
2
Blending static and dynamic typing

We begin this chapter presenting a little bit of the history behind

combining static and dynamic typing in the same language. Then, we introduce

optional type systems and gradual typing. After that, we discuss why optional

type systems and two other approaches are often called gradual typing. We end

this chapter presenting some statistics about the usage of some Lua features

and idioms that helped us identify how we should combine static and dynamic

typing in Lua.

2.1 A little bit of history

Common LISP [Ste82] introduced optional type annotations in the early

eighties, but not for static type checking. Instead, programmers could choose to

declare types of variables as optimization hints to the compiler, that is, type

declarations are just one way to help the compiler to optimize code. These

annotations are unsafe because they can crash the program when they are

wrong.

Abadi et al. [ACPP89] extended the simply typed lambda calculus with

the Dynamic type and the dynamic and typecase constructs, with the aim to

safely integrate dynamic code in statically typed languages. The Dynamic type

is a pair (v,T) where v is a value and T is the tag that represents the type of

v. The constructs dynamic and typecase are explicit injection and projection

operations, respectively. That is, dynamic builds values of type Dynamic and

typecase safely inspects the type of a Dynamic value. Thus, migrating code

between dynamic and static type checking requires changing type annotations

and adding or removing dynamic and typecase constructs throughout the

code.

The quasi-static type system proposed by Thatte [Tha90] performs

implicit coercions and run-time checks to replace the dynamic and typecase

constructs that were proposed by Abadi et al. [ACPP89]. To do that, quasi-

static typing relies on subtyping with a top type Ω that represents the dynamic

type, and splits type checking into two phases. The first phase inserts implicit

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 16

coercions from the dynamic type to the expected type, while the second

phase performs what Thatte calls plausibility checking, that is, it rewrites the

program to guarantee that sequences of upcasts and downcasts always have a

common subtype.

Soft typing [CF91] is another approach to combine static and dynamic

typing in the same language. The main goal of soft typing is to add static

type checking to dynamically typed languages without compromising their

flexibility. To do that, soft typing relies on type inference for translating

dynamically typed code to statically typed code. The type checker inserts run-

time checks around inconsistent code and warns the programmer about the

insertion of these run-time checks, as they indicate the existence of potential

type errors. However, the programmer is free to choose between inspecting the

run-time checks or simply running the code. This means that type inference and

static type checking do not prevent the programmer from running inconsistent

code. One advantage of soft typing is the fact that the compiler for softly typed

languages can use the translated code to generate more efficient code, as the

translated code statically type checks. One disadvantage of soft typing is that

it can be cumbersome when the inferred types are meaningless large types that

just confuse the programmer.

Dynamic typing [Hen94] is an approach that optimizes code from dynam-

ically typed languages by eliminating unnecessary checks of tags. Henglein de-

scribes how to translate dynamically typed code into statically typed code that

uses a Dynamic type. The translation is done through a coercion calculus that

uses type inference to insert the operations that are necessary to type check

the Dynamic type during run-time. Although soft typing and dynamic typing

may seem similar, they are not. Soft typing targets statically type checking of

dynamically typed languages for detecting programming errors, while dynamic

typing targets the optimization of dynamically typed code through the elim-

ination of unnecessary run-time checks. In other words, soft typing sees code

optimization as a side effect that comes with static type checking.

Findler and Felleisen [FF02] proposed contracts for higher-order func-

tions and blame annotations for run-time checks. Contracts perform dynamic

type checking instead of static type checking, but deferring all verifications to

run-time can lead to defects that are difficult to fix, because run-time errors

can show a stack trace where it is not clear to programmers if the cause of a

certain run-time error is in application code or library code. Even if program-

mers identify that the source of a certain run-time error is in library code, they

still may have problems to identify if this run-time error is due to a violation

of library’s contract or due to a bug, when the library is poorly documented.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 17

In this approach, programmers can insert assertions in the form of contracts

that check the input and output of higher-order functions; and the compiler

adds blame annotations in the generated code to track assertion failures back

to the source of the error.

BabyJ [AD03] is an object-oriented language without inheritance that

allows programmers to incrementally annotate the code with more specific

types. Programmers can choose between using the dynamically typed version

of BabyJ when they do not need types at all, and the statically typed version

of BabyJ when they need to annotate the code. In statically typed BabyJ,

programmers can use the permissive type ∗ to annotate the parts of the code

that still do not have a specific type or the parts of the code that should have

dynamic behavior. The type system of BabyJ is nominal, so types are either

class names or the permissive type ∗. However, the type system does not use

type equality or subtyping, but the relation ≈ between two types. The relation

≈ holds when both types have the same name or any of them is the permissive

type ∗. Even though the permissive type ∗ is similar to the dynamic type

from previous approaches, BabyJ does not provide any way to add implicit or

explicit run-time checks.

Ou et al. [OTMW04] specified a language that combines static types with

dependent types. To ensure safety, the compiler automatically inserts coercions

between dependent code and static code. The coercions are run-time checks

that ensure static code does not crash dependent code during run-time.

2.2 Optional Type Systems

Optional type systems [Bra04] are an approach for plugging static typing

in dynamically typed languages. They use optional type annotations to perform

compile-time type checking, though they do not affect the original run-time

semantics of the language. This means that the run-time semantics should

still catch type errors independently of the static type checking. For instance,

we can view the typed lambda calculus as an optional type system for the

untyped lambda calculus, because both have the same semantic rules and

the type system serves only for discarding programs that may have undesired

behaviors [Bra04].

Strongtalk [BG93, Bra96] is a version of Smalltalk that comes with an

optional type system. It has a polymorphic type system that programmers

can use to annotate Smalltalk code or leave type annotations out. Strongtalk

assigns a dynamic type to unannotated expressions and allows programmers

to cast unannotated expressions to any static type. This means that the

interaction of the dynamic type with the rest of the type system is unsound, so

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 18

Strongtalk uses the original run-time semantics of Smalltalk when executing

programs, even if programs are statically typed.

Pluggable type systems [Bra04] generalize the idea of optional type

systems that Strongtalk put in practice. The idea is to have different optional

type systems that can be layered on top of a dynamically typed language

without affecting its original run-time semantics. Although these systems can

be unsound in their interaction with the dynamically typed part of the language

or even by design, their unsoundness does not affect run-time safety, as the

language run-time semantics still catches any run-time errors caused by an

unsound type system.

Dart [Goo11] and TypeScript [Mic12] are new languages that are designed

with an optional type system. Both use JavaScript as their code generation

target because their main purpose is Web development. In fact, Dart is a

new class-based object-oriented language with optional type annotations and

semantics that resembles the semantics of Smalltalk, while TypeScript is a

strict superset of JavaScript that provides optional type annotations and class-

based object-oriented programming. Dart has a nominal type system, while

TypeScript has a structural one, but both are unsound by design. For instance,

Dart has covariant arrays, while TypeScript has covariant parameter types in

function signatures, besides the interaction between statically and dynamically

typed code that is also unsound.

There is no common formalization for optional type systems, and each

language ends up implementing its optional type system in its own way.

Strongtalk, Dart, and TypeScript provide an informal description of their

optional type systems rather than a formal one. In the next section we will

show that we can use some features of gradual typing [ST06, ST07] to formalize

optional type systems.

2.3 Gradual Typing

The main goal of gradual typing [ST06] is to allow programmers to choose

between static and dynamic typing in the same language. To do that, Siek and

Taha [ST06] extended the simply typed lambda calculus with the dynamic

type ?, as we can see in Figure 2.1. In gradual typing, type annotations

are optional, and an untyped variable is syntactic sugar for a variable whose

declared type is the dynamic type ?, that is, λx.e is equivalent to λx:?.e. Under

these circumstances, we can view gradual typing as a way to add a dynamic

type to statically typed languages.

The central idea of gradual typing is the consistency relation, written

T1 ∼ T2. The consistency relation allows implicit conversions to and from the

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 19

T ::= types:
number base type number
| string base type string
| ? dynamic type
| T → T function types

e ::= expressions:
l literals
| x variables
| λx:T.e abstractions
| e1e2 application

Figure 2.1: Syntax of the gradually-typed lambda calculus

dynamic type, and disallows conversions between inconsistent types [ST06].

