Lua compiler to

check their use of the module. Thus, implementing an optional type system

for Lua offers Lua programmers one way to obtain most of the advantages of

static typing without compromising the simplicity and flexibility of dynamic

typing. We have an implementation of the Typed Lua compiler that is available

online1.

Typed Lua’s intended use is as an application language, and we believe

that policies for organizing a program in modules and writing object-oriented

programs should be part of the language and checked by its optional type

system. An application language is a programming language that helps pro-

grammers develop applications from scratch until these applications evolve

into complex systems rather than just scripts. We will show that Typed Lua

introduces the refinement of tables to support the common idioms that Lua

programmers use to encode both modules and objects.

We also believe that Typed Lua helps programmers give more formal

documentation to already existing Lua code, as static types are also a useful

source of documentation in languages that provide type annotations, because

type annotations are always validated by the type checker and therefore never

get outdated. Thus, programmers can use Typed Lua to define axioms about

the interfaces and types of dynamically typed modules. We enforce this point

by using Typed Lua to statically type the interface of the Lua standard library

and other commonly used Lua libraries, so our compiler can check Typed Lua

code that uses these libraries.

Typed Lua performs a very limited form of local type inference [PT00],

as static typing does not necessarily mean that programmers need to insert

type annotations in the code. Several statically typed languages such as Haskell

provide some amount of type inference that automatically deduces the types of

expressions. Still, Typed Lua only requires a small amount of type annotations

due to the nature of its optional type system.

Typed Lua does not deal with code optimization, although another

important advantage of static types is that they help the compiler perform

optimizations and generate more efficient code. However, we believe that the

formalization of our optional type system is precise enough to aid optimization

in some Lua implementations.

1https://github.com/andremm/typedlua

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 1. Introduction 14

We use some of the ideas of gradual typing to formalize Typed Lua. Even

though Typed Lua is an optional type system and thus does not include run-

time checks between dynamic and static regions of the code, we believe that

using the foundations of gradual typing to formalize our optional type system

will allow us to include run-time checks in the future.

Finally, we believe that designing an optional type system for Lua may

shed some light on optional type systems for scripting languages in general, as

Lua is a small scripting language that shares some features with other scripting

languages such as JavaScript.

This work is split into seven chapters. In Chapter 2 we review the

literature about blending static and dynamic typing in the same language,

we discuss the differences between optional type systems and gradual typing,

and we also present the results of our survey on Lua idioms. In Chapter 3

we use code examples to present the design of Typed Lua. In Chapter 4 we

present our type system. In Chapter 5 we discuss the evaluation results that

we obtained while using Typed Lua to type existing Lua code. In Chapter 6

we present some related work. In Chapter 7 we outline our contributions.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA




