Termomecânica da rocha

3.1.

Tensão térmica

A maioria de substâncias expande-se quando a temperatura dela é elevada, e contrai-se quando enfria-se, e para uma ampla faixa de temperatura esta expansão e contração, é proporcional á mudança da temperatura. A proporcionalidade é expressa pelo *coeficiente de expansão térmica linear (a)*, ele é definido como a mudança de comprimento que acontece quando a temperatura é elevada 1°C.

Se no corpo se gera uma livre expansão ou contração, não se gera nenhuma tensão por causa da temperatura. Porém, quando o aumento da temperatura em um corpo homogêneo não é uniforme, diferentes elementos do corpo tendem se expandir em quantidades diferentes e provoca que o corpo permaneça em conflito continuo com a exigência que cada elemento se expanda uma quantidade que é proporcional ao aumento da temperatura local. Assim, os vários elementos exercem um sobre o outro uma ação de restrição, resultando em deslocamentos únicos e contínuos em todos os pontos. O sistema de deslocamentos produzidos pela ação restritiva anula todas, ou parte, as livres expansões térmicas em todos os pontos, de modo a garantir a continuidade do deslocamento. Este deslocamento é acompanhado por um sistema de auto equilíbrio de tensões, isto é conhecido como *tensões térmicas*. (Johns, 1965)

3.2.

Equações gerais

As equações diferenciais de equilíbrio em termos de deslocamento podem ser generalizadas para incluir tensões e deformações térmicas. As relações de tensão-deformação em três dimensões são:

$$\varepsilon_{xx} = \alpha \cdot \Delta T + \frac{1}{E} \left[\sigma_{xx} - \nu (\sigma_{yy} + \sigma_{zz}) \right]$$

$$\varepsilon_{yy} = \alpha \cdot \Delta T + \frac{1}{E} \left[\sigma_{yy} - \nu (\sigma_{xx} + \sigma_{zz}) \right]$$

$$\varepsilon_{zz} = \alpha \cdot \Delta T + \frac{1}{E} \left[\sigma_{zz} - \nu (\sigma_{xx} + \sigma_{yy}) \right]$$

$$\varepsilon_{xy} = \frac{\tau_{xy}}{G}$$

$$\varepsilon_{yz} = \frac{\tau_{yz}}{G}$$

$$\varepsilon_{zx} = \frac{\tau_{zx}}{G}$$

Donde ΔT é a variação da temperatura, α é o coeficiente de expansão linear, E é o módulo de Young, G é o módulo de cisalhamento, ν é o coeficiente de Poisson e $[\alpha. \Delta T]$ é a deformação devido à temperatura

Para um elemento totalmente restrito a magnitude da tensão térmica depende apenas das propriedades físicas, e do aumento da temperatura do elemento em questão. (Jhons, 1965).

$$\sigma = -\frac{E.\alpha.\Delta T}{(1-2\nu)}$$

Então

$$\sigma_{xx} = (\lambda + 2G). \, \varepsilon_{xx} + \lambda (\varepsilon_{yy} + \varepsilon_{zz}) - \frac{E. \, \alpha. \, \Delta T}{(1 - 2\nu)}$$

$$\sigma_{yy} = (\lambda + 2G). \, \varepsilon_{yy} + \lambda(\varepsilon_{xx} + \varepsilon_{zz}) - \frac{E. \, \alpha. \, \Delta T}{(1 - 2\nu)}$$

$$\sigma_{zz} = (\lambda + 2G) \cdot \varepsilon_{zz} + \lambda (\varepsilon_{xx} + \varepsilon_{yy}) - \frac{E \cdot \alpha \cdot \Delta T}{(1 - 2\nu)}$$

Donde:

$$\lambda = \frac{\nu \cdot E}{(1+\nu)(1-2\nu)} \qquad G = \frac{E}{2\cdot (1+\nu)}$$

Donde λ é a constate de Lamé

3.3.

Transferência de calor

A transferência de calor Q [joules] é um dos dois tipos de interação de energia que são considerados em qualquer declaração da Primeira Lei da Termodinâmica. O outro tipo de interação de energia é a transferência de trabalho W (Bejan, 1948).

A forma de transferir calor pode-se dar: por condução, convecção ou radiação. Em corpos sólidos a condução é o modo primário de transferência de calor, os outros dois só afetam as condições de contorno do corpo.