For instance, number ∼ ?, ? ∼ number, string ∼ ?, and ? ∼ string, but

number 6∼ string, and string 6∼ number. The consistency relation is both

reflexive and symmetric, but it is not transitive.

T ∼ T (C-REFL) T ∼ ? (C-DYNR) ? ∼ T (C-DYNL)

T3 ∼ T1 T2 ∼ T4
T1 → T2 ∼ T3 → T4

(C-FUNC)

Figure 2.2: The consistency relation

Figure 2.2 defines the consistency relation. The rule C-REFL is the

reflexive rule. Rules C-DYNR and C-DYNL are the rules that allow conver-

sions to and from the dynamic type ?. The rule C-FUNC resembles subtyping

between function types, because it is contravariant on the argument type and

covariant on the return type.

Figure 2.3 uses the consistency relation in the typing rules of the gradual

type system of the simply typed lambda calculus extended with the dynamic

type ?. The environment Γ is a function from variables to types, and the

directive type is a function from literal values to types. The rule T-VAR uses

the environment function Γ to get the type of a variable x. The rule T-LIT

uses the directive type to get the type of a literal l. The rule T-ABS evaluates

the expression e with an environment Γ that binds the variable x to the type

T1, and the resulting type is the the function type T1 → T2. The rule T-APP1

handles function calls where the type of a function is dynamically typed; in

this case, the argument type may have any type and the resulting type has

the dynamic type. The rule T-APP2 handles function calls where the type

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 20

of a function is statically typed; in this case, the argument type should be

consistent with the argument type of the function’s signature.

Γ(x) = T

Γ ` x : T
(T-VAR)

type(l) = T

Γ ` l : T
(T-LIT)

Γ[x 7→ T1] ` e : T2
Γ ` λx : T1.e : T1 → T2

(T-ABS)
Γ ` e1 : ? Γ ` e2 : T

Γ ` e1e2 : ?
(T-APP1)

Γ ` e1 : T1 → T2 Γ ` e2 : T3 T3 ∼ T1
Γ ` e1e2 : T2

(T-APP2)

Figure 2.3: Gradual type system gradually-typed lambda calculus

Gradual typing [ST06] is similar to two previous approaches [ACPP89,

Tha90], because they also include a dynamic type in a statically typed

language. However, these three approaches differ in the way they handle the

dynamic type. While Siek and Taha [ST06] rely on the consistency relation,

Abadi et al. [ACPP89] rely on type equality with explicit projections plus

injections, and Thatte [Tha90] relies on subtyping.

The subtyping relation <: is actually a pitfall on Thatte’s quasi-static

typing, because it sets the dynamic type as the top and the bottom of the

subtying relation: T <: ? and ? <: T . Subtyping is transitive, so we know that

number <: ? ? <: string

number <: string

Therefore, downcasts combined with the transitivity of subtyping accepts

programs that should be rejected.

Later, Siek and Taha [ST07] reported that the consistency relation is

orthogonal to the subtyping relation, so we can combine them to achieve the

consistent-subtyping relation, written T1 . T2. This relation is essential for

designing gradual type systems for object-oriented languages. Like the con-

sistency relation, and unlike the subtyping relation, the consistent-subtyping

relation is not transitive. Therefore, number . ?, ? . number, string . ?,

and ? . string, but number 6. string, and string 6. number.

Now, we will show how we can combine consistency and subtyping to

compose a consistent-subtyping relation for the simply typed lambda calculus

extended with the dynamic type ?.

Figure 2.4 presents the subtyping relation for the simply typed lambda

calculus extended with the dynamic type ?. Even though we could have used

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 21

number <: number (S-NUM) string <: string (S-STR)

? <: ? (S-ANY)
T3 <: T1 T2 <: T4
T1 → T2 <: T3 → T4

(S-FUN)

Figure 2.4: The subtyping relation

the reflexive rule T <: T to express the rules S-NUM, S-STR, and S-ANY,

we did not combine them into a single rule to make explicit the neutrality

of the dynamic type ? to the subtyping rules. The dynamic type ? must be

neutral to subtyping to avoid the pitfall from Thatte’s quasi-static typing.

The rule S-FUN defines the subtyping relation for function types, which are

contravariant on the argument type and covariant on the return type.

number . number (C-NUM) string . string (C-STR)

T . ? (C-ANY1) ? . T (C-ANY2)

T3 . T1 T2 . T4
T1 → T2 . T3 → T4

(C-FUN)

Figure 2.5: The consistent-subtyping relation

Figure 2.5 combines the consistency and subtyping relations to compose

the consistent-subtyping relation for the simply typed lambda calculus exten-

ded with the dynamic type ?. When we combine consistency and subtyping,

we are making subtyping handle which casts are safe among static types, and

we are making consistency handle the casts that involve the dynamic type ?.

The consistent-subtyping relation is not transitive, and thus the dynamic type

? is not neutral to this relation.

So far, gradual typing looks like a mere formalization to optional type

systems, as a gradual type system uses the consistency or consistent-subtyping

relation to statically check the interaction between statically and dynamically

typed code, without affecting the run-time semantics.

However, another important feature of gradual typing is the theoretic

foundation that it provides for inserting run-time checks that prove dynamic-

ally typed code does not violate the invariants of statically typed code, thus

preserving type safety. To do that, Siek and Taha [ST06, ST07] defined the

run-time semantics of gradual typing as a translation to an intermediate lan-

guage with explicit casts at the frontiers between statically and dynamically

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 22

typed code. The semantics of these casts is based on the higher-order contracts

proposed by Findler and Felleisen [FF02].

Herman et al. [HTF07] showed that there is an efficiency concern re-

garding the run-time checks, because there are two ways that casts can lead to

unbounded space consumption. The first affects tail recursion while the second

appears when first-class functions or objects cross the border between static

code and dynamic code, that is, some programs can apply repeated casts to

the same function or object. Herman et al. [HTF07] use the coercion calcu-

lus outlined by Henglein [Hen94] to express casts as coercions and solve the

problem of space efficiency. Their approach normalizes an arbitrary sequence

of coercions to a coercion of bounded size.

Another concern about casts is how to improve debugging support,

because a cast application can be delayed and the error related to that cast

application can appear considerable distance from the real error. Wadler and

Findler [WF09] developed blame calculus as a way to handle this issue, and

Ahmed et al. [AFSW11] extended blame calculus with polymorphism. Blame

calculus is an intermediate language to integrate static and dynamic typing

along with the blame tracking approach proposed by Findler and Felleisen

[FF02].

On the one hand, blame calculus solves the issue regarding error re-

porting; on the other hand, it has the space efficiency problem reported by

Herman et al. [HTF07]. Thus, Siek et al. [SGT09] extended the coercion cal-

culus outlined by Herman et al. [HTF07] with blame tracking to achieve an

implementation of the blame calculus that is space efficient. After that, Siek

and Wadler [SW10] proposed a new solution that also handles both problems.

This new solution is based on a concept called threesome, which is a way to

split a cast between two parties into two casts among three parties. A cast

has a source and a target type (a twosome), so we can split any cast into a

downcast from the source to an intermediate type that is followed by an upcast

from the intermediate type to the target type (a threesome).

There are some projects that incorporate gradual typing into some

programming languages. Reticulated Python [Vit13, VKSB14] is a research

project that evaluates the costs of gradual typing in Python. Gradualtalk

[ACF+13] is a gradually-typed Smalltalk that introduces a new cast insertion

strategy for gradually-typed objects [AFT13]. Grace [BBHN12, BBH+13] is a

new object-oriented, gradually-typed, educational language. In Grace, modules

are gradually-typed objects, that is, modules may have types with methods as

attributes, and they can also have a state [HBNB13]. ActionScript [Moo07] is

one the first languages that incorporated gradual typing to its implementation

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 23

and Perl 6 [Tan07] is also being designed with gradual typing, though there is

few documentation about the gradual type systems of these languages.