Descreveremos seguidamente a *condução*, já que é o modo de transferência de calor de interesse nesta pesquisa.

3.3.1.

Condução de calor

Quando existe uma gradiente de temperatura em um meio estacionário (pode ser um sólido ou um fluido) utilizamos o termo *condução* para nos referirmos à transferência de calor que irá ocorrer através do meio. O mecanismo físico da condução envolve os conceitos de atividade atômica e molecular, que sustenta a transferência de energia das partículas mais energéticas para as partículas de menor energia de uma substância, devido às interações que existem entre as partículas. (Moran, 2003)

Em um corpo sólido o calor é transferido principalmente por condução. A teoria de condução de calor é baseada na segunda lei de Fourier.

Para um corpo isotrópico pode-se escrever:

$$q = -k \cdot \frac{\partial T}{\partial n}$$

Donde n é a direção do fluxo de calor. A condução pode ser escrita em condições retangulares:

$$(q_x, q_y, q_z) = -k \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right)$$

Donde $q_{x,y,z}$ é o fluxo de calor por unidade de área, k é a condutividade térmica do corpo e T é a temperatura.

A lei de Fourier faz notar que a taxa de condução de calor depende do material através do qual o calor se move.

Uma equação para descrever a condução de calor transiente pode ser construída realizando um balanço de calor, considerando o volume de um corpo, e usando a lei de Fourier para contabilizar o fluxo de calor através das superfícies do volume. O resultado deste balanço é uma equação de segunda ordem, chamada equação de difusão de calor.

$$\nabla \cdot (k \cdot \nabla \cdot T) + g = \rho c \frac{\partial T}{\partial t}$$

Donde g representa o calor gerado internamente, ρ é a densidade do material, t é o tempo e c é o calor específico.

Se o calor é conduzido através de um meio isotrópico então pode-se escrever:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + g = \rho c \frac{\partial T}{\partial t}$$

Se o meio é considerado também homogêneo, então a equação se pode simplificar assim:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{g}{k} = \frac{\rho. c. \partial T}{k. \partial t}$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{g}{k} = \frac{1}{\alpha} \cdot \frac{\partial T}{\partial t}$$

Donde α representa a difusividade térmica.

3.4.

Propriedades térmicas das rochas

3.4.1.

Condutividade térmica

A condutividade térmica, k, quantifica a habilidade dos materiais de conduzir energia térmica. Se o valor da condutividade é alto, a condução de calor no material vai ser mais rápida, portanto, a condutividade térmica é diretamente proporcional à velocidade de dissipação de calor. Matematicamente pode-se definir da seguinte maneira:

$$k = \frac{\partial Q.L}{\partial t.A.\partial T}$$

Donde Q é a quantidade de calor conduzido, L é o comprimento que o calor vai recorrer, t é o tempo, A é a área da seção normal à direção de fluxo de calor, T é a temperatura. A unidade da condutividade térmica no Sistema Internacional é [W/m.K].

Uma grande faixa no valor da condutividade térmica é observada em materiais geológicos. Geralmente a condutividade térmica em rochas está em uma faixa de 1 a 6 W/m.k. A maioria das rochas tem comportamento anisotrópico, o que origina uma preferência na direção do fluxo de calor, isto é normalmente devido ao alinhamento dos cristais dos minerais, que se contêm na rocha. Porém, as rochas onde seus minerais não apresentam este comportamento podem ser consideradas como corpos isotrópicos (*apud* Moran, 2003).

3.4.2.

Calor específico

O calor específico, **c**, relaciona a mudança de temperatura de um sistema com a quantidade de energia adicionada por transferência de calor (Moran, 2003). Matematicamente o calor específico é definido:

$$c = \frac{\partial Q}{m \cdot \partial T}$$

Donde Q é o calor recebido pelo o corpo, m é a massa do corpo e T é a temperatura. A unidade no Sistema Internacional é [J/kg.k].

Existem dois tipos de calor específico: o calor específico a volume constante, c_v , e o calor específico a pressão constante, c_p ; o segundo é geralmente maior que o primeiro, isto vai ocorrer em materiais com coeficiente de dilatação volumétrico positivo, em materiais sólidos e líquidos sujeitos a pequenas variações de volume, frente às variações de temperatura, os valores dos dois calores específicos são aproximadamente iguais.