2.4 Approaches that are often called Gradual Typ-
ing

Gradual typing is similar to optional type systems in that type annota-

tions are optional, and unannotated code is dynamically typed, but unlike op-

tional type systems, gradual typing changes the run-time semantics to preserve

type safety. More precisely, programming languages that include a gradual

type system can implement the semantics of statically typed languages, so the

gradual type system inserts casts in the translated code to guarantee that types

are consistent before execution, while programming languages that include an

optional type system still need implement the semantics of dynamically typed

languages, so all the type checking also belongs to the semantics of each oper-

ation.

Still, we can view gradual typing as a way to formalize an optional type

system when the gradual type system does not insert run-time checks. BabyJ

[AD03] and Alore [LG11] are two examples of object-oriented languages that

have an optional type system with a formalization that relates to gradual

typing, though the optional type systems of both BabyJ and Alore are nominal.

BabyJ uses the relation ≈ that is similar to the consistency relation while Alore

combines subtyping along with the consistency relation to define a consistent-

or-subtype relation. The consistent-or-subtype relation is different from the

consistent-subtyping relation of Siek and Taha [ST07], but it is also written

T1 . T2. The consistent-or-subtype relation holds when T1 ∼ T2 or T1 <: T2,

where <: is transitive and ∼ is not. Alore also extends its optional type system

to include optional monitoring of run-time type errors in the gradual typing

style.

Hence, optional type annotations for software evolution are likely the

reason why optional type systems are commonly called gradual type systems.

Typed Clojure [BS12] is an optional type system for Clojure that is now

adopting the gradual typing slogan.

Flanagan [Fla06] introduced hybrid type checking, an approach that

combines static types and refinement types. For instance, programmers can

specify the refinement type {x : Int | x ≥ 0} when they need a type for natural

numbers. The programmer can also choose between explicit or implicit casts.

When casts are not explicit, the type checker uses a theorem prover to insert

casts. In our example of natural numbers, a cast would be inserted to check

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 24

whether an integer is greater than or equal to zero.

Sage [GKT+06] is a programming language that extends hybrid type

checking with a dynamic type to support dynamic and static typing in the

same language. Sage also offers optional type annotations in the gradual typing

style, that is, unannotated code is syntactic sugar for code whose declared type

is the dynamic type.

Thus, the inclusion of a dynamic type in hybrid type checking along with

optional type annotations, and the insertion of run-time checks are likely the

reason why hybrid type checking is also viewed as a form of gradual typing.

Tobin-Hochstadt and Felleisen [THF06] proposed another approach for

gradually migrating from dynamically typed to statically typed code, and

they coined the term from scripts to programs for referring to this kind of

interlanguage migration. In their approach, the migration from dynamically

typed to statically typed code happens module-by-module, so they designed

and implemented Typed Racket [THF08] for this purpose. Typed Racket

is a statically typed version of Racket (a Scheme dialect) that allows the

programmer to write typed modules, so Typed Racket modules can coexist

with Racket modules, which are untyped.

The approach used by Tobin-Hochstadt and Felleisen [THF08] to design

and implement Typed Racket is probably also called gradual typing because

it allows the programmer to gradually migrate from untyped scripts to typed

programs. However, Typed Racket is a statically typed language, and what

makes it gradual is a type system with a dynamic type that handles the

interaction between Racket and Typed Racket modules.

Recently, Siek et al. [SVCB15] described a formal criteria on what is

gradual typing: the gradual guarantee. Besides allowing static and dynamic

typing in the same code along with type soundness, the gradual guarantee

states that removing type annotations from a gradually typed program that is

well typed must continue well typed. The other direction must be also valid,

that is, adding correct type annotations to a gradually typed program that is

well typed must continue well typed. In other words, the gradual guarantee

states that any changes to the annotations does not change the static or the

dynamic behavior of a program [SVCB15]. The authors prove the gradual

guarantee and discuss whether some previous projects match this criteria.

2.5 Statistics about the usage of Lua

In this section we present statistics about the usage of Lua features and

idioms. We collected statistics about how programmers use tables, functions,

dynamic type checking, object-oriented programming, and modules. We shall

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 25

see that these statistics informed important design decisions on our optional

type system.

We used the LuaRocks repository to build our statistics database;

LuaRocks [MMI13] is a package manager for Lua modules. We downloaded

the 3928 .lua files that were available in the LuaRocks repository at February

1st 2014. However, we ignored files that were not compatible with Lua 5.2, the

latest version of Lua at that time. We also ignored machine-generated files and

test files, because these files may not represent idiomatic Lua code, and might

skew our statistics towards non-typical uses of Lua. This left 2598 .lua files

from 262 different projects for our statistics database; we parsed these files

and processed their abstract syntax tree to gather the statistics that we show

in this section.

To verify how programmers use tables, we measured how they initial-

ize, index, and iterate tables. We present these statistics in the next three

paragraphs to discuss their influence on our type system.

The table constructor appears 23185 times. In 36% of the occurrences

it is a constructor that initializes a record (e.g., { x = 120, y = 121 }); in

29% of the occurrences it is a constructor that initializes a list (e.g., { "one",

"two", "three", "four" }); in 8% of the occurrences it is a constructor

that initializes a record with a list part; and in less than 1% of the occurrences

(4 times) it is a constructor that uses only the booleans true and false as

indexes. At all, in 73% of the occurrences it is a constructor that uses only

literal keys; in 26% of the occurrences it is the empty constructor; in 1% of the

occurrences it is a constructor with non-literal keys only, that is, a constructor

that uses variables and function calls to create the indexes of a table; and in

less than 1% of the occurrences (19 times) it is a constructor that mixes literal

keys and non-literal keys.

The indexing of tables appears 130448 times: 86% of them are for reading

a table field while 14% of them are for writing into a table field. We can classify

the indexing operations that are reads as follows: 89% of the reads use a literal

string key, 4% of the reads use a literal number key, and less than 1% of the

reads (10 times) use a literal boolean key. At all, 93% of the reads use literals to

index a table while 7% of the reads use non-literal expressions to index a table.

It is worth mentioning that 45% of the reads are actually function calls. More

precisely, 25% of the reads use literals to call a function, 20% of the reads use

literals to call a method, that is, a function call that uses the colon syntactic

sugar, and less than 1% of the reads (195 times) use non-literal expressions to

call a function. We can also classify the indexing operations that are writes as

follows: 69% of the writes use a literal string key, 2% of the writes use a literal

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 26

number key, and less than 1% of the writes (1 time) uses a literal boolean key.

At all, 71% of the writes use literals to index a table while 29% of the writes

use non-literal expressions to index a table.

We also measured how many files have code that iterates over tables to

observe how frequently iteration is used. We observed that 23% of the files have

code that iterates over keys of any value, that is, the call to pairs appears

at least once in these files (the median is twice per file); 21% of the files have

code that iterates over integer keys, that is, the call to ipairs appears at least

once in these files (the median is also twice per file); and 10% of the files have

code that use the numeric for along with the length operator (the median is

once per file).

The numbers about table initialization, indexing, and iteration show us

that tables are mostly used to represent records, lists, and associative arrays.

Therefore, Typed Lua should include a table type for handling these uses of Lua

tables. Even though the statistics show that programmers initialize tables more

often than they use the empty constructor to dynamically initialize tables, the

statistics of the empty constructor are still expressive and indicate that Typed

Lua should also include a way to handle this style of defining table types.

We found a total of 24858 function declarations in our database (the

median is six per file). Next, we discuss how frequently programmers use

dynamic type checking and multiple return values inside these functions.

We observed that 9% of the functions perform dynamic type checking

on their input parameters, that is, these functions use type to inspect the

tags of Lua values (the median is once per function). We randomly selected 20

functions to sample how programmers are using type, and we got the following

data: 50% of these functions use type for asserting the tags of their input

parameters, that is, they raise an error when the tag of a certain parameter

does not match the expected tag, and 50% of these functions use type for

overloading, that is, they execute different code according to the inspected

tag.

These numbers show us that Typed Lua should include union types,

because the use of the type idiom shows that disjoint unions would help pro-

grammers define data structures that can hold a value of several different, but

fixed types. Typed Lua should also use type as a mechanism for decomposing

unions, though it may be restricted to base types only.

We observed that 10% of the functions explicitly return multiple values.

We also observed that 5% of the functions return nil plus something else, for

signaling an unexpected behavior; and 1% of the functions return false plus

something else, also for signaling an unexpected behavior.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 27

Typed Lua should include function types to represent Lua functions, and

tuple types to represent the signatures of Lua functions, multiple return values,

and multiple assignments. Tuple types require some special attention, because

Typed Lua should be able to adjust tuple types during compile-time, in a

similar way to what Lua does with function calls and multiple assignments

during run-time. In addition, the number of functions that return nil and

false plus something else show us that overloading on the return type is also

useful to the type system.

We also measured how frequently programmers use the object-oriented

paradigm in Lua. We observed that 23% of the function declarations are

actually method declarations. More precisely, 14% of them use the colon

syntactic sugar while 9% of them use self as their first parameter. We also

observed that 63% of the projects extend tables with metatables, that is, they

call setmetatable at least once, and 27% of the projects access the metatable

of a given table, that is, they call getmetatable at least once. In fact, 45%

of the projects extend tables with metatables and declare methods: 13% using

the colon syntactic sugar, 14% using self, and 18% using both.

Based on these observations, Typed Lua should include support to object-

oriented programming. Even though Lua does not have standard policies for

object-oriented programming, it provides mechanisms that allow programmers

to abstract their code in terms of objects, and our statistics confirm that an

expressive number of programmers are relying on these mechanisms to use the

object-oriented paradigm in Lua. Typed Lua should include some standard

way of defining interfaces and classes that the compiler can use to type check

object-oriented code, but without changing the semantics of Lua.

We also measured how programmers are defining modules. We observed

that 38% of the files use the current way of defining modules, that is, these files

return a table that contains the exported members of the module at the end of

the file; 22% of the files still use the deprecated way of defining modules, that

is, these files call the function module; and 1% of the files use both ways. At

all, 61% of the files are modules while 39% of the files are plain scripts. The

number of plain scripts is high considering the origin of our database. However,

we did not ignore sample scripts, which usually serve to help the users of a

given module on how to use this module, and that is the reason why we have

a high number of plain scripts.

Based on these observations, Typed Lua should include a way for defining

table types that represent the type of modules. Typed Lua should also support

the deprecated style of module definition, using global names as exported

members of the module.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 2. Blending static and dynamic typing 28

Typed Lua should also include some way to define the types of userdata.

This feature should also allow programmers to define userdata that can be used

in an object-oriented style, as this is another common idiom from modules that

are written in C.

The last statistics that we collected were about variadic functions and

vararg expressions. We observed that 8% of the functions are variadic, that is,

their last parameter is the vararg expression. We also observed that 5% of the

initialization of lists (or 2% of the occurrences of the table constructor) use

solely the vararg expression. Typed Lua should include a vararg type to handle

variadic functions and vararg expressions.

Table 2.1 summarizes the statistics that we presented in this section.

table constructor
(% per static occurrences)

create a record 36%
create a list 29%
create an empty table 26%
create a table with a record part
and a list part

8%

create a table with non-literal
keys

1%

table access
(% per static occurrences)

reading with literal keys 80%
writing with literal keys 10%
reading with non-literal keys 6%
writing with non-literal keys 4%

iteration over tables
(% per files)

files that iterate over a list 27%
files that iterate over a map 23%

function declarations
(% per static occurrences)

inspect the tags of their input
parameters

9%

return multiple values to signal
errors

6%

are variadic 8%
are method declarations 23%

object-oriented programming
(% per projects)

projects that use metatables and
declare methods

45%

modules
(% per files)

files that are modules 61%
files that are plain scripts 39%

Table 2.1: Summary of the statistics about the usage of Lua

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA




