
Nara Torres Moreira

A MIP-Based Approach to Solve a Real-World
School Timetabling Problem

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–Graduação em
Informática of the Departamento de Informática, PUC–Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática.

Advisor: Prof. Marcus Vinicius Soledade Poggi de Aragão

Rio de Janeiro
May 2015

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Nara Torres Moreira

A MIP-Based Approach to Solve a Real-World
School Timetabling Problem

Dissertation presented to the Programa de Pós–Graduação em
Informática, of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio, as partial fulfillment of the
requirements for the degree of Mestre.

Prof. Marcus Vinicius Soledade Poggi de Aragão
Advisor

Departamento de Informática — PUC–Rio

Prof. Haroldo Gambini Santos
Departamento de Informática — PUC-Rio

Prof. Rafael Martinelli
Trieda

Prof. Thibault Vidal
Departamento de Informática — PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro, May 21st, 2015

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

All rights reserved.

Nara Torres Moreira

Nara Torres Moreira received her undergraduate degree in
Computational Mathematics in 2011, from Universidade Fe-
deral de Minas Gerais (Belo Horizonte, Brazil). She also obtai-
ned a Master degree in 2015 at PUC-Rio in Computer Science
focused on Combinatorial Optimization. During the master
she held a scholarship from Coordenação de Aperfeiçoamento
de Pessoal de Nivel Superior (CAPES). She worked for Gapso
company for over three years as Optimization Analyst and has
been working for Accenture Digital as Data Science Analyst
since beginning of 2015.

Bibliographic data
Moreira, Nara Torres

A MIP-Based Approach to Solve a Real-World School
Timetabling Problem / Nara Torres Moreira; advisor: Marcus
Vinicius Soledade Poggi de Aragão. — 2015.

136 f. : il. (color.); 30 cm

Dissertação (mestrado) - Pontif́ıcia Universidade Católica
do Rio de Janeiro, Rio de Janeiro, Departamento de In-
formática, 2015.

Inclui bibliografia.

1. Informática – Teses. 2. Geração de grades horárias
para escolas. 3. Programação linear inteira mista. 4.
Modelagem matemática. 5. Otimização combinatória. I.
Poggi de Aragão, Marcus Vinicius Soledade. II. Pontif́ıcia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

To my parents, because I really couldn’t have asked for better.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Acknowledgement

I would like to express my gratitude to my adviser Prof. Marcus V. S. Poggi

de Aragão, for the guidance throughout my master studies, for assisting me

in understanding and discerning the relevant points in research, and for being

available whenever I needed.

I gratefully acknowledge the Gapso company, where I was first introdu-

ced to real-world combinatorial optimization problems and where I could

develop my technical skills, work and learn with excellent professionals, face

challenges and improve my knowledge in the field of mathematical program-

ming.

I am also grateful to all those who contribute to Trieda’s development,

especially to Francisco Fonseca and Marcelo Reis, from whom I have learned

so much.

I place on record my gratitude to the Coordenação de Aperfeiçoamento

de Pessoal de Nivel Superior (CAPES) for the financial support and to the

Pontif́ıcia Universidade Católica do Rio de Janeiro for giving me the opportu-

nity to continue my studies.

I would like to thank to my parents, Adilson Assis Moreira and Milene

Torres dos Santos Moreira, for supporting and encouraging me in my decisions

and ambitions, for teaching me fundamental values of life, and foremost for

always believing and trusting on me. Everything I have I own to them.

Finally, I wish to thank my friends, both from Rio de Janeiro and Belo

Horizonte, for their patience, understanding and support during my master

studies, and for the uncountable times they brought me fun. Particularly, I

want to thank my friend and colleague Fabián Castilla, for so many useful

advices, for helping me every time I need it and for making me laugh even on

my most stressful days. Life is empty without friends.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Abstract

Moreira, Nara Torres; Poggi de Aragão, Marcus Vinicius Soledade
(Advisor). A MIP-Based Approach to Solve a Real-World
School Timetabling Problem. Rio de Janeiro, 2015. 136p.
MSc. Dissertation — Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Timetabling problems look to schedule meetings in order to satisfy

a set of demands, while respecting additional constraints. In a good

solution the resulting timetables are acceptable to all people and resources

involved. In school timetabling, a given number of lectures, involving

students, teachers and classrooms, need to be scheduled over the week,

while having to satisfy operational, institutional, pedagogical and personal

restrictions. The difficulty of the problem has driven many researchers

to work on solving approaches for it since the early 1960’s. Finding an

actual solution to a real world scenario implies satisfying many quality

requirements and not ignoring the political issues, which turns the classical

problem much more intricate. This work describes an approach based on

mixed integer programming (MIP) developed for solving a real-world school

timetabling problem and discusses ideas and issues faced during solution

deployment phase for some Brazilian schools. In contrast to other works on

school timetabling, teaching staff sharing between distinct school units are

considered. Computational experiments were performed for scenarios whose

number of school units varies from 2 to 15, number of teachers varies from

35 to 471 and number of classes varies from 16 to 295. Different strategies

were combined aiming at converging to good solutions. Finally, results are

evaluated and the best approaches are highlighted.

Keywords
School Timetabling; Mixed Integer Linear Programming; Mathemati-

cal Modeling; Combinatorial Optimization.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Resumo

Moreira, Nara Torres; Poggi de Aragão, Marcus Vinicius Soledade.
Uma abordagem baseada em programação inteira mista
para resolver um problema do mundo real de geração
de grades horárias escolares. Rio de Janeiro, 2015. 136p. Dis-
sertação de Mestrado — Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Problemas de geração de grades horárias visam agendar eventos a

fim de satisfazer demandas, ao mesmo tempo que satisfazem restrições adi-

cionais. Uma solução é boa se todas as grades horárias resultantes são

aceitáveis para todas as pessoas e recursos envolvidos. Para a geração de

grades horárias escolares, um número conhecido de aulas, envolvendo estu-

dantes, professores e salas de aula, deve ser agendado ao longo da semana,

enquanto limitações operacionais, institucionais, pedagógicas e pessoais de-

vem ser satisfeitas. A alta dificuldade do problema tem levado muitos pes-

quisadores a trabalhar em abordagens de resolução para o mesmo desde

o ińıcio dos anos 60. Encontrar uma solução aplicável em um cenário do

mundo real implica em satisfazer vários requisitos de qualidade e em não

ignorar questões poĺıticas, o que torna o problema clássico muito mais in-

trincado. Este trabalho descreve uma abordagem baseada em programação

inteira mista (MIP) desenvolvida para resolver um problema real de geração

de grades horárias escolares e discute ideias e desafios encarados durante a

fase de implantação da solução em algumas escolas brasileiras. Em contraste

com outros trabalhos na área, o compartilhamento de professores entre dife-

rentes unidades de uma escola é considerado. Experimentos computacionais

foram realizados para cenários cujo número de unidades varia de 2 a 15, o

número de professores de 35 a 471, e o número de turmas de 16 a 295. Dife-

rentes estratégias foram combinadas, visando a convergência da procura por

boas soluções. Por fim, os resultados são avaliados e as melhores abordagens

são destacadas.

Palavras–chave
Geração de grades horárias para escolas; Programação linear inteira

mista; Modelagem matemática; Otimização combinatória.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Contents

1 Introduction 10
1.1 Introducing the basic timetabling problem 10
1.2 Brazilian school timetabling problem 11
1.3 Practical and realistic formulation 12
1.4 Main similar formulations and their differences 14
1.5 Data accuracy and Politics 15
1.6 Timetabling Groups and Conferences 17
1.7 Dissertation Outline 19

2 Trieda’s Timetabling Problem 20
2.1 Introducing the system 20
2.1.1 Simulation usability 20
2.1.2 Multiple scenarios 21
2.1.3 Interface and solver interaction 21
2.1.4 Manual changes 21
2.1.5 Initial solution 21
2.1.6 Reasons for non–satisfaction of demands 22
2.1.7 Virtual professor tips 22
2.2 Introducing the school timetabling problem 22
2.2.1 Entities and Concepts 23
2.2.2 Constraints 27
2.3 Data quality 34
2.3.1 Credits split rule 34
2.3.2 Availability times 34
2.3.3 Assignments between courses and rooms 35

3 Mathematical Formulation 36
3.1 Integer programming 36
3.1.1 Alternative formulations 38
3.1.2 Optimality and relaxation 39
3.1.3 Integrality gap 41
3.1.4 Branch and Bound 41
3.1.5 MIP Solver 42
3.2 IP - Assignment Formulation for the Timetabling Problem 42
3.2.1 Notation 43
3.2.2 Formulation 46

4 Solving Strategies 55
4.1 Phases of problem solving 55
4.1.1 Real teaching resource 56
4.1.2 Virtual teaching resource 57
4.2 Goal programming 59
4.2.1 General concept 60
4.2.2 Applying Goal Programming 60

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

4.3 Polishing Method 63
4.3.1 The general idea 64
4.3.2 The polishing algorithm developed for the problem 65

5 Computational Experiments 78
5.1 Computational resources 78
5.2 Scenarios 78
5.3 Approaches 85
5.3.1 Approaches to combine 85
5.3.2 Gurobi Parameters 86
5.4 Results 86
5.4.1 Model features 87
5.4.2 Solver performance 91
5.4.3 Solution quality 94

6 Conclusions 102
6.1 Best approaches 103
6.1.1 Goal Programming 103
6.1.2 Phases 104
6.1.3 Polishing method 104
6.1.4 Hard vs soft constraints 105
6.1.5 Fixing partial solution over phases 105
6.2 Future Work 106

7 Bibliography 108

A Appendix 1 111
A.1 XHSTT format 111
A.1.1 General structure 111
A.1.2 Times 112
A.1.3 Resources 113
A.1.4 Events 113
A.1.5 Constraints 114
A.2 Converting XHSTT problem into Trieda’s problem 116
A.3 Suggestions for expansion of XHSTT format 118
A.3.1 Travel time between different blocks 118
A.3.2 Limited number of blocks in teachers/classes timetables 120

B Appendix 2 122
B.1 Solution quality of individual computational experiments 122
B.1.1 Scenario A 122
B.1.2 Scenario B1 124
B.1.3 Scenario B2 126
B.1.4 Scenario C 129
B.1.5 Scenario D 131
B.1.6 Scenario E 134

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

1
Introduction

This dissertation is based on experiences lived during development of

the Brazilian commercial software TRIEDA. In this chapter, ideas are contex-

tualized and a brief introduction, some references and main variants to the

Timetabling Problem (TTP) are provided. General and important aspects of

real world timetabling are also introduced, besides existing timetabling groups

and conferences.

1.1
Introducing the basic timetabling problem

Timetabling problems are a kind of practical scheduling challenge faced

by many organizations and important for their daily operations to succeed.

The general problem can be described as the satisfaction of a set of demands

through the scheduling of meetings between those who demand and the

available resources, while respecting additional constraints. The resulting

timetables should be feasible and acceptable to all people and resources

involved.

Application areas vary widely from sport event timetabling to nurse

scheduling, lectures scheduling and transportation timetabling. This work is

about timetabling in the school environment, which is where the original

problem was set.

In school timetabling, a given number of lectures, involving students,

teachers and classrooms, need to be scheduled over a fixed period of time

(typically a week), while usually having to satisfy a set of additional constraints

of various types. For an actual and applied purpose, besides mandatory

operational constraints, such as avoiding resources overbooking, it is essential

to consider several solution quality constraints, which can be related to

institution, pedagogical and personal needs.

Because schools differ a lot in their educational policies, both when

considering the same country and especially more between distinct countries,

the criteria for quality and even timetable feasibility definition also depends

on each educational system. In this work, the Brazilian school educational

system is embraced. Studies based on the German school system can be found

at (Marte, 2002), on the Greek system at (Birbas et al., 1997), (Birbas et

al., 2009) and (Valouxis et al., 2012), and on Brazilian system at (Santos et

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 11

al., 2012). An overview of school timetabling research is provided by (Pillay,

2010), describing the most common operational and quality requirements and

the different solving methods that have been used.

University timetabling problems have also been very studied and have

many similarities with the school version. Studies based on a Turkish university

system can be found at (Guenalay and Sahin, 2006) and on a Greek university

system at (Daskalaki and Birbas, 2005). For more complete approaches, one

can check at (Carter, 2001) for a Canada university system and at (Murray et

al., 2007) for an American university system.

The problem is known to be difficult and therefore many researchers

have shown an interest in it since the early 1960’s. Schaerf (Schaerf, 1999)

showed for a classical version of the school timetabling problem that it

is NP-complete. Furthermore, enhancing a model with real-world practical

and quality requirements turns the problem much more intricate and can

increase even more its complexity. For instance, considering the compactness

requirement for students timetables (detailed in section 2.2.2), (Asratian

and Werra, 2002) shows that deciding whether a timetable that guarantees

compactness for the students exits is NP-complete by itself.

1.2
Brazilian school timetabling problem

In Brazil, basic educational system is split in 3 stages:

1. Fundamental Education I

2. Fundamental Education II

3. Upper secondary education

Fundamental Education is mandatory for children ages 6−14. There are

9 “years” (as opposed to the former 8 “grades”). The current “First Year”

broadly corresponds to the former Pre-School last year of private institutions,

and its aim is to achieve literacy. Generally speaking, the only prerequisite for

enrolling in first year is that a child should be 6 years old.

The Federal Council of Education establishes a core curriculum consisting

of Portuguese language, history, geography, science, mathematics, arts and

physical education (for years 2, 3, 4 and 5). As for years 6, 7, 8 and 9, one

or two foreign languages are also compulsory (usually English and an optional

language).

Each education system supplements this core curriculum with a diversi-

fied curriculum defined by the needs of the region and the abilities of individual

students.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 12

Fundamental Education is divided in two stages and takes 9 years long.

During the first stage, each group of students is usually assisted by a single

teacher. At the second stage, there are as many teachers as subjects.

Students must have finished their Fundamental education before they

are allowed to enroll in Secondary education (“Ensino Médio”), which takes 3

years. Secondary education core curriculum comprises Portuguese (including

Portuguese language, Brazilian and Portuguese literature), foreign language

(usually English, also Spanish and very rarely French), History, Geography,

Mathematics, Physics, Chemistry and Biology. Philosophy and Sociology,

which were banned during the military dictatorship (1964 to 1985), became

compulsory again. The courses provided during this period are essentially

designed to allow a young person to enter an university. A minority of schools

provides professional training along with mainstream secondary education.

Professional training courses usually last 2 years and can be taken during

the 2nd and 3rd years of Secondary education.

Once a student has successfully completed secondary education, he may

continue his studies at a public or private university. To enter a public uni-

versity, students must sit an entrance exam, known as “vestibular”. Entrance

exams to a private university are often little more than a formality and, as a

consequence, public university degrees are “usually” valued much more than

those from private institutions.

The normal practice in Brazilian schools, both public and private, is

to mix students of all study directions together in the same class. Due to

the entrance exam to universities, it is common though at private schools

for students at last year of secondary education to have extra specialized

classes, which depend on their choice for undergraduation course. Data from

(Wikipedia).

1.3
Practical and realistic formulation

Both school and university timetabling problems have been studied for

over 50 years now. Many potentially useful solving algorithms and techniques

have been discussed and offered, but unfortunately much of the work in

this area has been conducted using artificial data sets or based on greatly

simplified versions of actual problems. Often the considered scenario has

already preassigned sets of entities, like professors to classes in the case of

school timetabling or students to course sections in the case of university.

Besides, the methods developed have most of the time been restricted to a

single university department or school unit, instead of being extended to the

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 13

solution of actual university and school problems of any large scale. Whenever

the different departments or units have dependencies, like sharing resources,

usually teaching staff, such partition of the problem is relevant and can

therefore be prejudicial to the final solution quality and acceptance.

For the university environment, we draw attention to (Carter, 2001) and

(Murray et al., 2007) as those who made efforts on solving very realistic versions

of the problem for universities in Canada and in USA. They described both

the methods used for solving the problems and the challenges faced during

the process of deploying solutions. Also, earliest implementations of a decision

support system for academic scheduling can be backtrack to 1986, at (Kassicieh

et al., 1986), for University of New Mexico in USA.

The major differences between many of the problems studied and their

real life counterparts are the additional complexity imposed by course struc-

tures, the variety of quality constraints imposed, and the distributed responsi-

bility for information needed to solve such problems at a wider level. Besides, as

pointed out in (Murray et al., 2007) for university course timetabling scenario,

the complexity of solving actual timetabling problems can increase consider-

ably beyond that represented in standard formulations of the problem. As the

complexity increases, it is easy to be caught in the dual bind that the problem

is both more challenging to develop an effective solution approach for, and this

approach is less likely to be usable on other educational institutions. Every in-

stitution has its own particularities, which make it harder to build a single and

general solver.

As observed by Carter (Carter, 2001), there are still few published papers

that described actual implementations of course timetabling. From what we

know, the first example of an automated and integrated course timetabling and

student scheduling system across a institution was developed for the University

of Waterloo between 1979 and 1985. Although the system was implemented

29 years ago, much of the discussion is still very relevant. By 2001, Carter

expressed his belief that there was still no system for solving the large-scale

course timetabling problem with such level of mathematical sophistication.

By 2006, Guenalay and Sahin introduced at (Guenalay and Sahin, 2006)

a Decision Support System (DSS) for the university timetabling that allows

the direct involvement of the decision maker. They affirmed that their model

was the first one which simultaneously combined such a DSS approach with a

goal programming optimization tool.

At (Benli and Botsali, 2004) is documented a DSS for scheduling courses

at Bilkent University. At (LLC, 2007 - 2014) the Unitime software for university

scheduling is described and widely documented. It is an open source system

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 14

used at Purdue University and specially developed for it, and also the focus of

(Murray et al., 2007).

1.4
Main similar formulations and their differences

For solving the high school timetabling problem, this work used an integer

programming formulation together with strategies for helping the convergence

of the searching process. This work is based on the development of the

educational timetabling software TRIEDA and, because it is a commercial

software, it has been modeled to be as portable and flexible as possible.

Particularly, the system embraces most common rules and cases found in

Brazilian universities and schools.

Among the existing published works that considered more realistic for-

mulations for high school timetabling problems, we highlight (Birbas et al.,

2009) and (Valouxis et al., 2012) as those whose embraced problems have

more similarities with the one considered in this work. Several practical is-

sues emphasized by them were also faced during TRIEDA’s development and

are referenced along this work. Still, there are many differences between their

timetabling problems and the one here presented.

The most significant and unanimous difference is that other school

timetabling works do not consider multiple and integrated school units. We

found it common in Brazil that large schools with several units spread through

a city share teaching staff. When scheduling lessons, such resource sharing

implies both that we can not solve school units independently and that

professor daily displacement between units must be considered, which increases

size and complexity of the problem. No record of studies in literature that

handle professors displacements between multiple integrated units with equal

in-depth details was found.

Next relevant difference is related to available times of professors. The

more constrained are professors availabilities, the more realistic, but also more

difficult, is the resulting problem. The related limitations of studies found in

literature are to consider professors availabilities only as preferences instead of

considering them strictly; to consider all or most professors as full-time ((Birbas

et al., 2009)); to consider professor availability only in a day level instead of

detailing availability per time period ((Birbas et al., 2009), (Valouxis et al.,

2012)); or simply to bound professors workload ((Birbas et al., 1997)).

Further recurrent difference is related to assignment of classrooms. It

is true that usually in school timetabling problems each class already has a

preassigned classroom. This was not different in scenarios experimented by

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 15

this work, but still there are some exceptions. Some courses, usually practical

subjects, require special rooms, like laboratories or sport courts, which are not

unique per class. Many studies do not consider rooms assignments ((Birbas et

al., 1997), (Birbas et al., 2009), and (Santos et al., 2012)). With the aim of being

as flexible and generic as possible, this work does include rooms assignments.

In terms of solving method, both works (Birbas et al., 2009) and (Valouxis

et al., 2012) used a hybrid approach, decomposing the problem in phases

and using integer programming for solving sub-problems. That is a quite

reasonable and common strategy, where one replaces the solving of a hard

and large problem with the solving of some easier and smaller problems. The

problem is that such decompositions cause reduction of the solution search-

space and there is usually no guarantee that better or optimal solutions are

not eliminated during such reduction. This present work attempts to solve the

whole problem using an integer programming approach, but avoiding this kind

of decomposition and therefore guaranteeing that the optimal solution is never

thrown out.

Further differences and similarities between other educational

timetabling problems and the one here presented can be identified along

this work.

1.5
Data accuracy and Politics

For large educational institutions it is common that responsibility for

constructing the timetables is distributed among the different academic units.

Each unit has more control and an intimate knowledge about its own teaching

staff, physical facilities, courses and demands. Besides, many times there is

information that is not stored in any database — practical unofficial knowledge,

that can only be obtained by contacting departmental timetablers. On the

other hand, there are often sharing of resources and demands between units,

which connects their timetables and precludes them to be independent from

each other. Murray, Müller and Rudová observe at (Murray et al., 2007) that

maintaining each department’s sense of ownership in the timetables that are

produced is an important factor in their acceptance of the solutions produced

by an automated timetabling process, and that the process needs to be one that

assists them rather than replaces them. Achieving this corresponds basically

to have accurate input data and to understand all aspects that characterize a

solution as a bad or a good one.

Obtaining coherent and correct data is a particular important and

sensitive issue. Because data accuracy depends on each department, it is

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 16

extremely important the data collection phase of an automating process to

have a deep involvement of all those who usually operate in the traditional

manual process. Any inaccuracy of data can result in a bad or even non-

deployable solution.

Murray, Müller and Rudová tells at (Murray et al., 2007) that inequity in

the quality of time and room assignments received by different departments and

faculty members doomed a previous attempt at automating the timetabling

process at Purdue University. A similar situation was faced by TRIEDA in

July of 2014 while an attempt of deploying a solution in a Brazilian university.

Automating people assignments is different from automating other pro-

cesses — the optimization factor is definitely not more important than people

satisfaction. Only keeping this in mind it is possible to obtain an actual de-

ployable solution.

As wisely pointed out in (Carter, 2001), practical course timetabling is

10% graph theory, and 90% politics. Carter tells that when they first began

designing a timetabling system for University of Waterloo, they were warned

that they cannot dictate when professors will teach courses. Consequently, they

were told that course timetabling could not work or, more precisely, that they

cannot assume that the timetable can use a clear slate. This is because part-

time professors may be available only on certain and specific days or times.

University professors often have other commitments and industrial research

projects. Teaching is only a part of their job, and probably less than half of

their time is devoted to teaching. Similar statement is valid for high school

teachers. It is very common that they teach in more than one school or have

other activities. It follows that it is essential to allow professors to restrict their

available timetables as much as they want.

Guenalay and Sahin describe in (Guenalay and Sahin, 2006) an approach

for university timetabling with a goal programming optimization tool in order

to process the instructor teaching time preferences. As they observe, using a

multi-objective function for considering instructor available preferences may

not be enough for ensure a reliable and acceptable solution.

Professors’ availabilities and preferences issue should therefore not be

underestimated.

The primary design goal is not necessarily finding a true optimal solution,

but to assist academic timetablers with the problem of building a good and

better timetable in an efficient way.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 17

1.6
Timetabling Groups and Conferences

Many groups, conferences, competitions and companies dedicated to

solving timetabling problems have grown in past years. Following some of

them are listed.

– Practice and Theory of Automated Timetabling Conferences (Patat)

The International Series of Conferences on the Practice and The-

ory of Automated Timetabling (Pratice and Theory on Automated

Timetabling) is held biennially since 1995 as a forum for both researchers

and practitioners of timetabling to exchange ideas. An important aim of

the Conference is to align the needs of practitioners and the objectives of

researchers, which is achieved through the presentation and application

of leading edge research techniques.

– International Timetabling Competition (ITC)

The International Timetabling Competition (ITC) has happened in 3 edi-

tions, in 2002, 2007 and 2011. Not much information was found about the

first ITC, in 2002. The second edition (International Timetabling Com-

petition (ITC), 2007) focused on examination and courses timetabling

problems and was sponsored by PATAT and WATT. The third edi-

tion (International Timetabling Competition (ITC), 2011) was devoted

to High School Timetabling and sponsored by PATAT, EventMAP and

CTIT.

The competition is composed of three separate rounds, which represent

distinct problems within the area of educational timetabling both from

a research and practical perspective. It aims especially to encourage

the alignment of research with practice by offering real-world instances

of timetabling problems for solution. Although not all aspects of the

real world problem are included, more depth and complexity have been

introduced significantly at each new edition.

– The Curriculum-based Course Timetabling

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 18

Following the spirit of the ITC, the website (Curriculum-Based Course

Timetabling Project) provides a portfolio of formulations for a version

of the Curriculum-Based Course Timetabling problem. It is possible to

download instances and solutions contributed from the research com-

munity; validate your solutions online or download the source code of

a solution validator; insert solutions, lower bounds, instances, and links

of interest for the community; and generate random instances. All prob-

lem instances available to download are based on real data from various

universities.

– Research Group on Scheduling and Timetabling in Udine

The Scheduling and Timetabling research group in Udine is working on

the solution of scheduling problems using both local search techniques

and their hybridization with other paradigms. The researchers involved

in the group have developed both academic prototypes and production

systems for the solution of practical scheduling problems, such as work-

force scheduling, shift design, timetabling, and sport scheduling. More

information at (Udine).

– EURO Working Group on Automated Timetabling (WATT)

WATT is the EURO Working Group on Automated Timetabling, formed

to discuss, promote, and perform research into automated timetabling

problems and methods. The WATT community was launched in the

wake of the first international conference on the PATAT in 1995. Dif-

ferent timetabling categories are studied and for each one datasets and

references to literature are provided. Further information at ((Watt)).

– Multidisciplinary International Scheduling Conference (Mista)

Mista is a conference series held biennially since 2003, which serves

as a forum for an international community of researchers, practitioners

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 1. Introduction 19

and vendors on all aspects of multi-disciplinary scheduling. The aim is

to bring together scheduling researchers and practitioners from all the

disciplines that engage with scheduling research. Further information at

(Mista).

– Companies and Software

Some examples of companies and software specially dedicated to solving

timetabling problems are (Mimosa Scheduling Software, 2014), (Event

MAP, 2014), (LLC, 2007 - 2014) and (Asc Timetables). This present

work is itself based on the Brazilian software Trieda (Trieda).

1.7
Dissertation Outline

This work is organized as follows:

– Chapter 2 introduces the complete timetabling problem considered in

this work.

– Chapter 3 shows the mathematical formulation developed for the

problem.

– Chapter 4 presents different approaches and strategies for solving the

MIP formulation.

– Chapter 5 introduces a set of distinct scenarios used in this work and

displays a large range of computational experiments performed for the

different scenarios.

– Chapter 6 contains the conclusions of this work.

– Appendix A presents XHSTT format and an attempt to convert a

XHSTT problem into a Trieda’s problem.

– Appendix B presents complete computational results.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

2
Trieda’s Timetabling Problem

School timetabling problems vary a lot from country to country. This

chapter provides a complete definition to the timetabling problem for Brazilian

elementary education system considered in this dissertation.

2.1
Introducing the system

TRIEDA is an academic planning system for educational institutions,

designed as a multi-user application with a completely web-based interface.

Unlike many academic planning systems and timetabling researches, which

consider simplifications of the actual problem, TRIEDA makes all necessary

decisions so that a complete, optimized and applicable solution is provided.

Timetabling problems vary a lot depending on the kind of educational in-

stitution. The system has nowadays two distinct modules: one for solving high

school timetabling problems and another for solving university timetabling

problems. For each one, TRIEDA uses a completely different solver. This dis-

sertation focus only on the high school module.

The system is based on a “demand-driven” philosophy where students

first choose their courses, and having knowledge of the complete institution

structure and available resources, the aim is to provide a complete and feasible

solution that maximizes the number of satisfied requests while respecting a

set of didactic-pedagogical requirements. For the university module, reducing

costs is also strongly aimed. For the school module, some didactic-pedagogical

requirements together with professors satisfaction are usually the most impor-

tant issues.

2.1.1
Simulation usability

Carter tells us in (Carter, 2001) that, in the Fall of 1988, the University

of Waterloo opened the Davis Building. A total of 40 classrooms across campus

were replaced by 30 generally larger classrooms in the new building. The

number of rooms decreased, but the total number of seats increased. The

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 21

Scheduling Office was very concerned about how the new space would impact

space allocation. A timetabling automated system developed for the university

effectively was used for simulating the new scenario and solved a potentially

serious planning problem.

Therefore, as it was exemplified, the timetabling system can also be

used as a fast “What if?” tool to evaluate proposed changes in resources or

institution rules.

2.1.2
Multiple scenarios

Through the system interface the user can easily register each entity and

resource of the institution and its quality requests. The set of all registered

information for the problem defines a scenario. The system allows each user

to create and manage multiple scenarios, which is very useful when comparing

and evaluating the impact of different situations.

2.1.3
Interface and solver interaction

Interaction between the user interface and the solver is made by XML

files. Once all problem data is registered by the user such that one has

a consistent scenario, an optimization request can be made. Such request

generates a XML input file and calls the solver, which reads the input file, loads

data and starts the optimization process. Once the final solution is obtained,

a XML output file is written and the solver process is ended. Following, the

application loads the solution and user interface shows all results.

2.1.4
Manual changes

A very common requirement in logistic and planning systems is to allow

the user to make manual changes in a solution. TRIEDA allows user to

manually create new classes or modify existing classes, as long the result does

not violate basic and necessary operational constraints.

2.1.5
Initial solution

Another very common situation is that small modifications take place in

problem data, resulting in a slightly different scenario. Most frequent changes

in input data are related to professors availability, which have been shown

to be quite fluctuating. Supposing one has a solution for an initial scenario,

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 22

and some small and local changes take place in data, it seems senseless or a

waste to generate a new solution from scratch, specially if scenario is big and

solving it takes a long time. Bearing this in mind, a really useful functionality

is to provide the solver with an initial feasible solution and the portion of such

initial solution that should be fixed.

2.1.6
Reasons for non–satisfaction of demands

As discussed in section 1.5, data quality is essential for obtaining a good,

feasible and applicable solution. Unfortunately, data inaccuracy is though very

frequent and therefore the system should be prepared to deal with it, as long

it is possible.

Besides the possibility of data inaccuracy, it can be hard to affirm if the

demand of a scenario can be fully satisfied, specially when it is a large instance.

Analyzing both input data and solution for a real world problem is a hard task.

As an user auxiliary functionality for solution analysis, the system exhibits

for each non–satisfied demand possible explanations for the non-allocation,

which can help both to identify input data errors and to understand resources

limitations.

2.1.7
Virtual professor tips

Because there is in general no insurance that there are enough teaching

resources for fully satisfying the demand, the concept of virtual teaching

resource is used (see at 2.2.1). Virtual resources should though be used as

little as possible.

An extra functionality of the system for helping the user while managing

a solution is called “virtual professors tips”. For each virtual professor assigned

to a solution class, it may be exhibited a tip or a suggestion for a change in

some professor availability that would lead to a possible substitution of that

virtual resource for a real professor. This can be quite useful for scenarios where

professors availability is very limited, but it is ineffective when professors are

full-time.

2.2
Introducing the school timetabling problem

Unlike university problems, high school’s students have low or no freedom

at all in their choices for courses. Usually students are previously clustered into

sections, in the sense that if two students are in the same section, then they

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 23

have the same demands and should attend to the same lessons. Therefore, in

a school timetabling problem the number of sections per course is known and

assignments are made for each pre–defined cluster of students instead of for

each single student.

Besides, in high school, sections usually have pre–assigned rooms. This

is not an obligation though. For practical courses, it is common that several

sections attend to lessons at the same laboratory. For sport classes, it is even

common that two or more classes simultaneously share a physical space, like a

sports court. But indeed, only in a minority of cases shared rooms are involved.

A solution is composed of a set of courses sections that should be offered

in order that demands are satisfied. For each course section it must be decided:

– the classroom where section’s lessons take place. Usually each section

has a single possible room, but for practical courses it is to be decided;

– the time slots of each lesson;

– the professor assigned to the section;

Incomplete solutions (course section lacking classroom or scheduled time,

for example) are not acceptable.

The planning horizon, or teaching period, is a week. It refers to the

timetable duration, so that it is considered that classes don’t change from

a week to another in the same year or planning term.

2.2.1
Entities and Concepts

Time slot Each time slot has a starting time, an ending time and a weekday.

For instance, Monday from 14:00 to 14:50. Besides, time slot duration is the

number of minutes between the starting and ending time of a time slot.

Shift A shift is a label for a set of slot times.

It is mandatory that every time slot of a timetable belongs to some shift;

a timetable can have time slots of different shifts; and a shift can have time

slots of distinct timetables.

There is no constraint for associating a time slot and a shift, which

means that a shift can be seen simply as a label (usually called “Morning”,

“Afternoon”, “Evening”, “Integral”, “Morning-Afternoon”, etc) and time slots

of the same shift can overlap each other or have distinct durations.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 24

The main role of the concept of shift is to define in which time slots a

student can have classes, as discussed ahead at “Student schedule” in section

2.2.2.

Calendar Timetable Corresponds to the way a school term week is split in

the sense of shifts and time slots.

Table 2.1 shows an example of timetable with 2 shifts (morning and

afternoon), each one with 4 class-times and a 30-minutes break between the

2 first class-times and the 2 last class-times of the shift. All class-times have

50 minutes duration. From Monday to Friday all time slots are available, on

Saturday only the morning time slots are available and on Sunday no time slot

is available (unavailability is represented by a dash).

Shifts Time Slots Mon Tue Wed Thu Fri Sat Sun

MORNING 08:00 to 08:50 -

MORNING 08:50 to 09:40 -

MORNING 10:10 to 11:00 -

MORNING 11:00 to 11:50 -

AFTERNOON 14:00 to 14:50 - -

AFTERNOON 14:50 to 15:40 - -

AFTERNOON 16:10 to 17:00 - -

AFTERNOON 17:00 to 17:50 - -

Table 2.1: Morning-Afternoon Timetable.

It is possible to register in the system as many timetables as necessary.

This way, besides the timetable at 2.1 we can also have the one at 2.2.

This timetable has also time slots in 2 shifts, now afternoon and evening,

but here class-times have 60 minutes duration. It has 3 class-times in the

Afternoon shift and 4 class-times in the Evening shift, the break-times are

completely different from break-times of Morning-Afternoon Timetable, and

there is no time slot available at weekends (Saturday and Sunday).

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 25

Shifts Time Slots Mon Tue Wed Thu Fri Sat Sun

AFTERNOON 13:00 to 14:00 - -

AFTERNOON 14:00 to 15:00 - -

AFTERNOON 15:00 to 16:00 - -

EVENING 18:00 to 19:00 - -

EVENING 19:00 to 20:00 - -

EVENING 20:20 to 21:20 - -

EVENING 21:20 to 22:20 - -

Table 2.2: Afternoon-Evening Timetable.

Time slots of the same timetable must have the same duration and can

not overlap each other. Time slots of different timetables are independent: they

can be completely different and even overlap, as the examples have shown.

Session of a day Sessions of the day are the commonly known concept for

Morning, Afternoon or Night. The concept of sessions of day is necessary only

to assist in obtaining compact timetables for professors.

Course A course is a “chair” or “subject” that a student can take. Common

examples in high-school are “Mathematics”, “Geography” or “Biology”.

Every course has a total number of credits per week, with all the credits

necessarily having the same duration. This means that if the student John

Mayer takes classes of a course with N credits of 50 minutes duration, exactly

N time slots of 50 minutes of John’s week schedule must be assigned to lessons

of this course.

Every course has a set of time slots to which it can be assigned. These

time slots can belong to different timetables, as long they have the same

duration.

Every course can be assigned to a specific set of classrooms where it can

be held. If there is no specific classroom associations, it is assumed that the

course can be held in any classroom.

Curriculum A curriculum is the set of all courses taken by a student during

a specific school studying year.

Campus, Block and Classroom The basic physical structure of a school

consists of:

– Classroom: room where classes can be held.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 26

– Block : a block represents a school unit. Every block has a set of class-

rooms, between which displacement time is insignificant and is thus con-

sidered zero, a set of professors available for teaching in that block, and a

set of students demands of that block. Usually each student has classes in

only one block, but this is not a rule. Distinct blocks can share teaching

staff resources, which makes it necessary to limit some assignments de-

pending on the time necessary for the professor to move between blocks.

– Campus : a campus is the higher-level structure of the problem and

gathers all resources and demands information, such as blocks, professors

and students requests.

Offer An offer is made of a curriculum, shift and campus. Its interpretation

is that courses of this curriculum are offered at the campus at the specific shift.

Student–Demand A student–demand is an individual request of a student

for a course.

Class A class refers to the same group of students that will be taught a

set of courses. Every time we refer to a student along this dissertation, we

actually mean a class. This is because Trieda was originally designed to handle

individual students requests in university environments, but evolved later to

work with high school environments. Since in high schools students are usually

already grouped, which means that students of a group have the same needs

and requests, in the school module a class is represented by a single student and

either classrooms have capacity equal to 1 or courses have a maximum number

of students limited to 1, except for situations where classes are expected to be

merged.

Lesson A lesson refers to a particular course being taught to a class by a

teacher at some consecutive periods of a day.

Course Section A section of a course is a class (set of students) and its

associated set of lessons for the course.

In a complete and feasible solution, each course section has the following

attributes:

– a set of students (class);

– a classroom where the lessons take place;

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 27

– time slots for each course lesson, totaling the number of credits of the

course;

– a professor who teaches the lessons.

Professors Each professor is a teaching staff resource that can be assigned

to classes, according to its features. Every professor has:

– its own available timetable,

– a list of courses that he/she is capable of teaching,

– a priority number, 1 or 2, that indicates how important is that professor

for the institution.

Virtual Professors The most basic solution restrictions are based on re-

sources availabilities. There is no assurance in general there are enough pro-

fessors to meet the whole demand. Therefore, the concept of virtual professor

is introduced.

Each virtual professor means the hiring of a new professor by the

institution. Whenever there is no feasible solution with full satisfied demand

due to absence of professors, and only in this situation, virtual professors should

be created by the solver and used until demand is fulfilled.

Since a virtual professor is just a prediction of a new profile, it has default

settings, full-available timetable and is not considered at some professor quality

restrictions.

The need of virtual teaching resources is also due to the usual floating

feature of professors availability.

2.2.2
Constraints

Constraints can be either hard or soft. A hard constraint is inviolable

and a soft constraint has its violation minimized by the objective function.

Following all decision-making rules considered by this work are intro-

duced. These rules are organized as being mandatory or optional constraints.

An optional constraint can be either hard or soft, while the only soft mandatory

constraint is demand fulfillment, i.e., all the others are hard.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 28

Mandatory Constraints

Demand fulfillment The first objective of the problem is maximizing demand

satisfaction. Since there is no guarantee that the whole demand can be

assigned, this is not considered as a hard constraint, but the first goal in

objective function. Therefore, a way of controlling the satisfied demand is

necessary.

Classroom Capacity Each classroom has a mandatory register called ”room

capacity” which indicates the maximum number of students that it can

simultaneously hold. Due to this physical capacity, no class can have more

students than the capacity of the room where the lessons take place.

Same classroom for each course section For each course section, all the

credits of the course must be taught at the same classroom.

Possible classrooms for each course Each course has a set of classrooms

where its lessons can be taught. This set must be respected. The only exception

is if it is empty — then lessons can be assigned to any available classroom.

One professor for each course section For each course section, all the

credits of the course must be taught by the same professor.

Capability for teaching courses For a professor to be assigned to classes of

a course it is necessary that the professor is capable of teaching that course.

So, each professor must have a register of courses that he is capable of teaching

and for every solution the professor assignment must respect these registers.

Time Availability Every resource, i.e. professors and classrooms, has its own

timetable availability that informs the time slots to which it can be assigned.

Courses have also their own timetable availability.

For instance, consider the table 2.3 with the availability for professor

Paul McCartney.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 29

Shifts Time Slots Mon Tue Wed Thu Fri Sat Sun

MORNING 08:00 to 08:50 - - -

MORNING 08:50 to 09:40 - -

AFTERNOON 16:10 to 17:00 - - -

AFTERNOON 17:00 to 17:50 - -

Table 2.3: Available time slots.

Professor McCartney cannot be assigned to classes at any time slot on

Saturdays or Sundays, neither from 8:00 to 8:50 on Tuesdays nor 16:10 to 17:00

on Thursdays. In the others time slots he is available.

Student schedule Every resource has its own available timetable and it

defines at which time slots they can be assigned. Students do not have an

explicit timetable of availability, however there is still the need of constraining

their possible time slots.

Since it is possible that many offers exist at different shifts, it makes

sense to limit the student’s possible time slots to those which belong to the

student’s shift. Each offer specifies a major’s curriculum, a shift and a campus

where it is being offered, and every student is usually associated with one offer.

For example, Etta James is a student of Computer Science, curriculum

version v–98, offered at the Morning shift and at campus I. It follows that Etta

James can only be assigned to classes at time slots present at the Morning

shift. Besides that, Ray Charles is a student of Economic Science at Morning-

Afternoon shift at the same campus and both students need to take classes of

Calculus I. They could be assigned to the same Calculus I section, as long its

lessons are held at time slots belonging to both shifts, i.e., in the Morning.

No time slots overlapping The most basic rule for any timetabling problem

is the no overlapping in resources and students timetables. In other words, any

pair of classes assigned to the same entity (classroom, professor or student) at

the same day and same time is forbidden.

Compact students timetables A “gap” or a “hole” in a student’s timetable

is an idle time window between classes at the same day.

Suppose the student Peggy Lee attends to a class from 8:00 to 10:00 on

Monday, and then from 11:00 to 12:00 on the same day. The idle time window

between 10:00 and 11:00 is an “1-hour gap” in the morning.

Breaking times between time slots of a calender should be ignored. For

example, if Peggy attends on Tuesday to a class from 08:00 to 08:50, a break

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 30

from 08:50 to 09:10, and other classes from 09:10 to 12:00, there is no gap due

to the 20-minutes break. Also, if her classes resumes at 13:00, and the time

window 12:00–13:00 is an interval at her shift (lunch time, probably), there is

no gap due to the 60-minutes break.

Time for professor displacement between blocks Whenever a professor

is assigned to any pair of classes at the same day, which take place at

different blocks, the minimum traverse time spent between both spots must be

considered.

Number of credits of a course Each course has a total number of credits.

Every student attending to a course must be assigned to all its credits.

Maximum class size Each course has a value that indicates the maximum

number of students that is allowed in the course lessons. Therefore, every course

section must respect such maximum class size.

Controlling Virtual Professors Usage Minimizing the number of credits as-

signed to virtual professors is considered the second most important aim in the

multi-objective function of timetabling problems, second only to maximizing

satisfied demands. The solver should use a virtual professor if and only if there

is not enough teaching staff resources available.

Optional Constraints

The following constraints are optional, which means that with their ab-

sence a consistent solution is still produced. Unlike the mandatory constraints,

there are parameters to control if they should be considered or not. In case

an optional constraint is considered, there is still the possibility of making

it a hard or soft constraint. This varies according to the constraint type, as

explained in more detail bellow.

Credits Split Rules Courses may require more than 1 weekday to have all

their credits scheduled. Since not every credits split is appropriate, the concept

of credits split rule is introduced to define suitable splits.

For example, consider the following credits split rules at table 2.4.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 31

Course(s) Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

4-credits Courses 2 2

6-credits Courses 2 2 2

6-credits Courses 3 3

INF332 (4 credits) 2 2

Table 2.4: Course credits split rule.

The first 3 rules are said to be general, while the fourth is a specific rule.

The first rule says that 4-credits courses should be split into lessons of 2 credits

each along 2 weekdays preferably non-consecutive. Similarly, 6-credits courses

should be split into lessons of 2 credits each along 3 weekdays; or into lessons

of 3 credits each along 2 weekdays. At last, the course INF332 should be split

into 2 days, preferably consecutive, and each day with 2-credits lessons.

If there is a course with m credits but no m-credits split rule, then m-

credits course split is free. Credits split rules are optional, but when present

they are hard constraints.

Whenever there is a specific credit split rule for a course, it must be

respected, even if other generic split rules exist for the same number of credits.

Although the system does not make it mandatory for a course to have

associated credits split rules, in practice this is an important issue and widely

applied.

Single lesson for each course section per day It may be undesirable that

several non-consecutive lessons of the same course section are assigned to the

same day. In that case, it is possible to ensure that every course section has at

most one lesson (set of consecutive periods) per day.

Maximum number of weekdays that a professor is available It is common

that professors teach in more than one institution or have other activities. For

this reason, regardless the available timetable of professors, it is possible that

they have a limited number of days for teaching at the institution. For instance,

although professor McCartney is available from Monday to Friday (see 2.3), it

is possible that he can take only 3 days of week, to be chosen between Monday

to Friday, for teaching at the institution. Then, each professor has an integer

attribute that indicates the maximum number of weekdays that he can be

assigned to, with default value equal to 7.

Minimum number of credits at the day for a professor to teach Regardless

the available timetable of professors, it is possible that they request a minimum

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 32

number of credits for teaching at a day. If professor Eric Clapton requires a

minimum of 3 credits, then he is assigned to classes on Monday (or any other

day) only if the total of credits on Monday is equal or greater than 3. The

default minimum value is 1 credit, i.e., the trivial case.

Minimizing the number of busy sessions and days in professor’s timetable

The more compact is a professor timetable, the better. Thus, another possible

aim of the solver is to minimize the number of busy sessions and busy days in

professor’s timetable, instead of just establishing a hard minimum number of

credits per day and a hard maximum number of days in the week.

Daily rest period For professors assignments to be applicable, some labor

laws should be respected. The rest period law says that a minimum rest period

between 2 labor days is needed. In Brazil this minimum rest period is 11

hours, which means, for instance, that if professor Tracy Chapman teaches

until 22:00 of Monday, she can not be assigned to classes earlier than 9:00 on

Tuesday morning. Whenever they are considered, minimum rest periods are

hard constraints.

Minimum and maximum professor workload Among the labor laws which

must be respected, so that professors assignments are applicable, there is

the minimum and maximum professor workload. It may be forbidden that a

professor has his workload reduced more than k% of his previous semester

workload at the institution. This constraint guarantees some stability to

employees. It may also be forbidden for a professor to be overloaded.

For instance, professor Steven Tyler can have no more than 10% of his

previous semester workload reduced and has a weekly maximum workload

equal to 24 credits.

Number of professor displacements between blocks in a day Whenever a

professor is assigned to any pair of classes at the same day and taking place

at different blocks, a maximum of 1 displacement can be established.

For instance, if Professor Marvin Gaye teaches at block A on Monday

morning and at block B on Monday afternoon, then he has already 1 displace-

ment on Monday to go from A to B. He cannot be assigned to any block on

Monday other than B after he moved to B for the first time in the day, and

likewise any block other than A before he had moved to B for the first time

in the day.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 33

Clearly, this restriction implies that a professor is never assigned to more

than 2 blocks at the same day, but it is stronger than that, since a sequence of

blocks A → B → A in a day involves 2 blocks (ok) and 2 displacements (not

ok).

Maximum number of blocks assigned to a professor in a day A weaker

constraint than the previous one is the limitation on the number of distinct

blocks where a professor has classes to teach at the same day. The appropriate

limit value varies with the physical distribution of the blocks. The more distant

the blocks are from each other, the lower is the limit, since longer travel time

is necessary.

Compactness in professor’s timetable A “gap” or “hole” in a professor’s

timetable is an idle time window between classes at the same session of a day.

Suppose professor Meschiya Lake teaches from 8:00 to 10:00 on Monday,

and then from 11:00 to 12:00 on the same day. The idle time window between

10:00 and 11:00 is an “1-hour gap” in the morning.

Breaking times between time slots of a calender should be ignored. For

example, if a professor is assigned to a class from 08:00 to 08:50, a break from

08:50 to 09:10, and another class from 09:10 to 10:00, there is no gap due to

the 20-minutes break.

Gaps are undesirable. They lower professor’s satisfaction and can some-

times even increase the institution cost, because according to labor laws the

institution might have to pay the professor for the idle time. Compactness re-

quirements for professors are particularly important when teachers may work

in multiple institutions.

Professor preference for teaching courses Every professor has a list of

courses he is able to teach. Among these courses, though, it is possible that

there is a preference of the professor for teaching one instead of another.

For representing this preference, every such pair [professor, course] has an

associated integer value that ranges from 1 to 10 and indicates the professor’s

preference for teaching that course, where 1 is the highest possible preference

and 10 is the lowest.

The importance given to professors preferences depends on the institu-

tion, i.e., how relevant is this aspect to it. Usually, professors’ preferences have

a low weight when compared to others requirements.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 34

2.3
Data quality

Here we strengthen the importance of input data quality, an issue already

introduced in section 1.5. Following the most common problems found in input

data are highlighted.

2.3.1
Credits split rule

The higher is the total number N of credits of a course, the more essential

are credits split rules for obtaining an applicable solution for that course

classes. Without a split rule, credits can be spread in any way along the week,

which implies in a significant higher number of possible combinations whenever

N is big. Consequently the solution space increases, but more than that, this

expansion may include solutions that are actually not interesting. Suppose the

course “Math–3” has 7 credits to be spread along the week. It may not be

interesting that these credits are split into 1 and 6 credits along two days, for

example, or that all 7 credits are left in one single day.

The absence of credits split rules can therefore reduce solution quality,

since it inserts a fake symmetry between solutions, and even hamper conver-

gence while searching for the best solution, since it enlarges solution space.

2.3.2
Availability times

Probably the most important data quality issue is related to entities’

availability times. As informed in 2.2.2, every professor, classroom and course

has its own timetable availability. Also students have their possible assignment

times constrained, as previously explained at “Student schedule”.

Professors availabilities are usually the most hard and unstable informa-

tion to be obtained, which is quite comprehensible. Many professors teach in

more than one school or have extra activities, which implies in constrained

and floating teaching availabilities. On the other hand, accuracy of these data

is extremely important, since professors satisfaction is essential for automated

timetables to be deployed. Inaccuracy may lead to professors assigned to classes

at actually unavailable times or to the use of virtual teaching resources.

Most classrooms have a stable full-time availability, but some exceptions

are common. Due to schools’ physical space limitation, sometimes physical

education classes take place at rented sport courts, which have therefore

constrained availabilities. The opposite is also possible, i.e., that a set of

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 2. Trieda’s Timetabling Problem 35

classrooms of the institution is being used by external events on specific time

slots.

Constraining time slots to which students are assigned is also essential.

In schools the most common is that each student has classes restricted

to a session of the day (Morning or Afternoon). Still, usually the total

weekly workload increases for students of advanced grades, which can make

it necessary to extend classes beyond their main session. The restriction in

students availability must then be considered and is modeled through the

concepts of shift and calender timetable, as previously explained. Mistakes

in input data when associating a student demand to a shift and a calendar can

lead to students assigned to classes at time slots that are out of their actual

expected timetables.

Finally, because resources, courses and students can all have their avail-

ability limitations, it is clearly necessary that an appropriate intersection must

exist between them so that demands are satisfied. For instance, inaccurate data

could lead to a scenario where there are demands for the course “Biology-2” in

the Afternoon, but professors capable of teaching this course are only available

in the Morning. Such inconsistency would cause either an assignment with a

virtual professor or non-satisfied demands.

2.3.3
Assignments between courses and rooms

As mentioned in 2.2.1, every course has a list of classrooms where it can

be hold and an empty list is interpreted as there being no restrictions of rooms

to where it can be assigned. Registering wrong assignments between courses

and classrooms could lead to non applicable solutions. For example, one could

incautiously register a computer training course as possible to be assigned to

a biology laboratory instead to a computer lab, which would make no sense at

all.

Gathering such data may not be a simple task though, specially when

the institution has a large physical space. This is a particular harder issue

for the university environment, where students are constantly moving between

classrooms, courses are spread between several distinct departments and there

is a high number of rooms. Fortunately, for schools this task is much less

complicated and is usually done without great efforts.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

3
Mathematical Formulation

The current method for solving the problem is based on integer linear

programming (ILP) and the mathematical model used is described in this

chapter.

Solving methods can be classified as exact or non-exact methods. Ex-

act methods try to find proven optimal solutions, but might demand unre-

alistic amounts of processing time whether problem size increases. Non-exact

methods, basically heuristics, are generally alternatives for searching for good

enough solutions in a reasonable amount of time. Development of heuristics

was a consequence of the lack for many years of efficient software tools for so-

lution of integer programming models. They have been shown to be effective in

practice and have thus received much attention from researches, as mentioned

by (Santos et al., 2012). Since the early 90’s though, advances in technology

have allowed mathematical programming tools development, contributing then

towards the usage of exact methods.

Section 3.1 introduces theory and main concepts of integer linear

programming, which are fundamental in understanding the developed solving

method. Further and more complete explanations about integer programming

can be found at (Wolsey, 1998) and (Papadimitriou and Steiglitz, 1998).

Section 3.2 introduces the mathematical model developed for the prob-

lem.

3.1
Integer programming

A mathematical optimization problem consists of a set of inequations

which together define feasible solutions for a problem and an objective function

that guides the search for the best solution.

When both objective function and constraints are linear, then it is called

Linear Programming (LP).

Maximize c · x (3.1a)

A · x ≤ b (3.1b)

x ∈ Rn
+ (3.1c)

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 37

where A is a matrix such that A ∈ Rm×n, c is a row vector such that

c ∈ Rn, b is a column vector such that b ∈ Rm, and x is a column vector of

decision variables.

Variations of a linear program are obtained when one constraints vari-

ables’ domain. A Mixed Integer Program (MIP) is a mathematical optimization

in which some but not all variables are restricted to be integers.

Maximize c · x + h · y
A · x + G · y ≤ b

x ∈ Rn
+ , y ∈ Zp

+

where G is a matrix such that G ∈ Rm×p, h is a row vector such that

h ∈ Rp, and y is a column vector of integer decision variables.

When all decision variables must be integers, the program is called a

Pure Integer Linear Program (IP):

Maximize c · x (3.2a)

A · x ≤ b (3.2b)

x ∈ Zn
+ (3.2c)

When all decision variables are restricted to 0, 1 values, then we have a

Binary Integer Program (BIP).

Very efficient methods for solving linear programs are known, with the

Simplex Method being the most famous one. Because integer programs look

pretty much like linear programs, it is not a surprise that linear programming

theory and practice is essential in understanding and solving integer programs.

Solving an integer program is far more challenging than solving its linear

version though.

Since the integer set Z is a countable set, it is clear that every integer

program has a countable number of solutions and that every bounded integer

program has a countable and finite set of solutions. Thus, theoretically, these

problems can be solved by enumeration. In practice, to be feasible, such

approach depends on the size of the possible solutions set, and that is where

difficulty stems from.

To illustrate the situation, consider a general assignment problem, where

n people are available to carry out n jobs and each person must be assigned to

carry out exactly one job. There is an one-to-one correspondence between

assignments and permutations of 1, . . . , n. Thus there are n! solutions to

compare. At table 3.1 one can have a glimpse of what happens in this case

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 38

when n grows.

Table 3.1: Combinatorial explosion of possible solutions for factorial function
problems

n n!

10 3.6 · 106

100 9.33 · 10157

1000 4.02 · 102567

The obvious conclusion is that using complete enumeration for solving

combinatorial problems, also known as “brute-force search” or “exhaustive

search”, is feasible only for small values of n.

3.1.1
Alternative formulations

For every integer subset X ⊂ Zn there is an infinite number of linear

programs such that their feasible integer solution space is equal to X. Figure

3.1 illustrates a subset X ⊂ Z2 of integer points and 3 different possible ways

(P1, P2 and P3) to linearly constrain the subset so that no integer point of X

is out of the bounded area and no integer point out of X is inside the bounded

area.

Figure 3.1: Different linear formulations

Following are some useful definitions for the subject.

Definition A subset of Rn described by a finite set of linear constraints

P = {x ∈ Rn : Ax ≤ b} is a polyhedron.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 39

Definition A polyhedron P ⊆ Rn+p is a formulation for a set X ⊆ Zn × Rp

if and only if X = P ∪ (Zn × Rp).

Although all three formulations in figure 3.1 are valid for definition of

subset X, the formulation P1 is ideal, because solving a linear program over

P1 leads to an optimal solution lying at an extreme point. Since each extreme

point of P1 is integer, it follows that the integer program is solved.

Generally speaking, given a set X ⊆ Rn and two formulations P1 and P2

for X, P1 is a better formulation than P2 if P1 ⊂ P2. Formulation P1 is said to

be tighter than P2.

3.1.2
Optimality and relaxation

Regardless of the method used in the search for an optimal solution x∗ of

an integer program, some stopping criteria is needed in the algorithm, which

is equivalent to prove that a given point x∗ is optimal. A pretty intuitive way

is to obtain lower and upper bounds for the objective function value of the

optimal solution. Hence, given an IP

z = max{c(x) : x ∈ X ⊆ Zn},

any algorithm will construct a decreasing sequence

z1 ≥ z2 ≥ . . . zs ≥ z

of upper bounds, and an increasing sequence

z1 ≤ z2 ≤ zt ≤ . . . z

of lower bounds, and stop when zs − zt is small enough.

Considering a maximization problem, any feasible solution provides a

lower bound, also known as primal bounds. Finding upper bounds, known as

dual bounds, is a different challenge. The main approach is by “relaxation”,

the idea being to replace a difficult max (min) IP by a simpler optimization

problem whose optimal value is at least as large (small) as z.

Definition A problem (RP) zR = max{f(x) : x ∈ T ⊆ Rn} is a relaxation of

(IP) z = max{c(x) : x ∈ X ⊆ Rn} if:

1. X ⊆ T , and

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 40

2. f(x) ≥ c(x) for all x ∈ X

Proposition If RP is a relaxation of IP, then zR ≥ z.

Linear programming relaxation

One way of relaxing an integer program is to enlarge the set of feasible

solutions so that one optimizes over a larger set. For example, in figure 3.1 all

the three formulations P1, P2 and P3 are relaxations of the original problem if

we ignore the integrality constraints.

Definition For the integer program max{c(x) : x ∈ P ∪Zn} with formulation

P = {x ∈ Rn
+ : Ax ≤ b}, the linear programming relaxation is the linear

program zLP = max{cx : x ∈ P}.
However, the more the feasible solution space is enlarged, the more

different the relaxed problem becomes from the original problem, which can

lead to more distinct optimal solutions values for both problems. When using

linear relaxations for obtaining dual bounds, this is very relevant. The more

relaxed in the objective function direction is the formulation, the more distant

from the actual optimal solution value will probably be the upper bound

obtained, as illustrated in figure 3.2. In general, the tighter is the relaxation,

the better.

Figure 3.2: Linear relaxation in the direction of objective function

Notice, though, that for a relaxation of a IP to provide an upper bound,

it must be solved to optimality.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 41

Duality

Another way of finding dual bounds is through duality properties.

Consider the previously introduced linear program given by (3.1), called primal

problem, the following problem is referred as its dual problem.

Minimize u · b (3.3a)

u · A ≥ c (3.3b)

u ∈ Rm
+ (3.3c)

Every linear program has an associated dual problem. The value of any

dual feasible solution provides an upper bound on the primal objective function

value, which makes it an advantage compared to the linear relaxation. A linear

programming relaxation immediately leads to a dual problem, which can then

be used to obtain dual bounds.

3.1.3
Integrality gap

Linear programming relaxation is thus a standard technique for designing

approximation algorithms for optimization problems. Since such relaxation

removes variables’ integrality constraints, the optimal value for the relaxed

maximization problem is necessarily greater than or equal to the optimal value

for the original problem. The integrality gap is the maximum ratio between

the solution quality of the integer program and of its relaxation. It essentially

represents the inherent limits of a particular linear relaxation in approximating

an integer program. Thus, the more the integral solution is improved, the

smaller becomes the integrality gap. The tighter is the formulation, the smaller

is the minimal gap.

3.1.4
Branch and Bound

Branch and bound is an implicit enumeration method for feasible solu-

tions of combinatorial problems. Complete enumeration is inefficient and not

applicable for real optimization problems, but using some knowledge on par-

tition strategies of the problem it is possible to make intelligent decisions on

whether it is necessary to explore a set of new potential solutions or about

which set of potential solutions is more promising.

The “branch” word refers to the partitioning process of the problem and

the “bound” refers to the decision of not exploring some set of possible new

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 42

solutions (branch), avoiding exhaustive search. The bounding decisions use

information of dual bounds to construct evidences of optimality and thus to

eliminate branches that have proved to be unsuccessful.

Basically, for an integer linear program, the problem is decomposed and

organized as a tree where each node is a subset of the solution space and a

branch on that node splits the subset into mutually exclusive subsubsets. Each

resulting subsubset in the partition is represented by a child of the original

node. An algorithm based on linear programming is then used for calculating

a dual bound on the cost of any solution in a given subset.

For further information about the branch and bound process and its

strategies, see (Wolsey, 1998) and (Papadimitriou and Steiglitz, 1998).

3.1.5
MIP Solver

As previously mentioned, for decades limitation of computational re-

sources was an obstacle to the development of efficient mathematical pro-

gramming solvers. Since the early 90’s though, advances in technology and

algorithm design have allowed significant improvements in the area.

For mathematical programming there are some well-known solvers avail-

able. The most popular commercial software for optimization of (mixed integer)

linear programming are IBM ILOG CPLEX Optimization Studio ((ILOG)),

also simply known as Cplex, and Gurobi Optimizer ((Gurobi)). Both are ac-

cessible from several programming languages.

This work was developed using Gurobi Optimizer version 6.0 for solving

the mathematical models.

3.2
IP - Assignment Formulation for the Timetabling Problem

The general process of formulating an integer program can be organized

in three steps:

1. Define what appear to be the necessary variables.

2. Use these variables to define a set of constraints so that the feasible

points correspond to feasible solutions to the problem.

3. Use these variables to define the objective function.

Usually the need of auxiliary variables arises while formulating con-

straints, which gives an iterative feature to the process until a consistent model

is reached.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 43

Next subsections introduce the notation used in the mathematical model,

which includes data sets, general data and model variables, and the formula-

tion, which includes a multi-objective function and all constraints.

3.2.1
Notation

Sets

The basic sets used to describe the problem are:

– A - Set of all students. Elements of A are called a.

– D - Set of all courses. Elements of D are called d.

– I - Set of all course sections. Elements of I are called i.

– H - Set of all time slots. Elements of H are called h.

– Dt - Set of times of a day. Possible times are initial or ending moments

of time slots. Elements of Dt are generally called dt, or dti for initial

moments and dtf for ending moments.

– F - Set of all sessions of a day. Elements of F are called f .

– T - Set of all weekdays. Elements of T are called t.

– U - Set of all blocks. Elements of U are called u.

– S - Set of all classrooms. Elements of S are called s.

– P - Set of all professors. Elements of P are called p.

From the previous basic sets we define the following derived sets:

– Ad ⊆ A - Set of students that required course d ∈ D.

– Dm ⊆ D - Set of courses for which lessons are shareable between different

classes, that is, lessons can be merged.

– Da ⊆ D - Set of courses required by student a ∈ A.

– Hf ⊆ H - Set of time slots of session of day f ∈ F .

– Id ⊆ I - Set of sections of a course d ∈ D.

– Su ⊆ S - Set of classrooms of block u ∈ U .

– Pprior ⊆ P - Set of all professors with priority level prior.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 44

Model Data

Next, some data used in the model formulation are defined.

– Caps - Capacity of classroom s.

– nCredsd - Total of credits of course d.

– durationh - Total of minutes of time slot h.

– durationhi,hf - Total of minutes from the beginning of time slot hi to the

end of time slot hf .

– M - called “big M”, it is a “large enough value” that depends on the

constraint it is applied to.

– Nd,k,t - number of credits of the course d to be taught at day t if the

credits split rule k is chosen. The value k is an integer identifier for the

rule, ranging from 1 to K, where K is the total number of credits split

rules for the course d.

– NCHd,hi,hf - number of credits for course d from time slot hi to time slot

hf .

– MinSize - minimum number of students required for offering a class.

Default value is 1.

– MaxSized - maximum number of students allowed in a section of course

d.

– deltat,f - maximum of idle time allowed at phase f of day t for a professor.

Used only for gap-constraints, usually is the average sum of intervals at

phase f of day t of calenders.

– pv - Unique virtual professor, to be used whenever the set of real

professors is not enough for demand satisfaction.

– MaxNrCredsDayp,t - maximum number of credits available at day t of

professor p.

– Timeu1,u2 - minimum number of minutes necessary for moving between

blocks u1 ∈ U and u2 ∈ U . We consider as a long displacement a

movement from u1 to u2 that takes more than 50 minutes.

– MaxGapBetweenSessions - maximum idle interval between 2 consec-

utive day sessions that a professor is assigned to. It is used to avoid

situations like a professor being assigned to a class early in the morning

and then another just late in the afternoon, with a big idle inbetween

interval. A reasonable value is around 170 minutes.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 45

Variables

All variables used in the model are described as follows. The necessity

of some of them depends on considering or not some constraints, in the sense

that the more restrictions and requirements exist, the more auxiliary variables

are needed.

– va,i,d,s,t,hi,hf - binary variable, indicates if student a is assigned to a class

of section i of course d, at classroom s, from time slot hi to time slot hf

of day t.

– xi,d,u,s,t,hi,hf - binary variable, indicates if section i of course d is assigned

to classroom s from time slot hi to time slot hf of day t.

– zi,d - binary variable, indicates if section i of course d is offered.

– oi,d,s - binary variable, indicates if section i of course d is offered at

classroom s.

– fdd,a - binary slack variable, indicates if student a has his request for

course d not satisfied.

– md,i,k - binary variable, indicates if the credits split rule k was chosen for

section i of course d.

– si,d,a - binary variable, indicates if student a is assigned to section i of

course d.

– kp,i,d,u,t,h - binary variable, indicates if professor p teaches to section i of

course d at block u at day t and time slot h.

– yp,i,d - binary variable, indicates if professor p is assigned to section i of

course d.

– hipp,t,f - integer variable, indicates the time in minutes of the first time

slot assigned to professor p at session f of day t. For example, if the first

class assigned to p on t = Monday and f = morning starts at 9:30 am,

then hipp,t,f = 9 · 60 + 30 = 570.

– hfpp,t,f - integer variable, indicates the time in minutes of the end of the

last time slot assigned to professor p at session f of day t.

– fpgapp,t,f - integer slack variable, indicates the gap in session f of day t

of professor p’s schedule.

– begina,t,h - binary variable, indicates if first class of student a at day t

begins at time h.

– enda,t,h - binary variable, indicates if last class of student a at day t ends

at time h.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 46

– ata,t - binary variable, indicates if student a has classes at day t.

– uup,t,u - binary variable, indicates if professor p has classes at day t in

block u.

– displacp,t,u1,u2 - binary variable, indicates whether professor p has classes

at day t in block u1 and in block u2. In practice, it identifies that at least

one displacement is made between the both blocks in the day.

– ptfp,t,f - binary variable, indicates if professor p has classes at session f

of day t.

– ptp,t - binary variable, indicates if professor p has classes at day t.

3.2.2
Formulation

Objective function

The following general objective function includes all possible minimiza-

tion goals, with their subjective weights to be decided according to the scenario

or the user preferences. Further alternatives of how to handle disparate goals

are discussed in Section 4.2.

MIN λ ·
∑
a∈A

∑
d∈Da

·fdd,a

+θ ·
∑
i∈Id

∑
d∈Dm

zi,d

+ε ·
∑
p∈P

∑
t∈T

∑
f∈F

fpgapp,t,f

+σ ·
∑
p∈P

∑
t∈T

∑
u1∈U

∑
u2∈U

Timeu1,u2 · displacp,t,u1,u2

+γ ·
∑
i∈Id

∑
d∈D

ypv,i,d

+α ·
∑
p∈P

∑
t∈T

ptp,t

+α ·
∑
p∈P

∑
t∈T

∑
f∈F

ptfp,t,f

Assigns ’v’ to ’x’ and ensures classroom capacity

∑
a∈A

va,i,d,s,t,hi,hf ≤ Caps · xi,d,s,t,hi,hf (3.4)

∀d ∈ Da ∀i ∈ Id ∀s ∈ S ∀t ∈ T ∀hi ∈ H ∀hf ∈ H

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 47

Assigns the classroom of a section to variable ’o’

M · oi,d,s ≥
∑
t∈T

∑
hi∈H

∑
hf∈H

xi,d,s,t,hi,hf (3.5)

∀d ∈ D ∀i ∈ Id ∀u ∈ U ∀s ∈ Su

Ensures single classroom per course section

∑
u∈U

∑
s∈Su

oi,d,s = zi,d ∀d ∈ D ∀i ∈ Id (3.6)

No overlapping in classroom’s timetable

∑
i∈Id

∑
d∈D

∑
hi∈Hd

∑
hf∈Hd
hi≤hf

xi,d,s,t,hi,hf ≤ 1 (3.7)

∀u ∈ U ∀s ∈ Su ∀t ∈ T ∀h ∈ H (hi, hf) overlaps h

Tries to satisfy each student requirement

∑
i∈Id

si,d,a + fdd,a = 1 ∀a ∈ A ∀d ∈ Da (3.8)

Ensures a minimum number of students in each course section

∑
a∈Ad

si,d,a ≥MinSize · zi,d,cp ∀d ∈ D ∀i ∈ Id (3.9)

Ensures a maximum number of students in each course section

∑
a∈Ad

si,d,a ≤MaxSized · zi,d,cp ∀d ∈ D ∀i ∈ Id (3.10)

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 48

Assigns student’s course section to lessons and ensures course section’s
total number of credits

nCredsd · si,d,a =
∑
s∈S

∑
t∈T

∑
hi∈H

∑
hf∈H

NHCd,hi,hf · va,i,d,s,t,hi,hf (3.11)

∀a ∈ A ∀i ∈ Id ∀d ∈ Da

Links variables x and variable z and ensures course section’s total number
of credits

∑
s∈S

∑
t∈T

∑
hi∈H

∑
hf∈H

NHCd,hi,hf · xi,d,s,t,hi,hf = nCredsd · zi,d (3.12)

∀i ∈ Id ∀d ∈ D

Avoids classes overlapping at student timetable

∑
u∈U

∑
s∈Su

∑
i∈Id

∑
d∈Da

∑
hi∈Hd

∑
hf∈Hd
hi≤hf

(hi,hf) overlaps h

va,i,d,s,hi,hf,t ≤ 1 (3.13)

∀a ∈ A ∀t ∈ T ∀h ∈ Hd

Single lesson for each course section per day

∑
u∈U

∑
s∈Su

∑
hi∈Hd

∑
hf∈Hd
hi≤hf

xi,d,s,t,hi,hf ≤ 1 ∀d ∈ D ∀i ∈ Id ∀t ∈ T (3.14)

Credits split rules

Credits split rule for each course section∑
u∈U

∑
s∈Su

∑
hi∈Hd

∑
hf∈Hd
hi≤hf

NCHd,hi,hf · xi,d,u,s,t,hi,hf =
∑
k∈Kd

Nd,k,t ·md,i,k (3.15)

∀d ∈ D ∀i ∈ Id ∀t ∈ T

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 49

Single credits split rule for each course section∑
k∈Kd

md,i,k = zi,d ∀d ∈ D ∀i ∈ Id (3.16)

Student’s gaps prohibition

In the following, auxiliary variables necessary for preventing gaps in

student’s timetable are consistently set.

Sets if student a has classes at day t (variable ata,t)

M · ata,t ≥
∑
i∈Id

∑
d∈Da

∑
u∈U

∑
s∈Su

∑
hi∈Hd

∑
hf∈Hd
hi≤hf

va,i,d,u,s,t,hi,hf (3.17)

∀a ∈ A ∀t ∈ T

Sets starting time of classes for student a at day t (variable begina,t,h)

begina,t,h =
∑
i∈Id

∑
d∈Da

∑
u∈U

∑
s∈Su

∑
hf∈Hd

va,i,d,u,s,t,h,hf

−
∑
h′≤h

begina,t,h′ +
∑
h′≤h

enda,t,h′ (3.18)

∀a ∈ A ∀t ∈ T ∀h ∈ H

Sets ending time of classes for student a at day t (variable enda,t,h)

enda,t,h =
∑
i∈Id

∑
d∈Da

∑
u∈U

∑
s∈Su

∑
hi∈Hd

va,i,d,u,s,t,hi,h

−
∑
h′≥h

enda,t,h′ +
∑
h′≥h

begina,t,h′ (3.19)

∀a ∈ A ∀t ∈ T ∀h ∈ H

Uniqueness of student’s last class of the day∑
h∈H

enda,t,h = ata,t ∀a ∈ A ∀t ∈ T (3.20)

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 50

Uniqueness of student’s first class of the day∑
h∈H

begina,t,h = ata,t ∀a ∈ A ∀t ∈ T (3.21)

Next, gaps in student timetable are prevented. Unlike professors similar

restriction, students cannot have idle times, and therefore these are hard

constraints and there are no slack variables.

Prohibits gap in student timetable∑
i∈Id

∑
d∈Da

∑
s∈S

∑
hf∈H

va,i,d,s,t,hi+,hf = (3.22)∑
i∈Id

∑
d∈Da

∑
s∈S

∑
hf∈H

va,i,d,s,t,hi−,hf − enda,t,hi− + begina,t,hi+

∀a ∈ A ∀t ∈ T ∀hi+ ∈ H hi− ∈ H s.t. hi− + 1 = hi+

Professors assignment

The following constraints, responsible for assigning professors to lessons,

involve both real professors and the virtual teaching resource pv.

No overlapping in professor’s timetable∑
dti,dtf∈Dt
dt∈[dti,dtf)

∑
i∈Id

∑
d∈D

∑
u∈U

kp,i,d,u,t,dti,dtf ≤ 1 (3.23)

∀p ∈ P ∪ {pv} ∀t ∈ T ∀dt ∈ Dt

Assigns professor to lessons (sets variable k)∑
hi,hf∈H

dti∈[hi,hf)

∑
s∈Su

xi,d,s,t,hi,hf ≤ kp,i,d,u,t,dti + (1− yp,i,d) (3.24)

∀i ∈ I ∀d ∈ D ∀u ∈ U ∀p ∈ P ∪ {pv} ∀t ∈ T ∀dti ∈ Dt

∑
hi,hf∈H

dti∈[hi,hf)

∑
s∈S

xi,d,s,t,hi,hf ≤
∑
u∈U

∑
p∈P∪{pv}

kp,i,d,u,t,dti (3.25)

∀i ∈ I ∀d ∈ D ∀t ∈ T ∀dti ∈ Dt

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 51

Assigns professor to course section (sets variable y)∑
u∈U

∑
t∈T

∑
h∈H

kp,i,d,u,t,h = nCredsd · yp,i,d (3.26)

∀i ∈ I ∀d ∈ D ∀p ∈ P ∪ {pv}

Assigns a single professor to each course section∑
p∈P∪{pv}

yp,i,d = zi,d ∀i ∈ I ∀d ∈ D (3.27)

Professor’s displacement

In this subsection quality constraints related to displacement of real

professors along the week and in a day are considered.

Ensures enough time for displacement between blocks in the same day∑
i∈Id

∑
d∈D

kp,i,d,u1,t,h1 +
∑
i∈Id

∑
d∈D

kp,i,d,u2,t,h2 ≤ 1 (3.28)

∀p ∈ P ∀t ∈ T ∀u1 ∈ U ∀u2 ∈ U ∀h1 ∈ H ∀h2 ∈ H

s.t. time between ending of h1 and beginning of h2 is less than displacement

time between u1 and u2.

Ensures the maximum of 1 displacement for each professor in the same

day ∑
i∈Id

∑
d∈D

kp,i,d,u1,t,h1 +
∑
i∈Id

∑
d∈D

kp,i,d,u2,t,h2 +
∑
i∈Id

∑
d∈D

kp,i,d,u3,t,h3 ≤ 2 (3.29)

∀p ∈ P ∀t ∈ T ∀u2 ∈ U ∀h2 ∈ H

s.t. u1 6= u2 u3 6= u2 h1 < h2 h3 > h2

Identifies if the professor teaches in a block at the day and ensures the

maximum daily number of credits for the professor∑
i∈Id

∑
d∈D

∑
h∈H

kp,i,d,u,t,h ≤MaxNrCredsDayp,t · uup,t,u (3.30)

∀p ∈ P ∀t ∈ T ∀u ∈ U

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 52

Constraints the maximum number of blocks assigned to the professor at

the day ∑
u∈U

uup,t,u ≤ 2 ∀p ∈ P ∀t ∈ T (3.31)

Identifies 2 distinct blocks being assigned to the same day of the professor

uup,t,u1 + uup,t,u2 ≤ 1 + displacp,t,u1,u2 (3.32)

∀p ∈ P ∀t ∈ T ∀u1 ∈ U ∀u2 ∈ U s.t. u1 6= u2

Limits the maximum of 2 distant blocks assigned to the same day of a

professor ∑
u1∈U

∑
u2∈U

Timeu1,u2≥50

displacp,t,u1,u2 ≤ 1 ∀p ∈ P ∀t ∈ T (3.33)

Limits the maximum of 2 days of the week that a professor can have a

big displacement∑
t∈T

∑
u1∈U

∑
u2∈U

Timeu1,u2≥50

displacp,t,u1,u2 ≤ 2 ∀p ∈ P (3.34)

Professor’s gaps avoidance

Next, variables hipp,t,f and hfpp,t,f are set. We draw attention to the fact

of these variables being strictly set, i.e., less and greater inequality constraints

are used per variable, resulting in an implicit equality constraint. Consequently,

they do not depend on an objective function, which is important when it has

conflicting goals. The only exception is when the professor is not assigned at

the day — in this case hipp,t,f assumes the value of the latest time slot of the

day session and hfpp,t,f assumes analogously the value of the earliest time slot

of the day session, as one can infer from the constraints below.

Sets variable hipp,t,f

hipp,t,f ≥ m(dt) · (1−
∑

k∈Kdti<dt

kp,t,dti) (3.35)

∀p ∈ P ∀t ∈ T ∀f ∈ F ∀dt ∈ Dtf

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 53

hipp,t,f ≤ m(dt) +M · (1−
∑
k

kp,t,dti) (3.36)

∀p ∈ P ∀t ∈ T ∀f ∈ F ∀dti ∈ Dtf

Sets variable hfpp,t,f

hfpp,t,f ≥
∑
k

m(dt) · kp,t,dtf (3.37)

∀p ∈ P ∀t ∈ T ∀f ∈ F ∀dtf ∈ Dtf

hfpp,t,f ≤ m(dt) +M · (
∑

k∈Kdtf>dt

kp,t,dtf) (3.38)

∀p ∈ P ∀t ∈ T ∀f ∈ F ∀dt ∈ Dtf

Next, gaps in professor timetable are controlled. The usage of the slack

variable fpgapp,t,f indicates the amount of idle time in session f of day t

for professor p. The reduction of professors idle time is achieved through

minimization of these slack variables in objective function.

Prohibits gap in each session of day in professor timetable∑
k∈Kh∈Hf

durationh · kp,t,h + deltaf,t + fpgapp,t,f ≥ hfpp,t,f − hipp,t,f (3.39)

∀p ∈ P ∀t ∈ T ∀f ∈ F

Professor’s timetable compactness

Besides the constraints introduced above, specific for avoiding gaps

in each session of a professor’s day, further quality constraints related to

compactness of real professors’ timetable along the week and in a day are

considered.

Sets if a session of day is assigned for the professor

M · ptfp,t,f ≥
∑
d∈D

∑
i∈Id

∑
u∈U

∑
h∈Hf

kp,i,d,u,t,h (3.40)

∀p ∈ P ∀T ∈ T ∀f ∈ F

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 3. Mathematical Formulation 54

Sets the number of days of the week assigned to each professor

M · ptp,t ≥
∑
f∈F

ptfp,t,f ∀p ∈ P ∀t ∈ T (3.41)

Prohibits big gaps between assigned sessions of the day

hipp,t,f − hfpp,t,f−1 ≤MaxGapBetweenSessions

+M · (2− ptfp,t,f − ptfp,t,f−1) (3.42)

∀p ∈ P ∀t ∈ T ∀f ∈ F

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

4
Solving Strategies

This chapter describes and compares different strategies and approaches

used and tested during solver development.

4.1
Phases of problem solving

In section 3.2 the complete linear program used as basic foundation for

solving the problem is introduced. From practice, though, arose the need of

split the problem into some phases, so that better solutions could be found.

The first partition is related to virtual teaching resources. Virtual profes-

sors can be interpreted as the necessity of hiring professors, and should then be

used only when there is no real professor available. It makes sense to consider

virtual resources apart from the initial problem, that is, first to solve a model

with only real resources and then solving a second model that allows virtual

resources only for those demands not satisfied at first stage. The only obstacle

to such partition is whether gaps in student’s timetable are directly prohibited

by the model (see constraints at section 3.2.2). In this scenario, by partition-

ing the problem, any case of non-satisfied demand with a real professor will

generate an empty time slot at an extremity of a day, but never between al-

located classes. The problem is that this could easily prevent satisfaction of

other demands when professor availability is restricted, which is very common.

As a simple example, suppose that due to a lack of teaching resource a

demand of some class for Mathematics lessons will inevitably be non-satisfied

with a real professor. The History professor, Norah Jones, can only teach at

08:00 on Monday morning. If lessons have one-hour duration, and if due to

professors limited availability no other course can be assigned at 9:00 am on

Monday, but only later, then either an one-hour gap will be generated from

9:00 to 10:00 am and later filled in by a Math lesson with a virtual resource,

or Prof. Jones will be prevented for teaching the History lesson to the class,

so that a gap is not created. In case of students’ gaps constraints are being

considered, necessarily only the second option would last, which is actually not

interesting, since a History demand would be not satisfied due to inconsistency

of input data for Mathematics teaching resource. This small example gives us

a glimpse of how important is input data consistency and how aspects not

obviously related at first sight are actually connected.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 56

Thus, splitting the problem into real and virtual resources phases is

advised only when students’ gaps constraints have not been included in the

linear program. Fortunately, if student’s available timetable fits exactly his

courses demands, there is no need of such constraints.

The second partition refers to professors priorities.

Next subsections detail the partition problem supposing that students’

gaps constraints are dispensable.

4.1.1
Real teaching resource

As pointed out while introducing the concept of professor at section 2.2.1,

professors might have different importance levels, which means that a professor

can have his assignments prioritized over others. Such distinction emerged from

practice, when analyzing some possible solutions to the timetabling problem

of a Brazilian school. What happens is that, as discussed in section 1.5,

actual timetabling for educational institutions is a political just as much as a

scheduling problem. It might be acceptable if the timetable of a fresh professor

of the school does not end up as compact as it would be desired, but it is

unacceptable that timetable of an old professor of the school, considered as a

loyal employee, does not respect a minimum and high quality level.

Real teaching resources should then receive different treatment depending

on their priorities. The best approach depends on how much higher priority

features can be sacrificed so that overall features are satisfied. Given that, we

suggest 2 possible approaches:

Split If professors priorities are strictly important, one should avoid as much

as possible that lower-priority professors requirements interfere with higher

ones, even if it implies that the overall solution has lower quality in some goal.

1. First Priority We consider, as the first phase of the problem solving

process, the solving of a MIP containing only real and first priority

professors. This avoids that particularities and restrictions on lower-

priority professors interfere with higher-priority professors assignments.

2. Second Priority In the second phase of the problem solving process we

solve a MIP containing only real professors, with all priority levels, but

ensuring timetable quality for first priority professors reached at solution

of the first phase.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 57

Merged If professors priorities are not strictly important, the best might be

to consider all real professors in a single phase, but with goal weights that vary

according to professor priority. This means, for example, it may be worthy

not to satisfy a request for a higher-priority professor whether it implies in

satisfying some request for 2 lower-priority professors. Such approach is simpler

and generally faster, but depends on subjective weights choices and can result

in solutions that are harder to analyze.

4.1.2
Virtual teaching resource

After solving the problem using all real resources available, if there is

any non-satisfied demand, it is time to consider virtual teaching resources.

The best solution found with real resources at previous phase is fixed and

virtual professors are used only to satisfy the remaining demands, filling in

empty time slots in students timetables.

Maximizing remaining demand satisfaction through the best use of virtual

resources

Supposing that the best solution found until this moment has been fixed

and thus prevented from being modified, then the last thing to do is to satisfy

the maximum of remaining demands with virtual resources.

Since virtual teaching resources have neither quality nor overlapping

constraints, they are very easy assignments and could even be done as a post-

processing. Still, we chose to make use of mathematical programming to do

it, for 2 reasons: first, the model formulation and implementation is just the

same one we have been using, except that current real solution must be fixed

and virtual resources allowed; second, we can take advantage of mathematical

programming to easily remove some symmetry around virtual resources usage.

It is very common for professors to restrict their available teaching time.

Suppose the Biology professor, Glen Hansard, is only available on Tuesdays

and Fridays, and the Geography professor, Freddie Mercury, is only available

on Wednesdays and Fridays. Besides, suppose that due to a lack of teaching

resources, a virtual professor must be assigned to the Biology and Geography

lessons of class C1. For purposes of simplification, consider that both Biology

and Geography courses have 1 credit each. Class C1’s timetable must have at

least 2 empty time slots then, otherwise its demand would be greater than it

can support. Finally, suppose that assignments of other courses attended by

C1 could be arranged so that we have the following possibilities:

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 58

– an empty time slot on Monday and on Wednesday, or

– an empty time slot on Tuesday and on Wednesday.

Now, the decision to be made is to which time slot assign the Biology

and the Geography virtual lessons. Are they equally good? Possible solutions

are:

1. assign Biology to Monday and Geography to Wednesday, or

2. assign Biology to Tuesday and Geography to Wednesday, or

3. assign Geography to Monday and Biology to Wednesday.

4. assign Geography to Tuesday and Biology to Wednesday, or

The difference is that, in case of using virtual teaching resource, assigning

the course lesson to a time slot at which no capable professor has registered

availability implies either hiring a new professor for teaching the course or

negotiating with the current capable professors their availabilities. On the other

hand, assigning the course lesson to a time slot at which a capable professor

has registered availability necessarily implies hiring a new professor, since if

a capable professor is already registered at that time slot and still the lesson

is being taught by a virtual resource, it means either that the professor was

assigned to another class at that moment or that he has been blocked by some

quality constraint.

Bearing this in mind, best options for virtual assignment in the previous

example are 3 and 4, because neither Prof. Hansard is available on Wednesday

nor Prof. Mercury is available on Monday and Tuesday, the intermediate option

is 1, and the worst option is 2, since days chosen for courses classes are exactly

the days respectively already available for both professors.

Objective function for virtual resource phase To simplify notation, we

define KVd as being a set containing all variables k of virtual professor

for course d. Such set can be split into two subsets according to profes-

sors availabilities, let us say KV PAd and its complement KV PAd, so that

KV PAd ∪KV PAd = KVd, where KV PAd is the subset of all variables k of

virtual professor for course d and for a time slot at which some real capable

professor has registered availability.

Then, what we aim is to satisfy the remaining demand using virtual

teaching resources, while giving preference to those assignments that reduce

the certainty of having to hire new professors and guaranteeing the current

solution. Since virtual resource phase is much simpler and we do not have

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 59

conflicting goals, an unified objective function works just fine and is enough.

This last goal is achieved by:

g = MIN (
∑
a∈A

∑
d∈D

fdd,a + 0.00001 ·
∑

k∈KV PAd

kpv,i,d,u,t,h)

subjected to assignments made in the best

solution found when considering real resources

4.2
Goal programming

Just as in any other kind of problem, the feasibility of a linear model for a

timetabling problem depends utterly on input data set. In general, there is no

guarantee that all demanded requirements can be satisfied with the specified

available resources, even because usually there are several and conflicting

objectives. Therefore, specially in a commercial solver, it is important to treat

some idealistic hard constraints as highest priority soft constraints, otherwise

the methodology could frequently generate an infeasible model.

In real life it is useless for an educational institution to have a solution

that satisfies all demands of students for courses, but which does not respect

some important quality requirements. Bearing this in mind, in addition to

the feasibility issue, the model presented in this work, unlike most authors,

does not consider demand satisfaction as a hard constraint. Essential quality

requirements are modeled as hard constraints though, and demand satisfaction

is treated as the highest priority objective, followed by some further goals.

A multi-objective function unifies disparate goals of the model in a

single weighted sum of preferences. Such approach, although simpler, depends

on a very subjective choice of weights and is not always consistently reliable,

specially if involving trade-off, when objectives are mutually conflicting. It can

be very difficult to quantify quality.

An alternative approach is using a priority line for the different goals.

According to the institution preferences, one optimizes the problem in a

sequence of steps, where each step is responsible for a goal, from the most to

the least important. For each step a different and specific objective function is

used and the feasible solution space is subject to features of the best solution

found at the previous step. Such approach is known as preemptive goal

programming and is following detailed.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 60

4.2.1
General concept

A goal programming model seeks to simultaneously take into account

several objectives or goals that are concern to a decision maker. While a linear

programming model consists of constraints and a single objective function to

be maximized or minimized, a goal programming model consists of constraints

and a set of goals that are prioritized in some sense. In both linear and

goal programming problems, if the constraints are inconsistent, there are no

feasible solutions for the model. In goal programming, however, one can expect

that although there is a set of feasible solutions satisfying the constraints,

possibly none of them satisfies simultaneously all the conflicting goals of the

organization. The objective of goal programming is to find a solution that

satisfies the true constraints and comes closest to meeting the stated goals.

In lexicographic or preemptive goal programming the decision

maker orders the unwanted deviations into a number of priority levels, with

the minimization of a deviation in a higher priority level being infinitely more

important than any deviations in lower priority levels. A lexicographic goal

program can be solved as a series of linear programs and should be used when

there is a clear priority ordering amongst the goals to be achieved. The idea

behind the preemptive goal programming approach is that lower priority level

goals should not be attained at the expense of higher priority goals — they

are preempted.

If the decision maker is more interested in direct comparisons of the

objectives then weighted or nonpreemptive goal programming should

be used. In this case all the unwanted deviations are multiplied by weights,

reflecting their relative importance, and added together as a single sum to form

the achievement function, as done in the last section. This converts the goal

programming model into a linear programming model. Güenalay and Sahin

use goal programming at (Guenalay and Sahin, 2006) to satisfy instructors’

preferences as much as possible. More information at (Unknown).

4.2.2
Applying Goal Programming

Next are presented the possible goal programming approaches for a real

resource phase of the problem.

Nonpreemptive Goal Programming

Following there is the unified objective function considered at this work

for the real resource phase. Note that there is no variable controlling virtual

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 61

professor usage. Although here it is very easy to change priorities order and

adding or removing goals, there is the necessity of choosing coefficients for

variables at objective function.

MIN λ ·
∑
a∈A

∑
d∈D
·fdd,a

+ε ·
∑
p∈P

∑
t∈T

∑
f∈F

fpgapp,t,f

+σ ·
∑
p∈P

∑
t∈T

∑
u1∈U

∑
u2∈U

Timeu1,u2 · displacp,t,u1,u2

+θ ·
∑
i∈Id

∑
d∈Dm

zi,d

+α ·
∑
p∈P

∑
t∈T

(ptp,t +
∑
f∈F

ptfp,t,f)

An unified objective function is more appropriate when goals have not a

strict priority order, in the sense that their combinations can produce solutions

that are Pareto efficient. So, the first question when choosing the approach is

whether one wants to order or to weight goals.

Preemptive Goal Programming

Following are listed the goals, ordered by priority, considered in this

work for the real resource phase when using preemptive goal programming.

For each step a MIP is solved with a specific objective function and the

respective feasible solution space is additionally constrained by the solution

of the previous phase (figure 4.1 illustrates this encapsulation). We draw

attention to the nonexistence of coefficients multiplying variables at each

objective function and to the ease of changing priorities order and adding

or removing goals.

1. Maximizing demand satisfied by real professors

g1 = MIN
∑
a∈A

∑
d∈D

fdd,a

2. Minimizing the number of sections, in case of courses that can have

classes merged

g2 = MIN
∑
i∈Id

∑
d∈Dm

zi,d∑
a∈A

∑
d∈D

fdd,a ≤ g1

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 62

Where the additional constraint restricts the search-space to solutions

where the satisfied demand is no less than the value g1 achieved at

previous step.

3. Minimizing real professor displacement

g3 = MIN
∑
p∈P

∑
t∈T

∑
u1∈U

∑
u2∈U

Timeu1,u2 · displacp,t,u1,u2∑
a∈A

∑
d∈D

fdd,a ≤ g1∑
i∈Id

∑
d∈Dm

zi,d ≤ g2

Where the additional constraint restricts the number of sharable classes

to be no more than the minimal value g2 achieved at previous step.

4. Minimizing number of days and sessions of day used in real professor’s

timetable

g4 = MIN
∑
p∈P

∑
t∈T

(ptp,t +
∑
f∈F

ptfp,t,f)∑
a∈A

∑
d∈D

fdd,a ≤ g1∑
i∈Id

∑
d∈Dm

zi,d ≤ g2∑
p∈P

∑
t∈T

∑
u1∈U

∑
u2∈U

Timeu1,u2 · displacp,t,u1,u2 ≤ g3

Where the additional constraint restricts the solution space to the

minimum real professor displacement achieved at previous step.

5. Minimizing gaps in real professor’s timetable

g5 = MIN
∑
p∈P

∑
t∈T

∑
f∈F

fpgapp,t,f∑
a∈A

∑
d∈D

fdd,a ≤ g1∑
i∈Id

∑
d∈Dm

zi,d ≤ g2

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 63

∑
p∈P

∑
t∈T

∑
u1∈U

∑
u2∈U

Timeu1,u2 · displacp,t,u1,u2 ≤ g3∑
p∈P

∑
t∈T

(ptp,t +
∑
f∈F

ptfp,t,f) ≤ g4

Where the additional constraint restricts the solution space to the

minimum number of days and days session used in real professors

timetables achieved at previous step.

The final solution for the real resource phase is the one with cost equal

to g5, achieved at last stage. If an optimal solution is achieved for all steps,

then at the end of the last step we guarantee that the final solution found is

the best one with respect to the order of priorities.

Figure 4.1: Solution spaces are limited and encapsulated after each goal
optimization step.

Through preemptive goal programming it is easier to understand and

evaluate the best solution found by the optimization process and the reasons

of non-satisfaction of different goals, especially when the number of goals to be

achieved through the objective function increases. On the other side, it implies

more steps and consequently a possible increase of run time.

4.3
Polishing Method

For real-world school timetabling, where problem size is not small, solving

the whole MIP introduced in Section 3.2 of Chapter 3 at once with a MIP

solver like Gurobi or Cplex has been shown to be ineffective and unworkable.

Tests made with schools with an ordinary size (maximal ≈ 30 classes, ≈ 700

demanded credits, ≈ 1000 teaching available time slots and ≈ 2 blocks) have

shown that generic MIP solvers find it already difficult to converge to a good

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 64

integer solution. For larger schools, both the linear relaxation and the branch

and bound phase are very hard and have proven themselves impossible to be

solved by current MIP solvers.

An auxiliary method was then developed for helping convergence while

solving the MIP. It is described at next sections and referred here as a

“polishing method”.

4.3.1
The general idea

Given an lp model and an initial feasible solution s, the idea of a polishing

method is iteratively to solve models lp′ similar but easier than the original

model, such that any feasible solution for lp′ is also a feasible solution for lp

and the solution at the end of each iteration is always at least as good as the

one at the beginning. In another words, it is generated a sequence of feasible

solutions with monotonically (but not strictly) increasing quality.

Suppose that a solution s ∈ Zn is feasible to lp. Let us split the set of

n integer variables into 2 subsets, such that n = p + q, p ≥ 0, q ≥ 0, sp ∈ Zp,

sq ∈ Zq and thus s = sp ∪ sq. The basic principle is that optimizing a linear

program lp′ = lp∩sp generates a feasible solution s′ to lp′ which is also feasible

to lp and at least as good as s. All variables and constraints of the original

problem are still present in the new problem, but cuts were added, which limit

the solution space based on sp, resulting in a more restricted solution space. In

general, the smaller is the solution space, the easier is the solver convergence.

The aim of cutting the solution space is not to eliminate non-promising

search-space regions, but to search in a smaller and treatable space. There is

then no guarantee that the optimal solution s∗ for lp is in or out the eliminated

region, but it is ensured that the optimal solution s′∗ for lp′ is equal or better

than the previously known solution s. It is thus not interesting to keep these

cuts after solving lp′. Instead, the idea is to restore the original problem and

add others cuts, now based on the new solution s′. Doing that iteratively, we

create a guide for the solver.

So, what solution space of lp′ looks like? At each polishing iteration, the

limitation of the search-space takes place through the tightening of a subset of

variables bounds based on the initial solution s. Suppose the trivial example

where the solution space is equal to the cube c = [0, 4]3 ∈ Z3 and the feasible

solution s ∈ Z3 is s = {s1 = 3, s2 = 2, s3 = 0}. A possible limitation based

on s would be to tighten the interval bounds of the first dimension to the

value of s1, such that the resulting solution space is c′ = [3, 3][0, 4][0, 4]. Such

tightening clearly eliminates one dimension of the search-space and keeps the

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 65

feasible solution s. Consequently, optimizing over c′ can not lead to a worse

solution, because in the worst-case scenario the best solution is s itself.

Because at the beginning of the polishing process the solution is sup-

posedly a very poor quality one and the search-space is a wide unexplored

space, the percentage of variables with tightened bounds starts high (lets say

around 90%) and drops as the limited search-space is potentially exhausted

and solution improvement stagnates. If at the end of the polishing this per-

centage reaches 0%, then the considered linear program is the original one and

its optimization ends the process. If an optimal solution is found at the 0%

stage, then it is surely an optimal solution for the original problem. For too

hard linear programs though, it is unlikely that the polishing reaches this last

stage, and the process is then interrupted by time limit. Generally speaking,

nothing can be said about optimality for a solution found before the 0% stage.

4.3.2
The polishing algorithm developed for the problem

Following a detailed algorithm for the polishing method developed for

the school timetabling problem is described. The main algorithm, specified in

Algorithm 4.1, contains the general steps of the polishing process.

The essential requirements for using the polishing method are a linear

program and a feasible initial solution. In addition, in case a proved optimal

solution is not achieved, time limits are used as stopping criteria: a total max-

imum execution time for the method (maxTime), and a maximum execution

time since the last solution improvement occurrence (maxTimeNoImprov).

The algorithm starts at line 2 with some initialization, defined at line

11. The current solution sol is set with the initial solution, the percentage perc

of variables with fixed bounds is initialized with 90%, the MIP optimization

time limit timeIter is initialized with 70 seconds, all blocks are set free and,

in the case of several blocks which share teaching resources, blocks may be

clustered to assist further bounds tightening. The polishing process begins at

line 4, where at each iteration a new optimization cycle takes place. Every

cycle has 4 main steps: variables bounds tightening (line 5), optimization of

the tightened linear program (line 6), update of percentage of fixed variables

and of time limit for each optimization (line 7), and variables bounds release

(line 8). At line 9 the polishing time limit is checked.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 66

Algorithm 4.1 Polishing method

Require: lp model, any initial feasible solution solIni, the maximum runtime

maxTime for the whole polishing method and the maximum run time

maxTimeNoImprov of polishing without improvement

Ensure: A final feasible solution sol for the lp model at least as good as the

initial solution solIni

1: function Polish(solIni, maxTime, maxTimeNoImprov, lp)

2: init(lp,solIni)

3: okIter ← true

4: while okIter do

5: fixVars(lp,sol,perc)

6: optimize(lp,sol)

7: updatePercAndTimeIter()

8: unfixVars()

9: checkRunTimeLimit()

10: return sol

Initialization

11: procedure init(lp, solIni)

12: sol ← solIni

13: perc ← 90

14: timeIter ← 70

15: set all blocks free

16: cluster blocks according to teaching staff sharing

Algorithm 4.2 describes the step of tighten variables ranges. Different

approaches were tested and those which best succeed are shown. The main

algorithm requires the original linear program, a feasible solution and the

percentage of fixation; and ensures a resultant linear program for which

a subset of variables have tightened bounds and where the subset size is

proportional to the fixation percentage. Three different types of fixation were

implemented: fixing all lessons of a subset of blocks (line 2), fixing lessons

of random classes (line 3) and fixing random assignments of professors to

classes (line 4). The procedure for fixation of lessons per block, detailed at

line 5, requires the set FB of blocks that should be completely fixed at the

current iteration, besides a feasible solution for the lp. Then, every potential

lesson that belongs to a fixed block has the lower and upper bounds of its

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 67

corresponding variable x tightened according to its value at the current solution

sol[x]. The procedure for fixation of random classes, detailed at line 9, requires

a percentage value perc that indicates how much of the current solution should

be fixed. Such amount of classes is then randomly selected and stored in

the set FC (lines 11- 13). Following, analogously to blocks fixation, every

lesson variable x for which the class belongs to FC has its lower and upper

bounds tightened according to its value at the current solution sol[x] (lines

14- 16). Lastly, the procedure for fixation of random professors assignments,

detailed at line 17, likewise requires the solution fixation percentage, selects

the corresponding amount of variables y responsible for assigning professors to

classes and tights their bounds.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 68

Algorithm 4.2 Fixing variables’ values

Require: lp model, a feasible solution sol and the percentage perc of fixation

Ensure: A resultant lp model with a random subset of its variables with fixed

bounds and therefore easier to solve

1: procedure fixVars(lp, sol, perc)

2: fixBlocks(lp,sol,FB)

3: fixVarsClassesBounds(lp,sol,perc)

4: fixVarsProfBounds(lp,sol,perc)

Fixing blocks

Require: lp model, a feasible solution sol and a set FB of blocks to be fixed

5: procedure fixBlocks(lp, sol, FB)

6: for each variable xu ∈ lp such that u ∈ FB do

7: lowerboundx ← sol[x]

8: upperboundx ← sol[x]

Decide which classes to fix and fix the corresponding lessons bounds

Require: lp model, a feasible solution sol and the percentage perc of fixation

Ensure: A subset of lessons variables with tightened bounds

9: procedure fixVarsClassesBounds(lp, sol, perc)

10: FC ← ∅
11: for each variable z ∈ lp do

12: if rand() ≥ perc then

13: FC ← class represented by z

14: for each variable x ∈ lp such that class of x is in FC do

15: lowerboundx ← sol[x]

16: upperboundx ← sol[x]

Fix bounds of variables of professors

Require: lp model, a feasible solution sol and the percentage perc of fixation

17: procedure fixVarsProfBounds(lp, sol, perc)

18: for each variable y ∈ lp do

19: if rand() ≥ perc then

20: lowerboundy ← sol[y]

21: lowerboundy ← sol[y]

Algorithm 4.3 describes the steps around a request for optimization. It

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 69

requires a linear program lp and a feasible solution sol, and ensures a final

updated solution sol at least as good as the initial one. The linear program

considered here is the one resulting from the variables bounds tightening step.

The procedure sets the time limit timeIter for the optimization, sets sol as an

initial solution and optimizes the model using a MIP solver. When optimization

ends, run time is recorded at runtime and the extra time, i.e., the difference

between time limit and run time, is recorded at timeLeft. These values may

later be used for updating timeIter with a more appropriate value. Finally,

if optimization succeeded, the current solution sol is updated with the new

solution and elapsed time since last solution improvement is updated.

Algorithm 4.3 Optimize

Require: lp model, a feasible solution sol to lp

Ensure: A final updated feasible solution sol for the lp model at least as good

as the initial solution

1: procedure optimize(lp, sol)

2: set optimization time limit equal to timeIter

3: set sol as a start solution to lp

4: optimize lp

5: runtime ← time spent at the optimization

6: timeLeft ← |timeIter − runtime|
7: if optimization succeeded then

8: sol ← new best solution found

9: if solution was not improved then

10: update elapsed time without improvement

11: else

12: reset elapsed time without improvement

Algorithm 4.4 is responsible for taking actions, whether there is a need,

on percentage of solution fixation or on optimization time limit. Such actions

are based on the last optimization performance. At line 2 it is checked if

the linear program is completely free, i.e., if it is the original lp. If so, then

the current iteration is the last one and there is nothing left to be updated.

Otherwise, actions differ accordingly whether the lp was solved to optimality

(line 5) or not (line 7). If a proven optimal solution is found, it suggests that

the lp was not hard, and actions may be decrease the portion of the problem

that is fixed (line 9) and adjust optimization time limit (line 10). On the

other hand, if optimality was not reached, it suggests that the lp may be too

hard. Thus, in case of solution has not been improved when compared to the

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 70

previous iteration (line 12), efforts to facilitate the problem are made, such as

updating the set of fixed blocks (line 14) and adjusting time limit (line 15).

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 71

Algorithm 4.4 Update percentage of fixed variables, fixed blocks and maxi-
mum time per iteration

Require: lp model, MaxTimeImposedPerIteration and values of configu-

ration and performance for the current iteration optimization: timeIter,

runtime, timeleft, perc, percBlockF ixed

1: procedure updatePercAndTimeIter(lp)

2: if allFree() then

3: okIter ← false return

4: if lp was solved until optimal or gap is small enough then

5: updatePercAndTimeIterSmallGap(

MaxTimeImposedPerIteration, timeIter, runtime,

timeleft, perc, percBlockF ixed)
6: else

7: updatePercAndTimeIterBigGap(

MaxTimeImposedPerIteration, timeIter, runtime,

timeleft, perc, percBlockF ixed, percBlockF ixed)

Update percentage of fixed variables, fixed blocks and maximum

time per iteration for small gap case

8: procedure updatePercAndTimeIterSmallGap(

MaxTimeImposedPerIteration, timeIter, runtime,

timeleft, perc, percBlockF ixed)

9: adjustPercOrBlock(perc, timeIter, timeLeft)

10: adjustTime(MaxTimeImposedPerIteration, timeIter, runtime,

timeleft, perc, percBlockF ixed)

Update percentage of fixed variables, fixed blocks and maximum

time per iteration for big gap case

11: procedure updatePercAndTimeIterBigGap(

MaxTimeImposedPerIteration, timeIter, runtime,

timeleft, perc, percBlockF ixed, percBlockF ixed)

12: if solution was not improved at the current iteration then

13: acresm ← 0, if all blocks are currently free; or 10 otherwise

14: setNextRandFreeBlocks(acresm, percBlockF ixed)

15: adjustTime(MaxTimeImposedPerIteration, timeIter,

runtime, timeleft, perc, percBlockF ixed)

Algorithm 4.5 is a procedure to adjust the set of blocks that will be free

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 72

or fixed at next iteration. It requires an incremental value percAdjust to the

percentage of fixed blocks, which can be negative if the aim is to hamper the

problem, null if no change of percentage is aimed, or positive if the aim to

facilitate the problem. Such percentage (percBlockF ixed) is updated at line

2. At line 3 the number of consecutive iterations with fixed blocks is verified

and, if it is sufficient, all blocks are set free for the next iteration. The concept

of what is sufficient is subjective, but tests have worked well with a maximum

of 4 consecutive iterations. Otherwise, blocks to set free at next iteration are

chosen by a routine at line 5. Such routine resets the current set of free blocks,

and decides randomly at line 8 whether the type of block fixation will be by

cluster or not. If so, a cluster of blocks is selected at line 10 and every block of

the cluster is set free. Then, the number of fixed blocks is checked and, while

it doesn’t reach at least the percentage percBlockF ixed, blocks are set free

randomly.

Algorithm 4.5 Set free and fixed blocks for the next iteration

Require: an incremental percAdjust of the fixed blocks percentage

percBlockF ixed

Ensure: an updated set of fixed or free blocks for next iteration

1: procedure setNextRandFreeBlocks(percAdjust, percBlockF ixed)

2: percBlockF ixed ← percBlockF ixed+ percAdjust

3: if there is enough consecutive iterations with fixed blocks then

4: free all blocks for the next iteration return

5: chooseAndSetFreeBlocks(percBlockF ixed)

Choose and set free blocks for the next iteration

6: procedure chooseAndSetFreeBlocks(percBlockF ixed)

7: reset set of free blocks

8: useCluster← true or false, randomly chosen with 50% of chance of true

9: if useCluster then

10: choose a cluster of blocks and set it free

11: while number of free blocks < (100− percBlockF ixed)· total of blocks

do

12: choose randomly a block and set it free

Algorithm 4.6 adjusts optimization time limit for the next iteration

according to the current iteration performance. If the linear program was set

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 73

completely free for next iteration, which means it is the original problem, then

it will be the last optimization, and therefore all remaining time for polishing

is set. If solution was not improved and time limit was reached before proving

optimality, then it suggests that time limit may be too low and its increasing

is proceeded at line 5. Otherwise, if solution was improved, then time limit is

checked at line 7. The increasing of time, described at line 8, is proportional

to the current percentage of fixed variables and blocks. Just as a precaution

so that time limit does not increase too much, an upper bound for it may be

forced at line 13. The decreasing of time, described at line 15, occurs whether

the current time limit has been shown to be much higher than necessary,

which is measured by comparing the difference between the run time and the

time limit (timeLeft) and the extra time required for the sake of precaution

(minExcess).

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 74

Algorithm 4.6 Adjust time

Require: MaxTimeImposedPerIteration and values of configuration and

performance for the current iteration optimization: timeIter, runtime,

timeleft, perc, percBlockF ixed

Ensure: optimization time limit adjusted for next iteration

1: procedure adjustTime((MaxTimeImposedPerIteration, timeIter,

runtime, timeleft, perc, percBlockF ixed))

2: if allFree() then

3: timeIter ← getRemainingT ime() return

4: if solution was not improved at the current iteration and time limit

for the iteration was reached then

5: increaseTime(MaxTimeImposedPerIteration, timeIter, perc,

percBlockF ixed)

6: if solution was improved at the current iteration then

7: decreaseTime(timeIter, runtime, timeleft)

Increase time

Require: MaxTimeImposedPerIteration and values for the current itera-

tion optimization: timeIter, perc, percBlockF ixed

Ensure: updated timeIter

8: procedure increaseTime((MaxTimeImposedPerIteration, timeIter,

perc, percBlockF ixed))

9: incremTime ← 10

10: incremTime ← incremTime+ (100− perc) · 0.2
11: incremTime ← incremTime+ (100− percBlockF ixed) · 0.2
12: timeIter ← timeIter + incremTime

13: if timeIter > MaxTimeImposedPerIteration then

14: timeIter ← MaxTimeImposedPerIteration

Decrease time

Require: values for the current iteration optimization: timeIter, runtime,

timeleft

Ensure: updated timeIter

15: procedure decreaseTime((timeIter, runtime, timeleft))

16: minExcess ← max(0.5 · timeIter, 50)

17: if timeLeft > minExcess then

18: timeIter ← runtime+minExcess

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 75

Algorithm 4.7 is responsible for adjusting the percentage of solution that

is fixed. The decrease of fixed solution amount can take place in 2 situations:

either optimality was very fast achieved (line 2) or optimality was achieved but

solution was not improved at all (line 5). The first one is not really necessary

— it is basically just an attempt to speed up the method. The second one

is essential, because it is the natural way of decreasing fixation, which means

getting closer to the actual linear program. The idea is that the search-space

size should be enlarged whenever the optimal solution value equals the current

best solution value, since it suggests that search-spaces with the current size

may have been exhausted or would make small contributions. The subroutine

for decreasing solution fixation, called decreasePercOrFreeBlock and

described at 7, requires a value that might be subtracted of the fixation

percentage. It can actually either decide to change and enlarge the set of free

blocks (line 9) or indeed subtract the percentage perc of solution fixation (line

11). The principle is that decreasing the value perc is an “one way street”, i.e.,

we can never backtrack and increase perc, while on the other hand the number

of fixed blocks can vary according to the difficulty faced when solving lp. Thus,

the actual decreasing of the value perc takes place only when all blocks are

free at the current iteration.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 76

Algorithm 4.7 Adjust percentage of fixed variables or fixed blocks

Require: values of performance of the current iteration optimization

Ensure: if necessary, updates portion of tightened variable’s bounds for the

next optimization

1: procedure adjustPercOrBlock((perc, timeIter, timeLeft))

2: if optimal and timeLeft > 0.7 · timeIter then

3: decreasePercOrFreeBlock(perc, 5)

4: else

5: if optimal and not improved then

6: decreasePercOrFreeBlock(perc, 10)

Decrease percentage of fixed variables or free blocks

Require: a value percToSubtract that may be subtracted of the fixation

percentage perc

Ensure: updated portion of tightened variable’s bounds for the next opti-

mization, attempting to solve a lp more similar to the original one

7: procedure decreasePercOrFreeBlock(perc, percToSubtract)

8: if percToSubtract ≤ 0 then return

9: if there is any block currently fixed then

10: setNextRandFreeBlock(−10) return

11: perc ← perc - percToSubtract

Before ending any polishing iteration it is mandatory that every tight-

ening of variable bounds is undone. Algorithm 4.8 is responsible for such

untightening, so that the resulting linear program is the same one of the be-

ginning of the iteration.

Algorithm 4.8 Unfixing variables’ values

Require: lp model

Ensure: updated lp with original bounds for those variables that have been

tightened

1: procedure unfixVars((lp))

2: for each variable var ∈ lp that was fixed do

3: lowerboundvar ← original lower bound of var

4: upperboundvar ← original upper bound of var

The last action at each iteration is to check polishing run time. As

previously stated, in case a proven optimal solution is not achieved, two

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 4. Solving Strategies 77

possible stopping criteria are used: total run time and elapsed time since

last solution improvement. Both cases are tested in Algorithm 4.9 and, if

any of these conditions is reached, okIter is set to false, which causes further

interruption of the method.

Algorithm 4.9 Check run time

Require: Data involving run time and performance

Ensure: Updated okIter

1: procedure checkRunTimeLimit(maxTimeNoImprovement,

totalruntime, maxTime, okIter)

2: checkTotalRunTime(totalruntime, maxTime, okIter)

3: checkTimeWithoutImprov(maxTimeNoImprovement, okIter)

Check total run time

Require: totalruntime, maxTime, okIter

Ensure: updated okIter

4: procedure checkTotalRunTime((totalruntime, maxTime, okIter))

5: if total run time ≥ maxTime then

6: okIter ← false

Check run time since last improvement

Require: Information about improvements on the best solution,

maxTimeNoImprovement, okIter

Ensure: updated okIter

7: procedure checkTimeWithoutImprov((maxTimeNoImprovement,

okIter))

8: if no improvement was made at the current iteration then

9: if elapsed time since last improvement > maxTimeNoImprov then

10: okIter ← false

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

5
Computational Experiments

This chapter describes the main computational experiments conducted in

this work. First, general computational aspects are introduced; then different

scenarios for different schools are described; and finally results are presented

and evaluated.

5.1
Computational resources

The implementation of the solver was done in C++, compiled with MS

Visual Studio 2010, using Microsoft Windows 7, 64 bits. All the linear integer

programs were solved using the generic MIP-Solver Gurobi 6.0. Computational

experiments were executed on 3.40GHz Intel Core i7 computer with 32 GB of

RAM. Considering all scenarios that are following described, the maximum

amount of RAM used by the solver during execution was around 7 GB.

5.2
Scenarios

Several computational experiments have been performed for real scenar-

ios of Brazilian schools. Those considered the most significant are following

described.

The first column of table 5.1 contains some general problem data

features, considering the most relevant ones, while the other columns represent

all scenarios (A, B1, B2, C, D, E). First displayed features are the total

number of classes, the total number of credits demanded by the classes,

and the average number of credits demanded per class. Following there

are the total number of teachers and the total number of teaching staff

available credits. Lastly, the total number of blocks, that is, distinct school

units, the minimum and maximum number of classes per block, and the

average number of classes per block are displayed. Notice that consistency

of teaching staff availability depends on how it is distributed along the week

and on its intersection with demands, courses and students availabilities.

The correspondent values exhibited in the table have already been filtered

to consider only useful available time slots, i.e., those in such intersection.

Daily and weekly availability distributions, though, cannot be extracted from

this table.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 79

Table 5.1: General features of scenarios

Features
Scenarios

A B1 B2 C D E

Classes 178 295 295 84 24 16

Demanded credits 5800 9490 9490 2709 653 443
Average of credits

demanded per class
32.5843 32.1695 32.1695 32.25 27.2083 27.6875

Professors 277 471 471 243 58 35
Teaching staff

available credits
9154 15249 15243 7032 900 617

Blocks 14 15 15 4 2 2

Min/Max classes per block 2/29 9/33 9/33 9/28 7/17 2/14

Average of classes per block 15 19 19 21 12 8

As one can see at Table 5.1, the largest scenarios are A, B1 and B2.

They are scenarios of the first semester of 2015 from very large schools of

Rio de Janeiro. Scenarios B1 and B2 correspond to the same school and are

then quite similar. Their difference is on the daily availability of professors for

teaching at each block — in scenario B1 a professor can be assigned to any

block where he is supposed to teach on a day that he is available, while in

scenario B2 an available day of a professor might be previously attached to a

smaller subset of blocks, which makes B2 more restricted then B1. Scenario

C was obtained from scenario B1 and corresponds to a subset of its blocks.

Scenario D refers to the first semester of 2015 from another and much smaller

school in Rio de Janeiro. Lastly, E is a scenario of the second semester of 2014

from a school from Minas Gerais.

It is important to say that all considered scenarios have the number of

demands per class suitable with the size of the class’ available timetable, in

the sense that if a class has all its demands satisfied, then its timetable will be

compact.

Although the solver is totally prepared to deal with a generic situation, in

the clear majority of demands for courses the professor that is potentially going

to teach a course section is pre-assigned. In other words, most courses have

only one capable professor associated. For example, suppose that Professor

Glen Hansard should teach Mathematics to a 2nd Year class in block BL1 and

Professor Jack Johnson should teach Mathematics to another 2nd Year class

in block BL2. Then, instead of considering the same Mathematics course, we

consider two different courses, let us say Math-2nd-BL1 and Math-2nd-BL2,

where only Prof. Hansard is capable of teaching Math-2nd-BL1 and only Prof.

Johnson is capable of teaching Math-2nd-BL2.

Another relevant feature to have in mind while analyzing a scenario is

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 80

how courses are organized along the week, that is, the number of credits of a

course and its split rule (see section 2.2.2). In scenarios A, B1, B2 and C most

courses have 1 credit each and some courses have 2 credits. In scenarios D and

E all courses have 1 credit. Actually, in practice courses have more credits, but

for further reasons, which are out the scope, data was modeled so that courses

with n credits, n > 1, were split in n 1-credit courses. It follows that credits

split rules were also not necessary.

In order to better portrait dependency between blocks of a scenario,

figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 illustrate graphs respectively to

scenarios A, B1, B2, C, D and E, where each node represents a block and

each edge represents the sharing of professors between two blocks. Each node

has a label in the format “uX Y”, where X is an unique integer identifier for

the block and Y is the total number of professors that can teach at the block.

Every edge has a value that indicates the number of shared professors between

the two blocks. Besides, edge’s color varies according to how critical to blocks

involved is the shared quantity. Figure 5.1 displays the accurate meaning of

every used color. A yellow edge indicates low sharing of professors between

a pair of blocks, while a black edge indicates very high sharing. The color is

not associated with the absolute number of shared professors, but with the

percentage of professors shared by the block with less professors. For instance,

if block bl1 has 10 professors and block bl2 has 15 professors, then color of

edge [bl1, bl2] is related to bl1. If they share 5 professors, then bl1and bl2 share

respectively 50% and 33.3% of their teaching staff, and edge’s color is the one

associated to the value 50%.

Figure 5.1: Meaning of edges’ colors. A yellow edge indicates low sharing of
professors between a pair of blocks and a black edge indicates very high
sharing. The color is not associated with the absolute number of shared

professors, but with the percentage of professors shared by the block with
less professors.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 81

Figure 5.5: Sharing of professors between blocks (school units) of scenario C

Figure 5.6: Sharing of professors between blocks (school units) of scenario D

Figure 5.7: Sharing of professors between blocks (school units) of scenario E

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 82

F
ig

u
re

5.
2:

S
h
ar

in
g

of
p
ro

fe
ss

or
s

b
et

w
ee

n
b
lo

ck
s

(s
ch

o
ol

u
n
it

s)
of

sc
en

ar
io

A

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 83

F
ig

u
re

5.
3:

S
h
ar

in
g

of
p
ro

fe
ss

or
s

b
et

w
ee

n
b
lo

ck
s

(s
ch

o
ol

u
n
it

s)
of

sc
en

ar
io

B
1

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 84

F
ig

u
re

5.
4:

S
h
ar

in
g

of
p
ro

fe
ss

or
s

b
et

w
ee

n
b
lo

ck
s

(s
ch

o
ol

u
n
it

s)
of

sc
en

ar
io

B
2

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 85

5.3
Approaches

5.3.1
Approaches to combine

Different approaches and strategies for solving the problem were dis-

cussed in Chapter 4. Some of these approaches are combined so that fur-

ther various computational experiments are carried out and impacts of these

distinct strategies are evaluated. The variations to be combined are briefly

reviewed below.

Real and Virtual Phases Because all considered scenarios have the number

of demands per class suitable and coherent with the size of the class avail-

able timetable, the experiments were performed without the compactness con-

straints for students timetables. As explained in Section 4.1, this allows us to

split the problem into phases with real and virtual teaching resources, which

has shown to be more effective.

Preemptive vs Nonpreemptive Goal Programming The impact of ordered

goals, their correlations, and trade-off situations are evaluated by solving the

problem both with the preemptive goal programming and with an unified

objective function.

Polishing method usage The need of the polishing method is demonstrated

by optimizing the problem with and without it.

Professor Priority Professors priorities are evaluated using the three follow-

ing perspectives:

1. No professor priority is considered: every goal of the problem is executed

only once, considering all professors assignments without distinction.

2. Weak professor priority is considered: every goal of the problem is

executed only once, but considering first-priority professors assignments

more important than second-priority professors.

3. Strong professor priority is considered: every goal of the problem is

executed twice. First, all goals are sequentially performed for all first-

priority professors, then solution quality that was achieved for these

professors is ensured and all goals are again sequentially performed for

all second-priority professors.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 86

5.3.2
Gurobi Parameters

Regardless of phase or step, the main configuration used for Gurobi

parameters was:

– setting cuts to 2 (aggressive),

– barrier and crossover method for solving root relaxation,

– setting mip focus to 1 (emphasis on finding new solutions).

Besides, in Table 5.2 the number of hours used as time limit in

experiments are exhibited. Time limit varies according to the step, in case

of using the preemptive goal programming approach, or is a single value in

case of using a multi-objective function.

Table 5.2: Time limits per step

Step Total time limit (h) Time limit since last solution

improvement (h)

No Satisfaction 4 1

Sharable Classes 1.5 0.75

Prof. Displac. 2 1

Prof. Sessions/Days 1 0.5

Prof. Gaps 1 0.5

Multi-objective 4 0.5

5.4
Results

Each scenario was tested combining the different approaches. Due to long

runtime, only a few tests were performed using professors priorities. The ma-

jority of experiments, which are following detailed, combines either preemptive

or nonpreemptive goal programming with either the usage or not of the pol-

ishing method, with no professors priorities. Besides, because of the random

factor, especially of the polishing method, each pair [scenario+approaches com-

bination] was performed 5 times. Results for all experiments are attached in

Appendix B.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 87

5.4.1
Model features

Model features for each instance are listed in Table 5.3, which includes

the number of variables and restrictions created, detailed by type, and the

number of non-zeros coefficients in matrix. The first column lists the evaluated

features and the other columns identify the scenarios. The first lines display

general features of the linear program for every scenario, then the number

of variables is specified according to each variable type, and analogously

the number of constraints is specified according to each constraint type.

The number by the side of each constraint type identifies the corresponding

equation of the model formulation introduced in section 3.2.2.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

C
h
ap
ter

5.
C
om

p
u
tation

al
E
xp

erim
en
ts

88

Table 5.3: Model features

Lp Features Scenarios

A B1 B2 C D E

ge
n
er

al Total of variables 350132 594528 528315 167276 32225 26198

Total of constraints 989783 1426770 1113371 293891 45523 32757

Total of non-zeros 11083636 15918011 11247214 2435153 313373 197020

va
ri

ab
le

s

x 101882 172126 150719 48320 9256 7689

v 104052 181780 160363 49816 9264 7893

o 5612 9135 9135 2613 653 449

s 5934 9723 9723 2725 657 461

fd 5613 9183 9183 2625 653 443

z 5612 9135 9135 2613 653 443

k 102214 173162 151748 48590 9256 7623

y 5612 9145 9145 2616 653 443

uu 2174 3278 2904 1055 210 147

displac 4978 5836 4372 580 128 0

hip/hfp 2740 5264 5198 2458 328 250

ptf 1370 2632 2599 1229 164 125

pt 899 1497 1492 807 146 107

begin/end 0 0 0 0 0 0

pfgap 1370 2632 2599 1229 164 125

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

C
h
ap
ter

5.
C
om

p
u
tation

al
E
xp

erim
en
ts

89

co
n
st

ra
in

ts
LinkVX (3.4) 101882 172126 150719 48320 9256 7689

RoomUsedTimeSlot (3.7) 7637 13115 13056 3681 754 483

1LessonDay (3.14) 17051 29872 26248 8366 1820 1487

SatisfyClass (3.8) 5613 9183 9183 2625 653 443

LimitClassOffer (3.9) 5612 9135 9135 2613 653 443

LimitMaxClassSize (3.10) 5612 9135 9135 2613 653 443

ClassTime (3.13) 8677 17623 17554 4937 754 477

1RoomCourseSection (3.6) 5612 9135 9135 2613 653 443

CourseSectionRoom (3.5) 5612 9135 9135 2613 653 449

ClassCourseLessons (3.11) 5934 9723 9723 2725 657 461

LinkXZ (3.12) 5612 9135 9135 2613 653 443

NoOverlapProfTT (3.23) 10146 17269 17051 8085 960 617

ProfLesson (3.24) 102214 173162 151748 48590 9256 7623

ProfLessonSum (3.25) 102214 173079 151665 48576 9256 7623

ProfCourseSection (3.26) 5612 9145 9145 2616 653 443

CourseSect1Prof (3.27) 5612 9135 9135 2613 653 443

ProfHiUB (3.36) 9010 15200 14968 7021 897 617

ProfHfLB (3.37) 9010 15200 14968 7021 897 617

ProfHiLB (3.35) 7640 12568 12369 5792 733 492

ProfHfUB (3.38) 7640 12568 12369 5792 733 492

ProfGapMTN (3.39) 1370 2632 2599 1229 164 125

ProfDaySession (3.40) 1370 2632 2599 1229 164 125

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

C
h
ap
ter

5.
C
om

p
u
tation

al
E
xp

erim
en
ts

90

ProfDay (3.41) 899 1497 1492 807 146 107

DisplacTimeProf (3.28) 50212 71623 50534 5281 633 0

Max1DisplacProf (3.33) 493480 602211 381093 63217 2729 0

BlockProf (3.30) 2174 3278 2904 1055 210 147

SetDisplacProf (3.32) 4978 5836 4372 580 128 0

MaxDispProf (3.33) 571 994 844 206 64 0

MaxDispProfWeek (3.34) 173 293 249 63 21 0

IdleTimeBetSess (3.42) 437 976 954 359 17 16

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 91

By observing the number of constraints created for each type of restric-

tion, in Table 5.3, it is possible to know which restrictions were considered

in each scenario. In case a variable or constraint type is not displayed at the

table, simply assume that it was not created. For example, because all sce-

narios evaluated have students’ availabilities compatible with their demands,

all constraints and variables necessary only for avoidance of gaps in students’

timetables were not used.

Particularly for scenarios B1 and B2, which basically differ from each

other in the possible assignments between professors and blocks on each

day, notice that the biggest differences at the number of constraints cre-

ated are those related to professor displacement. Besides, constraints of type

Max1DisplacProf are in some scenarios responsible for almost 50% of rows of

the linear program.

5.4.2
Solver performance

Whenever the solver is executed, analyzing performance and conse-

quently the generated solution implies in analyzing every solving step. This

means checking for every step the run time, the optimization stopping con-

dition that was reached, the best solution value of the linear program, the

optimality gap and also how the solving process converged during the polish-

ing method.

Next are displayed performance details for some of the computational

experiments that were conducted. Because the purpose here is just to illustrate

the process while searching for the best solution, for the sake of simplicity these

details are not being exhibited for all experiments.

Table 5.4 refers to scenario B1 considering strong professors priorities,

preemptive goal programming and polish approaches, while Table 5.5 refers to

scenario A considering professors priorities off, preemptive goal programming

and polish approaches. First column of both tables identifies the solving

phase, while second column lists chronologically all minimization steps of the

preemptive goal programming approach (see 4.2.2) and the other columns

register values for several solver performance features. Phases are split into

real and virtual resources phases, while real resource phase can in turn be

split into 1st and 2nd-priority in the case of professor priority is considered.

Steps are minimization of non-satisfied demands, sharable courses sections,

professor displacements, day sessions and days assigned to each professor and

gaps in professor timetable. Third column displays the objective function value

for the best feasible solution found; fourth column displays the integrality gap

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 92

between the best integer solution found and the lower upper bound found at

the last polishing iteration (notice that, unless solution fixation percentage

is zero at the iteration, this integrality gap is not the one related to the

original linear problem); fifth column informs whether the best feasible solution

found is proved to be optimal (true T or false F); sixth column registers the

final fixed percentage of solution at the moment when the polishing method

was interrupted; seventh column displays the run time of the step; eighth

column displays which stopping criteria was reached while solving the step;

and lastly ninth column informs the number of saturated constraints. Possible

stopping criteria for the polishing method are run time limit since last solution

improvement (TNI), total run time limit (TL), zero percentage of fixation plus

either time limit or optimal solution (AF) and no need of polishing (NNP).

Table 5.4: Solver performance for scenario B1 solved using goal
programming, polishing approach and strong professor priority

Phase Step
Feature to minimize

OF value IntGap Opt Perc RunTime StopCrit Sat

1st-p

No Satisfaction 34 17.647 F 5 3h39’06” TNI 864001

Sharable Classes 6 0 T 0 0h09’02” AF 864185

Prof. Displac. 4830 1.035 F 15 2h04’39” TL 857539

Prof. Sessions/Days 695 10.36 F 0 0h59’59” TNI 856923

Prof. Gaps 300 44.333 F 10 0h56’25” TNI 856685

2nd-p

No Satisfaction 294 0 F 35 4h01’04” TL 633637

Sharable Classes 73 0 T 0 0h46’10” AF 635671

Prof. Displac. 25780 0.116 F 30 2h00’50” TL 633868

Prof. Sessions/Days 2616 2.332 F 25 1h01’03” TL 633194

Prof. Gaps 22837.7 0.64 F 45 1h01’08” TL 632235

Virtual No Satisfaction 4.0046 0 T 0 0h0’0” NNP 40182

Table 5.5: Solver performance for round 1 of scenario A solved using goal
programming, polishing approach and professor priority off

Phase Step
Feature to minimize

OF value IntGap Opt Perc RunTime StopCrit Sat

Real

No Satisfaction 221 39.366 F 20 3h28’51” TNI 525718

Sharable Classes 50 2 F 10 0h51’34” TNI 526194

Prof. Displac. 20680 0.338 F 25 2h04’53” TL 525697

Prof. Sessions/Days 1972 0.304 F 25 1h00’43” TL 525447

Prof. Gaps 15499.5 4.368 F 35 1h03’15” TL 525715

Virtual No Satisfaction 63.0024 0 T 0 0h0’0” NNP 24537

Similarly, tables 5.6 and 5.7 register the evolution of all goals after

each step of the solver. Each line corresponds chronologically to a different

solver step focusing on a single goal. Columns 3 to 7 identify all goals of

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 93

the problem: “Missing Credits” indicates the number of credits that was not

satisfied; “Sections” indicates the number of sections used to satisfy demands

of sharable courses; “Displac.” is the amount of time spent for professors

displacements; “Sessions/Days” is the sum of days and days sessions that were

assigned to all professors; “ProfGaps” is the amount of idle time in professors

timetables, considering the concept of professor gap explained in Section 2.2.2.

Columns are ordered according to goals relevance. We draw attention to the

fact that for every pair of goals {g1, g2} where g1 is more important than g2,

g1 can never be worsened (in relation to the value achieved at its minimization

step) in order to g2 to get better.

Table 5.6: Goals evaluation for each step for scenario B1 solved using goal
programming, polishing approach and strong professor priority

Phase Step
Feature to minimize

Missing Credits Sections Displac. Sessions/Days ProfGaps

1st-p

No Satisfaction 34 9 14810 730 139789

Sharable Classes 34 6 11920 730 139789

Prof. Displacement 33 6 4830 725 139789

Prof. Sessions/Days 34 6 4830 695 139784

Prof. Gaps 33 6 4830 695 300

2nd-p

No Satisfaction 294 126 50840 3152 630256

Sharable Classes 294 73 41850 3133 630256

Prof. Displacement 294 73 25780 3099 630256

Prof. Sessions/Days 294 73 25760 2616 630239

Prof. Gaps 294 73 25700 2616 22837.7

Virtual No Satisfaction 4 80 34310 3311 518148

In many situations there is a trade-off between the different goals. For

example, minimizing professor’s teaching days could cause an increase of gaps

in professor’s timetable. By using preemptive goal programming, this issue is

eliminated. But that is definitely not a rule — the opposite can also happen.

Trying to minimize professors displacements generally implies more compact

timetables, which can result in more possibilities of satisfying demands. Such

“mutual cooperation” can be easily verified in Table 5.6, where, for example,

minimizing professors displacements generated a reduction of 1 non-satisfied

credit in phase 1st-p.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 94

Table 5.7: Goals evaluation for each step for round 1 of scenario A solved
using goal programming, polishing approach and professor priority off

Phase Step
Feature to minimize

Missing Credits Sections Displac. Sessions/Days ProfGaps

Real

No Satisfaction 221 75 32220 2193 441413

Sharable Classes 221 50 31140 2189 441413

Prof. Displacement 221 50 20680 2177 441413

Prof. Sessions/Days 221 50 20670 1972 441392

Prof. Gaps 221 50 20650 1972 15499.5

Virtual No Satisfaction 63 51 21390 1972 318101

By evaluating the solver performance when using goal programming,

it is possible to see clearly how symmetric is the problem. Symmetry in

mathematical programming is when two distinct feasible solutions are equality

good (or bad), that is, have the same objective function value. For example,

in Table 5.7 we see that there are at least 5 different solutions for scenario A

with 221 non-satisfied credits, since for every step of the real resource phase

some specific goal was improved. Symmetry is reduced whenever a new goal

is introduced, which generally also means refinement of solution quality. On

the other hand, introducing a new goal increases run time whether solving the

problem with preemptive goal programming (because a new step is added)

and disturbs the objective function whether solving the problem with a multi-

objective function.

5.4.3
Solution quality

Evaluating quality of a final solution is not a trivial task, specially

because there are multiple and conflicting goals involved. Often analyzing and

understanding solutions require a deeper analysis of the problem data itself.

Following several solution quality indicators are listed and detailed for the

conducted experiments.

Each table, from 5.8 to 5.13, corresponds to a different scenario and

contains the average values calculated from results of the 5 rounds performed

per approaches combination (results for all experiments can be found in

Appendix B). The first column contains the solution features that are going

to be evaluated, while the other columns represent different approaches used

to solve the scenario. For identifying the approaches, GP and NGP mean

respectively preemptive and non-preemptive goal programming, Pol1 and Pol0

mean usage and no usage of the polishing method, and PP0 means professors

priorities off. The first displayed feature is the total number of idle time

slots in professors timetables that are classified as gaps (see section 2.2.2);

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 95

then similarly the total number of idle time slots in professors timetables

classified as gaps, ignoring those gaps which include any professor displacement

between blocks; and the total number of displacements between distant blocks

in professors timetables. Following, the total number of professors assigned

to classes is displayed and also divided between real and virtual professors.

Analogously, the total number of credits assigned to professors are informed

with their respective division between real and virtual teaching resource. Then

the total number of satisfied courses sections is exhibited, also specifying the

real and virtual sections. Lastly are displayed the percentage of credits that

was satisfied, the number of satisfied students-demand, and the number of

non-satisfied students-demand.

Table 5.8: Average solution quality for scenario A solved with different
approaches

Features
Approaches

GP-Pol1-PP0 GP-Pol0-PP0 NGP-Pol1-PP0 NGP-Pol0-PP0

Prof Gaps 350.4 0.2 384.2 239.2

Prof Gaps ign. displac 184 0.2 230.6 231.6

Prof long displac 53.4 0 43.2 1

Used professors 376.8 94.8 374.8 96.2

Real professors 277 88 277 89

Virtual professors 99.8 6.8 97.8 7.2

Credits assigned to prof 5584.8 453.6 5595 272

↪→ to real prof 5408.2 431.6 5404.8 254.6

↪→ to virtual prof 176.6 22 190.2 17.4

Courses sections 5467.4 446.8 5470 266

↪→ with real prof 5292.2 424.8 5281.2 248.6

↪→ with virtual prof 175.2 22 188.8 17.4

% of satisfied credits 98.972 7.82 98.724 4.688

Satisfied stud-dem 5554 446.8 5539.6 266

Non-satisfied stud-dem 59 5166.2 73.4 5347

Total Run Time 9h25’06” 10h12’13” 4h00’35” 8h17’57”

Just a brief glimpse at Table 5.8 is enough to conclude that the

usage of the polishing method is essential. For experiments with preemptive

goal programming (columns GP-Pol1-PP0 and GP-Pol0-PP0), 98.972% of

demanded credits were satisfied when using the polishing method against

7.82% of satisfied demanded credits without such method, with this last

approach taking even longer then the first. On the other hand, comparison of

the usage of preemptive (GP) and non-preemptive goal programming (NGP) is

not so obvious. What is clear and actually expected, based on values introduced

by Table 5.2, is that GP usually takes longer than NGP. Solutions obtained

with GP are better than with NGP, both in terms of satisfied credits, of number

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 96

of course sections, of credits assigned to virtual teaching staff and of gaps in

real professors timetables, at the expense of longer run time.

Table 5.9: Average solution quality for scenario B1 solved with different
approaches

Features
Approaches

GP-Pol1-PP0 GP-Pol0-PP0 NGP-Pol1-PP0 NGP-Pol0-PP0

Prof Gaps 509 0 476 0

Prof Gaps ign. displac 360.2 0 341.8 0

Prof long displac 127.6 0 104.6 0

Used professors 663.8 0 680.2 0

Real professors 471 0 471 0

Virtual professors 192.8 0 209.2 0

Credits assigned to prof 9268.6 0 9310.4 0

↪→ to real prof 8862.2 0 8852.4 0

↪→ to virtual prof 406.4 0 458 0

Courses sections 9027.6 0 9062.4 0

↪→ with real prof 8625.6 0 8608.4 0

↪→ with virtual prof 402 0 454 0

% of satisfied credits 99.978 0 99.978 0

Satisfied stud-dem 9181.8 0 9181.8 0

Non-satisfied stud-dem 1.2 9183 1.2 9183

Total Run Time 10h08’59” 9h07’20” 5h04’23” 8h35’50”

Again the polishing method was essential for scenario B1. We see in

Table 5.9 that the satisfied demand was the same in GP-Pol1-PP0 and NGP-

Pol1-PP0, but the second one resulted in more courses sections (that is, more

credits to be paid to professors, which is cost to the institution) and more

credits assigned to virtual professors. Approach GP-Pol1-PP0, in turn, spent

twice the run time of NGP-Pol1-PP0, which might not be a worth paying price.

Besides, solution of NGP-Pol1-PP0 has less professors long displacements.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 97

Table 5.10: Average solution quality for scenario B2 solved with different
approaches

Features
Approaches

GP-Pol1-PP0 GP-Pol0-PP0 NGP-Pol1-PP0 NGP-Pol0-PP0

Prof Gaps 440.4 0 502.8 0

Prof Gaps ign. displac 341.4 0 388.8 0

Prof long displac 83.2 0 77.8 0

Used professors 638.6 0 653 0

Real professors 471 0 469.8 0

Virtual professors 167.6 0 183.2 0

Credits assigned to prof 9155.6 0 9199.4 0

↪→ to real prof 8843.4 0 8828.6 0

↪→ to virtual prof 312.2 0 370.8 0

Courses sections 8914.6 0 8950 0

↪→ with real prof 8607.6 0 8584.2 0

↪→ with virtual prof 307 0 365.8 0

% of satisfied credits 98.792 0 98.804 0

Satisfied stud-dem 9069.4 0 9070.4 0

Non-satisfied stud-dem 113.6 9183 112.6 9183

Total Run Time 9h29’41” 8h41’38” 4h52’51” 8h25’15”

Since scenarios B1 and B2 are just variations of the same actual problem,

results in Table 5.9 are quite similar to results in Table 5.10. For scenario B2,

solution quality for GP-Pol1-PP0 is better than for NGP-Pol1-PP0. Although

satisfied demand was a little bit higher in NGP-Pol1-PP0, it used considerably

more credits assigned to virtual professors, with the difference higher than the

difference of satisfied demand. On the other hand, GP-Pol1-PP0 took almost

double the execution time.

We see that results of scenario B1 had more credits assigned to real

professors than B2. This is expected when we think that B1 is more flexible in

terms of professors availabilities per pair {day, block} than B2, even though

sometimes an increase in feasible solution space can also render it harder to

search for good solutions.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 98

Table 5.11: Average solution quality for scenario C solved with different
approaches

Features
Approaches

GP-Pol1-PP0 GP-Pol0-PP0 NGP-Pol1-PP0 NGP-Pol0-PP0

Prof Gaps 97.2 0 205.8 0

Prof Gaps ign. displac 86.8 0 192.4 0

Prof long displac 14.6 0 13.2 0

Used professors 260.2 0 258.8 0

Real professors 243 0 243 0

Virtual professors 17.2 0 15.8 0

Credits assigned to prof 2646 0 2657 0

↪→ to real prof 2620.2 0 2630.6 0

↪→ to virtual prof 25.8 0 26.4 0

Courses sections 2584 0 2591.6 0

↪→ with real prof 2558.2 0 2565.4 0

↪→ with virtual prof 25.8 0 26.2 0

% of satisfied credits 99.93 0 99.93 0

Satisfied stud-dem 2624 0 2624 0

Non-satisfied stud-dem 1 2625 1 2625

Total Run Time 5h47’31” 8h07’59” 2h23’09” 8h08’21”

Analysis of solutions for scenario C is similar to the one for B1. Again

the polishing method was essential. We see at Table 5.11 that the satisfied

demand was the same in GP-Pol1-PP0 and NGP-Pol1-PP0, but the second one

resulted in more credits assigned to virtual professor, more courses sections and

much more gaps in real professors timetables. The number of professors long

displacements was higher in GP-Pol1-PP0, but it was possibly unavoidable,

since it uses less courses sections to satisfy the same demand. Approach NGP-

Pol1-PP0, in turn, spent less than half the run time of GP-Pol1-PP0.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 99

Table 5.12: Average solution quality for scenario D solved with different
approaches

Features
Approaches

GP-Pol1-PP0 GP-Pol0-PP0 NGP-Pol1-PP0 NGP-Pol0-PP0

Prof Gaps 22.4 42.8 27 36.4

Prof Gaps ign. displac 16.6 38.4 23.6 30.4

Prof long displac 0 0 0 0

Used professors 69.4 68.2 67.2 68.8

Real professors 58 58 58 57.8

Virtual professors 11.4 10.2 9.2 11

Credits assigned to prof 648.2 648.8 648.6 649.4

↪→ to real prof 629.8 630.6 631 626

↪→ to virtual prof 18.4 18.2 17.6 23.4

Courses sections 648.2 648.8 648.6 649.4

↪→ with real prof 629.8 630.6 631 626

↪→ with virtual prof 18.4 18.2 17.6 23.4

% of satisfied credits 99.54 99.66 99.63 99.752

Satisfied stud-dem 650 650.8 650.6 651.4

Non-satisfied stud-dem 3 2.2 2.4 1.6

Total Run Time 4h42’21” 4h38’26” 1h07’58” 2h14’24”

Now, for the first time, the polishing method was not that essential. We

see at Table 5.12 that satisfied demand was almost the same for all approaches

and the number of credits assigned to virtual professor was significantly

different only in NGP-Pol0-PP0. Although the highest satisfied demand was

in NGP-Pol0-PP0, it is clear that such satisfaction was achieved by using

virtual professors, since 23.4 credits were assigned to virtual professors against

17.6, 18.2 and 18.4 credits of the others approaches. Also, in terms of gaps

in professors timetables it had a bad result, even using less credits assigned

to real professors. The worst approach was then undoubtedly NGP-Pol0-PP0.

Comparison of solutions of the others approaches is not so obvious. Still, it

seems that NGP-Pol1-PP0 had the best performance. Despite having satisfied

a little bit less credits than GP-Pol0-PP0, it used the lowest number of

credits assigned to virtual professors, reasonable number of gaps in professors

timetables and had by far the lowest execution time. Average solution of GP-

Pol1-PP0 had less gaps in professors timetables, but that is expected, since it

had also less credits assigned to real professors. Average solution of GP-Pol0-

PP0 had the greatest number of satisfied credits and, possibly as a consequence,

assigned a little bit more credits to virtual professors, but the number of time

slots in gaps in professors timetables was much higher than expected and it

took four times longer than NGP-Pol1-PP0.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 100

Table 5.13: Average solution quality for scenario E solved with different
approaches

Features
Approaches

GP-Pol1-PP0 GP-Pol0-PP0 NGP-Pol1-PP0 NGP-Pol0-PP0

Prof Gaps 0 0 0.4 9.8

Prof Gaps ign. displac 0 0 0.4 9

Prof long displac 0 0 0 0

Used professors 35 35 35 35

Real professors 35 35 35 35

Virtual professors 0 0 0 0

Credits assigned to prof 434 434 434.6 435

↪→ to real prof 434 434 434.6 435

↪→ to virtual prof 0 0 0 0

Courses sections 434 434 434.6 435

↪→ with real prof 434 434 434.6 435

↪→ with virtual prof 0 0 0 0

% of satisfied credits 100 100 100 100

Satisfied stud-dem 443 443 443 443

Non-satisfied stud-dem 0 0 0 0

Total Run Time 0h34’48” 0h39’51” 1h09’22” 1h41’28”

For scenario E, the smallest one, we see in Table 5.13 that approaches

GP-Pol1-PP0 and GP-Pol0-PP0 are equality good in terms of solution quality,

but for the first time GP-Pol1-PP0 was faster. Approach NGP-Pol1-PP0 found

a solution slightly worse and took a bit longer (twice the time spent by GP-

Pol1-PP0), while approach NGP-Pol0-PP0 was again the worst one, achieving

a solution with more credits to be paid by the institution and more gaps in

professors timetables, and taking much longer than the others.

Experiments have shown clearly that when size of scenarios increases, the

polishing method becomes fundamental for finding a good solution (actually,

even any solution). For smaller scenarios the solver was able, without the

polishing, to find reasonable solutions, but still in these cases the polishing has

also proved to work better than the straight optimization.

In contrast, results for preemptive and non-preemptive goal programming

are more questionable. The preemptive goal programming (GP) has the

advantage of having a clean objective function at each step, which helps

convergence while searching for good solutions. We can easily verify it in

almost all experiments exhibited — compare GP-Pol0-PP0 and NGP-Pol0-

PP0 for scenario E, or GP-Pol0-PP0 and NGP-Pol0-PP0 for scenario D, or

GP-Pol1-PP0 and NGP-Pol1-PP0 for scenario C, and so on. For the smaller

scenario, E, the best approach was to use both the polishing method and GP,

while for scenario D the best was to use the polishing method with NGP. For

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 5. Computational Experiments 101

bigger scenarios, although GP has generated better solutions than NGP, the

difference was not big, while the run time was most times much bigger.

What it is clear is that both the polishing method and the preemptive

goal programming assists somehow the MIP-solver in the search for the best

solution. Using them simultaneously is not always the best option, but the

usage of at least one of them was in all cases advantageous.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

6
Conclusions

This dissertation was about timetabling in the school environment. In

the school timetabling problem, students are previously grouped into classes

and each class is to be assigned to a set of courses. Every course must in turn

have its lessons scheduled over the week and assigned to a classroom and a

professor. For an actual and applied purpose, besides mandatory operational

constraints, such as avoiding resources overbooking, it is essential to consider

several solution quality constraints, which can be related to institutional,

pedagogical and personal needs.

The most relevant knowledge acquired through experiences lived dur-

ing development of the Brazilian commercial timetabling software TRIEDA

were registered. The system is based on a “demand-drive” philosophy where

students previously ask for courses, and having knowledge of the complete in-

stitution structure and available resources, the aim is to provide a complete

and feasible solution that maximizes the number of satisfied requests while

respecting a large set of didactic-pedagogical requirements. For the school en-

vironment, some didactic-pedagogical requirements together with professors

satisfaction are usually the most important issues.

Because TRIEDA is a commercial software, it has been developed to be

as flexible as possible. Furthermore, this gives this work a very practical aspect,

in contrast to some too theoretical researches.

For practical timetabling, obtaining coherent and correct data is a

particular important and sensitive issue. It is extremely important that data

collection phase of an automating process has a deep involvement of all of

those who usually operate in the traditional manual process. Any inaccuracy

of data can result in a bad or even non-deployable solution.

Automating people assignments is different from automating other pro-

cess — the optimization factor is definitely not more important than people

satisfaction. Only keeping this in mind it is possible to obtain an actual deploy-

able solution. Practical course timetabling is actually more politics than graph

theory. Professors’ availabilities and preferences issue should not be under-

estimated. The primary design goal is not necessarily finding a true optimal

solution, but to assist academic timetablers with the problem of building a

better timetable in an efficient way.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 6. Conclusions 103

An integer linear programming formulation together with some strategies

for helping the convergence of the searching process on the best solution were

developed for solving the problem. Several computational experiments were

conducted using real scenarios of four Brazilian high schools, so that the

different approaches could be evaluated.

6.1
Best approaches

Next, general observations and conclusions regarding to behavior and re-

sults of the different strategies used for solving the Brazilian school timetabling

problem are compiled.

6.1.1
Goal Programming

With regard to the objective function, an alternative approach was to

use preemptive goal programming (GP), where there is a priority line for the

different goals. According to the institution preferences, one optimizes the

problem in a sequence of steps, where each step is responsible for a goal, from

the most to the least important. For each step a different and specific objective

function is used and the feasible solution space is subject to features of the

best solution found at the previous step. In contrast, a traditional approach

using nonpreemptive goal programming (NGP) (multi-objective function) was

also tested and results compared.

In many situations there is a trade-off between the different goals. For

example, minimizing professor’s teaching days could cause an increase of gaps

in professor’s timetable. By using preemptive goal programming, this issue is

eliminated. But that is definitely not a rule — the opposite can also happen.

Trying to minimize professors displacements generally implies more compact

timetables, which can result in more possibilities of satisfying demands.

Results for GP and NGP were questionable. The preemptive goal pro-

gramming has the advantage of having a clean objective function at each step,

which helps convergence while searching for good solutions, and of not de-

pending on subjective choice of weights for variables in the objective function.

For small scenarios, specially without the polishing method, GP has shown to

make a great difference if compared to NGP. For larger scenarios, although

GP has generated better solutions than NGP, the difference was not big, while

the run time was most times much bigger.

Thus, considering problems to which there is a clear priority line, con-

clusion was that, when run time is not an issue, preemptive goal programming

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 6. Conclusions 104

is more reliable and robust. On the other hand, if losing a little bit of solution

quality is a worth paying price for reducing run time, then especially for big

scenarios a nonpreemptive goal programming may be recommended.

6.1.2
Phases

In case of allowing usage of virtual resources and/or considering profes-

sors priorities, a split of the problem into some phases was proposed.

The first division concerned to virtual resources. Originally, allocation of

real and virtual resources was decided simultaneously in the same model, by

assigning a high penalty for using a virtual resource (in case of multi-objective

function) or by adding a new step to minimize virtual resource usage just after

maximization of satisfied demand (in case of preemptive goal programming).

Such initial approach was necessary due to constraints for preventing idle

time slots in students timetables, as explained in Section 4.1. From the

moment these constraints are no longer necessary, because students demands

fit perfectly their available timetables, we are free to consider virtual resources

for those non-satisfied demands only after all real resources were allocated.

This partition of the problem led to better results, both in terms of solution

quality and of run time. Real resource phase became leaner and meaner, while

virtual resource phase is an easy problem and, although it is still solved by an

integer linear program, could even be solved by an post-processing algorithm.

The second division referred to professors priorities and actually only

makes sense to be used whether the real and virtual resources division is active.

Considering a line of reasoning similar to the preemptive goal programming

one, if 1st-priority professors strictly precede 2nd-priority professors, then an-

other split can be performed to ensure that assignments for 2nd-priority profes-

sors never disturb quality of assignments for 1st-priority professors. Undoubt-

edly, experiments have shown that the drawback of this approach, especially

for big scenarios when merged with the preemptive goal programming, is a

significantly increase of run time, which was expected though, since the solver

basically runs twice. In case run time is an issue and/or there is not a strict

precedence of professors priorities, considering professors priorities simply by

differentiating their weights in objective function may be more advantageous.

6.1.3
Polishing method

Regarding the polishing method, experiments have shown clearly that as

the size of scenarios increases, the polishing becomes fundamental for finding

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 6. Conclusions 105

a good solution (actually, even any solution). For large scenarios without the

polishing, Gurobi MIP-solver either could not converge to any integer feasible

solution in Branch-and-Bound phase or after hours reached time limit even

before finishing root relaxation. For smaller scenarios the solver was able,

without the polishing, to find reasonable solutions, but still in these cases

the polishing has also proved to work better than the “straight” optimization.

6.1.4
Hard vs soft constraints

Especially by evaluating the solver performance when using goal pro-

gramming it was possible to see clearly how symmetric is the problem. Sym-

metry is reduced whenever a new goal is introduced, which generally also

means refinement of solution quality. On the other hand, introducing a new

goal increases run time whether solving the problem with preemptive goal pro-

gramming (because a new step is added) and disturbs the objective function

whether solving the problem with a multi-objective function. It follows that,

whenever some potential goal is not too restrictive, it may worth to add it to

the formulation as a hard constraint instead as a goal in the objective function

with its corresponding soft constraint. This has proved to be true especially

for large scenarios, where solution space is huge.

Some constraints proposed in this work concerning to compactness of

professors timetables were firstly introduced after experiments have produced

solutions with poor quality regarding to displacement of professors between

blocks and to distribution of their assignments along the week. Originally

they were considered as soft constraints, because in fact their violation still

produces, generally, operable solutions. Disturbing the objective function

though have proved to be more damaging and less efficient than introducing

new hard constraints. Examples of such constraints are equations 3.33, 3.31,

3.33, 3.34 and 3.42.

6.1.5
Fixing partial solution over phases

Another relevant observation concerns to which is the best way to ensure

the achieved quality of partial solutions as different phases and steps evolve.

Suppose the goal Minimize
∑
i

ci · xi subject to a set of constraints. After

optimizing it and obtaining a solution x∗, where g =
∑
i

ci · x∗i, there are two

intuitive ways to guarantee that solutions of next eventual steps do not get a

value worse than g for this particular goal:

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 6. Conclusions 106

1. to add a new constraint
∑
i

ci · xi ≤ g, or

2. to tighten bounds of all variables involved with this goal according to

their values in x∗.

Adding a new constraint offers the advantage of not eliminating solutions that

are symmetric to x∗ and which could be better than x∗ concerning to further

goals. On the other hand, fixing part of the current solution by tightening

bounds of variables involved in the goal can make the next optimization steps

easier to solve, since solution space is smaller than in the first case. This

leads us to an issue similar to the “Hard vs soft constraints” one, discussed

previously. Is tightening of variables bounds too restrictive? Of course it

depends on how much these variables define the whole problem. Still, after

some experiments, we again realized that in some situations fixing partial

solutions helps optimization convergence on next steps more than restricts

the solution space. Fixation does not necessarily define how an assignment is

made, but just that it exists.

In the end, the first option was used to ensure solution quality between

steps (minimizing non-satisfied demand, minimizing professor displacement,

etc), and the second option was used to ensure solution quality between phases

(1st and 2nd-priority professors phases and virtual resources phases).

6.2
Future Work

There is a common situation in schools that was not handle at this work.

It is possible that for some few subjects a class is split. Usually it is the case

of language courses, where the student have to choose for a foreign language

among some options. In this work we handle situations where different classes

are merged, but the opposite case is still to be done.

Also, for those schools which provided the test scenarios, credits split

rules for courses were not important, that is, courses did not have a particular

way to distribute their credits over the week. Usually this is an important re-

quirement for higher education courses, but not for high schools. Consequently,

credits split rules were not used in computational experiments documented

here.

Finally, avoidance of gaps in student’s timetable was obtained implicitly,

as explained in Section 4.1, thanks to a fair correspondence between student

demands and its available timetable. In case this correspondence fails, partition

of the problem into real and virtual resources phases can compromise real

resource assignments. On the other hand, deciding simultaneously virtual and

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 6. Conclusions 107

real resources assignments makes the problem considerably more difficult and

brings us new challenges.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

7
Bibliography

ASC Timetables. [S.l.]. Available at http://www.asctimetables.com/. 1.6

ASRATIAN, A. S.; WERRA, D. A generalized class-teacher model for some

timetabling problems. European journal of operational research, vol. 143, p.

531–542, 2002. 1.1

BENCHMARKING project for (high) school timetabling. [S.l.]. Available at http:

//www.utwente.nl/ctit/hstt/. A, A.1

BENLI, O. S.; BOTSALI, A. R. Decision Support System for Scheduling

Courses at Bilkent University. [S.l.], 2004. Available at http://www.csulb.

edu/~obenli/DSS/info.html. 1.3

BIRBAS, T.; DASKALAKI, S.; HOUSOS, E. Timetabling for greek high schools.

Journal of the Operational Research Society, vol. 48, p. 1191–1200, 1997.

1.1, 1.4

BIRBAS, T.; DASKALAKI, S.; HOUSOS, E. School timetabling for quality student

and teacher schedules. Kluwer Academic Publishers, vol. 12, p. 177–197, 2009. 1.1,

1.4

CARTER, M. W. A comprehensive course timetabling and student scheduling

system at the university of waterloo. In BURKE, E.; ERBEN, W. (Ed.). Practice

and Theory of Automated Timetabling III. [S.l.]: Springer Verlag LNCS, 2001.

p. 64–82. 1.1, 1.3, 1.5, 2.1.1

CURRICULUM-BASED Course Timetabling Project. [S.l.]. Available at http:

//tabu.diegm.uniud.it/ctt/. 1.6

DASKALAKI, S.; BIRBAS, T. Efficient solutions for a university timetabling prob-

lem through integer programming. European journal of operational research,

vol. 160, p. 106–120, 2005. 1.1

DOCUMENTATION for constraints in XHSTT format. [S.l.]. Available

at http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&

part=constraints. A.1.5

DOCUMENTATION for XHSTT format. [S.l.]. Available at http://sydney.edu.

au/engineering/it/~jeff/hseval.cgi?op=spec. A.1

http://www.asctimetables.com/
http://www.utwente.nl/ctit/hstt/
http://www.utwente.nl/ctit/hstt/
http://www.csulb.edu/~obenli/DSS/info.html
http://www.csulb.edu/~obenli/DSS/info.html
http://tabu.diegm.uniud.it/ctt/
http://tabu.diegm.uniud.it/ctt/
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec
DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 7. Bibliography 109

EVENT MAP. [S.l.], 2014. Available at http://www.eventmap-uk.com/. 1.6

GUENALAY, Y.; SAHIN, T. A decision support system for the university

timetabling problem with instructor preferences. Asian Journal of Information

Technology, vol. 12, p. 1479–1484, 2006. 1.1, 1.3, 1.5, 4.2.1

GUROBI. Gurobi Optimizer. [S.l.]. Available at http://www.gurobi.com/.

3.1.5

ILOG, I. IBM ILOG CPLEX. [S.l.]. Available at http://www-03.ibm.com/

software/products/en/category/decision-optimization. 3.1.5

INTERNATIONAL Timetabling Competition (ITC). [S.l.], 2007. Available at

http://www.cs.qub.ac.uk/itc2007/. 1.6

INTERNATIONAL Timetabling Competition (ITC). [S.l.], 2011. Available at

http://www.utwente.nl/ctit/hstt/itc2011/welcome/. 1.6

KASSICIEH, S. K.; BURLESON, D. K.; LIEVANO, R. J. Design and Implemen-

tation of a Decision Support System for Academic Scheduling. [S.l.], 1986.

vol. 11, 57-64 p. 1.3

LLC, U. University Timetabling: Comprehensive Academic Scheduling

Solutions. [S.l.], 2007 – 2014. Available at http://www.unitime.org/. 1.3,

1.6

MARTE, M. Models and algorithms for school timetabling – a constraint-

programming approach. 2002. 1.1

MIMOSA Scheduling Software. [S.l.], 2014. Available at http://www.

mimosasoftware.com/. 1.6

MISTA. Multidisciplinary international scheduling conference: Theory and

Applications. [S.l.]. Available at http://www.schedulingconference.org/.

1.6

MURRAY, K.; MUELLER, T.; RUDOVA, H. Modeling and solution of a complex

university course timetabling problem. In BURKE, E. K.; RUDOVA, H. (Ed.).

Practice and Theory of Automated Timetabling VI. [S.l.]: Springer Berlin

Heidelberg, 2007. p. 189–209. 1.1, 1.3, 1.5

PAPADIMITRIOU, C. H.; STEIGLITZ, K. Combinatorial optimization - algorithms

and complexity. Dover, 1998. 3, 3.1.4

PILLAY, N. An overview of school timetabling research. Patat, 2010. 1.1

http://www.eventmap-uk.com/
http://www.gurobi.com/
http://www-03.ibm.com/software/products/en/category/decision-optimization
http://www-03.ibm.com/software/products/en/category/decision-optimization
http://www.cs.qub.ac.uk/itc2007/
http://www.utwente.nl/ctit/hstt/itc2011/welcome/
http://www.unitime.org/
http://www.mimosasoftware.com/
http://www.mimosasoftware.com/
http://www.schedulingconference.org/
DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Chapter 7. Bibliography 110

PRATICE and Theory on Automated Timetabling. [S.l.]. Available at http:

//www.patatconference.org. 1.6

SANTOS, H. G. et al. Strong bounds with cut and column generation for class-

teacher timetabling. Annals of Operations Research, vol. 194, p. 399–412, 2012.

1.1, 1.4, 3

SCHAERF, A. A survey of automated timetabling. vol. 13, p. 87–127, 1999. 1.1

TRIEDA. [S.l.]. Available at http://www.trieda.com.br/. 1.6

UDINE, I. Research Group at the University of. Research Group on Scheduling

and Timetabling. [S.l.]. Available at http://satt.diegm.uniud.it/home/.

1.6

UNKNOWN. Chapter 13 - Nonlinear Models: Dynamic, Goal, and Nonlin-

ear Programming. [S.l.]. Available at http://www.ams.jhu.edu/~castello/

625.414/Handouts/GoalProg.pdf. 4.2.1

VALOUXIS, C. et al. Decomposing the high school timetable problem. PATAT,

2012. 1.1, 1.4

(WATT), W. group on automated timetabling. Watt – Educational

Timetabling. [S.l.]. Available at http://watt.cs.kuleuven.be/. 1.6

WIKIPEDIA. Education in Brazil. [S.l.]. Available at http://en.wikipedia.

org/wiki/Education_in_Brazil. 1.2

WOLSEY, L. A. Integer programming. Wiley-Interscience, 1998. 3, 3.1.4

http://www.patatconference.org
http://www.patatconference.org
http://www.trieda.com.br/
http://satt.diegm.uniud.it/home/
http://www.ams.jhu.edu/~castello/625.414/Handouts/GoalProg.pdf
http://www.ams.jhu.edu/~castello/625.414/Handouts/GoalProg.pdf
http://watt.cs.kuleuven.be/
http://en.wikipedia.org/wiki/Education_in_Brazil
http://en.wikipedia.org/wiki/Education_in_Brazil
DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

A
Appendix 1

This appendix presents a uniform format, known as XHSTT, developed

by a group of researchers for characterizing data and solution to the high school

timetabling problem. All information provided here to define this format was

extracted from (Benchmarking project for (high) school timetabling), where

more details can be found.

A.1
XHSTT format

As studies in timetabling problems have advanced, emerged the necessity

of a uniform format for managing data, so that researchers could apply their

approaches to the same datasets and compare performances and solutions. For

this reason a group of researchers started a project, reported in the PATAT

conferences of 2008 and 2010, aiming to create a unified format for the school

timetabling problem, which would make possible the exchange of benchmarks.

The format was called XHSTT and has a xml-standard. On the website

(Benchmarking project for (high) school timetabling) there are available

archives and datasets in XHSTT format, an evaluator for instances (by Jeff

Kingston) and solutions in XHSTT, and a classification (by Nelishia Pillay) of

high school timetabling. Latest update reports there are around 50 datasets

available.

Because the format grew out of several years of discussions, it became

quite abstract — its tags have very generic names and its structure is very

flexible. Consequently, it can be difficult in the beginning to understand

XHSTT. Following sections give a short introduction to it. For extensive

documentation we refer to (Documentation for XHSTT format).

A.1.1
General structure

The main structure of a XHSTT file is:

Archives

Instances

Times

Resources

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 112

Events

Constraints

SolutionGroups

Solutions

Reports

The primary goal of XHSTT is to contain datasets for High School

Timetabling. Apart from this, it can contain solutions as well, but the focus

will be on the instance itself.

An instance is one occurrence of the high school timetable problem, for

a particular school in a particular year (or semester, etc.). It contains 4 groups

of items: items related to time, items related to resources, items related to

events, and items related to constraints. The first peculiarity of XHSTT is that

the first 3 groups (<Times>, <Resources>, and <Events>) contain relatively

little information. This means that almost all business logic is carried by the

constraints, which define how these previous groups can interact with each

other. The syntax of an instance is:

Instance Id

MetaData

Times

Resources

Events

Constraints

In XHSTT notation, the placement on the same line indicates that one

category is an attribute of another, indenting indicates that one category is

a child of another, + indicates that the immediately following category is

optional, and * indicates that the immediately following category may appear

zero or more times.

A.1.2
Times

The Times section contains four entities: TimeGroups, Weeks, Days and

Times. A Day or Week is simply a special TimeGroup, which can be added as

a property to a Time. At all other places it is referred to as TimeGroup. The

reason for the existence of Days and Weeks is for displaying only. In the school

timetabling problem only one week exists. As it can be guessed, a TimeGroup

is a set of Times. Times are assumed to be consecutive as given in the instance.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 113

A.1.3
Resources

The Resources section contains three entities: ResourceTypes,

ResourceGroups and Resources. A Resource has exactly one ResourceType.

The ResourceType is introduced for displaying (for example: distinguishes

teachers from students) and for consistency in assigning resources to events

(see the Role section below). ResourceGroups are groups of Resources of the

same ResourceType. Common ResourceTypes are Teacher, Room, Class and

Student.

A.1.4
Events

The Events section contains three entities: EventGroups, Courses and

Events. Courses are special EventGroups. An Event has a property Course.

At all other places Courses are referred to as EventGroup. Obviously, an

EventGroup is simply a set of Events.

The syntax of Event is

Event Id +Color

Name

Duration

+Workload

+Course

+Time

+Resources

+ResourceGroups

+EventGroups

An event can have two interpretations in XHSTT. The first one is that

an Event is a lesson of a fixed Duration. Hence our timetabling problem is

to set a begin Time to events, which implies that the Event is planned to

this Time, and some consecutive Times if the Duration exceeds 1. Since an

Event can have Resources attached to it, these Resources are now busy at

these Times. We meet the 2 basic requirements in timetabling, which are made

explicit as constraint in XHSTT: we need to assign a (begin)Time to each Event

(AssignTimeConstraint) and we have to make sure that Resources are not

planned double (AvoidClashesConstraint).

The other meaning of Event is slightly more complicated: an Event can

represent all lessons with exactly the same properties, i.e. a course section.

These properties are for example the Resources class and teacher. In this case

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 114

the duration is the total Duration required for this class-teacher combination.

So now a part of the planning problem is to divide the instance Event in

solution Events; the solution Events are the lessons in the first interpretation.

To know which interpretation is valid, a dataset with Events of

Durations greater than 1 will contain one or more SplitEventsConstraints,

explaining how the instance event can be divided into solution

events. If these constraints don’t give enough details, one can add

DistributeSplitEventsConstraints to control the number of solution

Events of a certain Duration.

An example of the first interpretation is when SplitEventsConstraint

has MinimumAmount = 1 and MaximumAmount = 1, which means that

the instance Event should lead to exactly 1 solution Event. An example of the

second interpretation is if MinimumAmount = 1 and MaximumAmount =

999, so we can split the instance Event to as many solution Events as we wish,

as long as the sum of Durations of the solution Events is the Duration of the

instance Event (otherwise the solution is marked invalid).

Roles

In the last subsection we described 2 scheduling decisions that are

needed in high school timetabling: creating solution Events from instance

Events, and setting start Times to the solution Events. The third scheduling

decision is the assignment of Resources to Events. To enable this, Roles

are added to Events. Roles are properties of Events, and reappear in the

Constraints AssignResourceConstraint, PreferResourcesConstraint, and

AvoidSplitAssignmentsConstraint. The primary aim of Roles is to describe

what Resource has to be assigned to an Event. Mostly, this Resource is a

room or a teacher. The Role always contains a ResourceType; the Resource

assigned to the Role should be of this ResourceType.

A.1.5
Constraints

Constraints are conditions that should be satisfied whenever it is possible.

In XHSTT, even those conditions which are fundamental to any timetabling

problem have to be explicitly informed, for example prohibition of resources

overbooking. Each constraint has a set of points of application which are

instance entities (such as resources or events). Given a solution, a non-negative

integer cost is associated with each point of application. A non-zero cost for

some point of application indicates that the solution violates the constraint at

that point.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 115

In XHSTT constraints exist in two modes: constraints that are required

(hard constraints) and constraints that are not required (soft constraints).

All constraints can be in either mode. If all required constraints are satisfied,

we call the schedule feasible. Violating required constraints add costs to the

infeasibility value of the solution. The non-required constraints add cost to the

objective value. During scheduling (generating solutions) the primary goal is

minimizing the infeasibility value, and the secondary goal is minimizing the

objective value. Apart from required or not, a constraint also has a weight:

the generated cost increases linearly with the weight.

It is allowed to use constraint of the same type several times. So what

we call a “constraint” in fact is a “constraint type”, that can reappear with

different parameters any number of times.

Many types of constraints are defined, and more may be added in the fu-

ture. The syntax of constraints that currently appear within the Constraints

child category of the Instance category is

Constraints

*AssignResourceConstraint

*AssignTimeConstraint

*SplitEventsConstraint

*DistributeSplitEventsConstraint

*PreferResourcesConstraint

*PreferTimesConstraint

*AvoidSplitAssignmentsConstraint

*SpreadEventsConstraint

*LinkEventsConstraint

*OrderEventsConstraint

*AvoidClashesConstraint

*AvoidUnavailableTimesConstraint

*LimitIdleTimesConstraint

*ClusterBusyTimesConstraint

*LimitBusyTimesConstraint

*LimitWorkloadConstraint

Some properties are common to all constraint types. In general, a

constraint has syntax

AnyConstraint Id

Name

Required

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 116

Weight

CostFunction

AppliesTo

...

where AnyConstraint stands for any of the child categories of

Constraints listed above, and . . . stands for additional child categories which

vary with the constraint type. As usual, the Id attribute is used to reference

the constraint from elsewhere in the file, while the Name child category is used

when printing the constraint in human-readable form.

The evaluation of one constraint at one point of application (that is,

the determination of a single cost) proceeds in two stages. In the first stage,

a non-negative integer deviation is calculated. How this is done depends on

the constraint type. The second stage is common to all constraint types. It is

influenced by the Required, Weight, and CostFunction child categories. All

three have no attributes and no child categories, merely a body. The body

of Required must be either true or false. The body of Weight must be an

integer in the range 0 to 1000 inclusive. The body of CostFunction must

be either “Linear”, “Quadratic” or “Step”. The cost is then calculated by

Cost = Weight·CostFunction(deviation). That is, the cost function is applied

to the deviation, producing an integer which is multiplied by the weight to

obtain the cost.

Instances should be encoded on the understanding that violations of hard

constraints are serious defects, and that solvers aim to find solutions with very

few hard constraint violations. Although the existence of such solutions is not

guaranteed, realistic instances should have them. On the other hand, violations

of soft constraints are normal and expected.

The syntax of the AppliesTo category varies according to each constraint

type and can be related to Events and Resources. Definition for each con-

straint type or further details can be found at (Documentation for constraints

in XHSTT format).

A.2
Converting XHSTT problem into Trieda’s problem

Although there is not an exact correspondence between the XHSTT

format and the one considered in this dissertation, in the sense that both

lack features of the other, an attempt of converting a XHSTT problem into

Trieda’s problem was made.

Table A.1 organizes the correspondence that can be done between

entities and constraints of both problems.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 117

Table A.1: Correspondence of data between XHSTT and Trieda
TRIEDA ←→ XHSTT

Course Section ↔ EventGroup Course

Student (single) ↔ Resource of type Student

Student (class meaning) ↔ Resource of type Class

Professor ↔ Resource of type Teacher

Classroom ↔ Resource of type Room

Calender Timetable ↔ TimeGroups

Shift ↔ TimeGroups

Session of day ↔ TimeGroups

Time slot ↔ Time

Student-Demand ↔ Event +
AssignResourceConstraint

Credits Split Rules ↔ SplitEventsConstraint, Dis-
tributeSplitEventsConstraint
and SpreadEventsConstraint

Capability for teaching courses ↔ Event with pre-assigned teacher,
PreferResourcesConstraint

Professor preference for teaching
courses

↔ PreferResourcesConstraint

Possible classrooms for each
course

↔ Event with pre-assigned room,
PreferResourcesConstraint

Time Availability ↔ Event with pre-assigned time,
PreferTimesConstraint and
AvoidUnavailableTimesConstraint

Compact students timetables ↔ LimitIdleTimesConstraints

Compact professors timetables ↔ LimitIdleTimesConstraints

Minimum and maximum profes-
sor workload

↔ LimitWorkloadConstraint

No time slots overlapping ↔ AvoidClashesConstraint

Minimum nr of credits in profes-
sor’s day

↔ LimitBusyTimesConstraint

Maximum nr of busy days per
professor

↔ ClusterBusyTimesConstraint

One professor for each course sec-
tion

↔ AvoidSplitAssignmentsConstraint

Same classroom for each course
section

↔ AvoidSplitAssignmentsConstraint

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 118

Suppose the following Event:

Event Id

Name

Duration

Course

ResourceGroups

Class

Teacher

Room

This Event gathers together a Course with some Duration and

the resources types Class, Teacher and Room. When linked to the

AssignResourceConstraint, this Event means that the specified Class de-

mands lessons with total Duration of the specified Course with some resource

of type Teacher and with some resource of type Room. In this dissertation, this

is interpreted as a Student-Demand.

There are three ways for setting available times for resources. The most

basic way is to use AvoidUnavailableTimesConstraint to inform which times

are not available for each resource. Another way is to pre-assign a time to an

event, which means that there is actually no time assignment decision to be

made for this event. Lastly, PreferTimesConstraint can be used when some

time slots are preferred to others, although all them are available.

Very similarly, there are two ways for setting courses capabilities for

professors and possible classrooms for each course: pre-assigning respectively

teachers and rooms to events; and using PreferResourcesConstraint to

inform that some resources are preferred to others.

A.3
Suggestions for expansion of XHSTT format

The format XHSTT is still not complete — it has been developed and

improved in the last few years, and there are several requirements that are not

covered yet. Following, some restrictions are suggested to be added to XHSTT.

They are used in this dissertation and have proven themselves essential so that

actual deployable solutions can be found.

A.3.1
Travel time between different blocks

A known requirement that is not considered by the current format is

to handle different and connected blocks (called “campuses” in XHSTT’s

documentation).

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 119

Maybe students and/or teachers have to travel between different blocks.

In these situations, the time necessary for moving between blocks must be

considered, so that a actual solution can be found.

The suggested syntax is:

DisplacementTimeConstraint Id

Name

Required

Weight

CostFunction

AppliesTo

TimeGroups

Its AppliesTo category has syntax

AppliesTo

ResourceTuples

where ResourceTuples has syntax

ResourceTuples

*ResourceTuple

and ResourceTuple has syntax

ResourceTuple

FirstResourceGroup Reference

SecondResourceGroup Reference

MoveResourceGroup Reference

MinSeparation

FirstResourceGroup and SecondResourceGroup contain references to

two resource groups that should be apart by a minimum value when as-

signed to a resource of MoveResourceGroup. The idea is that each block

has a resource group gathering its rooms; then FirstResourceGroup and

SecondResourceGroup identify a pair of blocks such that the minimum dis-

placement time between them is MinSeparation. Each MoveResourceGroup

refers to a group of movable resources, that is, teachers, students or classes.

The syntax of the TimeGroups child category is

TimeGroups

*TimeGroup

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 120

where TimeGroup has syntax

TimeGroup Reference

and references a time group, which may be a Day.

For each resource of MoveResourceGroup, assignments made to resources

of FirstResourceGroup and SecondResourceGroup in the same TimeGroup

should respect a minimum separation MinSeparation (in number of time

slots), so that the movable resource is capable to travel between resources.

Each resource of MoveResourceGroup is said to be one point of appli-

cation. The deviation at one point is the total number of times necessary for

displacement that was violated.

A.3.2
Limited number of blocks in teachers/classes timetables

Another important restriction discussed in this dissertation is to limit

the number of blocks assigned to a movable resource along its day or week.

The suggested syntax is:

MaxNrGroupResourcesThroughTime Id

Name

Required

Weight

CostFunction

AppliesTo

TimeGroups

Its AppliesTo category has syntax

AppliesTo

ResourceTuples

where the syntax of ResourceTuples is

ResourceTuples

*ResourceTuple

and the syntax of ResourceTuple is

ResourceTuple

*ResourceGroup Reference

MoveResourceGroup Reference

NrMaxResourceGroup

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix A. Appendix 1 121

*ResourceGroup is a list that contains references to resource groups

that should be limited by a maximum value when assigned to a resource

of MoveResourceGroup. The idea is that each block has a resource group

gathering its rooms. Each MoveResourceGroup refers to a group of movable

resources, that is, teachers, students or classes. For each movable resource, the

number of different blocks that are assigned to it during some period of time

should not exceed NrMaxResourceGroup.

The syntax of the TimeGroups child category is

TimeGroups

*TimeGroup

where TimeGroup has syntax

TimeGroup Reference

and references a time group, which may be a Day or Week. Each

TimeGroup is a period of time to be considered by the restriction. When consid-

ering a Day, it is possible to require that a movable resource is not assigned to

more than NrMaxResourceGroup blocks in that Day. Analogous restrictions can

be set if one varies the TimeGroup, such as considering Week, MondayMorning,

etc.

Each resource of MoveResourceGroup is one point of application and the

deviation is the sum of extra number of blocks that was used in each constraint.

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

B
Appendix 2

B.1
Solution quality of individual computational experiments

Following are registered the individual results for all computational

experiments performed and used as base for approaches’ analysis at Chapter

5. As previously explained, each scenario was solved with four different

approaches combinations and, due to the random element of the methods,

especially of the polishing, each pair [scenario+approaches combination] was

performed 5 times.

B.1.1
Scenario A

Goal Programming + Polish

Table B.1: Solution quality of tests for scenario A solved with goal
programming, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 318 367 364 345 358

Prof Gaps ign. displac 161 192 189 180 198

Prof long displac 46 56 59 53 53

Used professors 368 380 377 376 383

Real professors 277 277 277 277 277

Virtual professors 91 103 100 99 106

Credits assigned to prof 5582 5585 5594 5585 5578

↪→ to real prof 5430 5390 5419 5409 5393

↪→ to virtual prof 152 195 175 176 185

Courses sections 5465 5467 5476 5468 5461

↪→ with real prof 5314 5274 5303 5293 5277

↪→ with virtual prof 151 193 173 175 184

% of satisfied credits 98.91 98.98 99.14 98.97 98.86

Satisfied stud-dem 5551 5554 5563 5554 5548

Non-satisfied stud-dem 62 59 50 59 65

Total Run Time 9h10’57” 9h44’02” 9h03’34” 9h51’48” 9h15’11”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 123

Goal Programming + No Polish

Table B.2: Solution quality of tests for scenario A solved with goal
programming, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 1 0 0 0 0

Prof Gaps ign. displac 1 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 95 95 92 96 96

Real professors 89 87 86 89 89

Virtual professors 6 8 6 7 7

Credits assigned to prof 446 443 467 456 456

↪→ to real prof 430 413 443 436 436

↪→ to virtual prof 16 30 24 20 20

Courses sections 438 435 461 450 450

↪→ with real prof 422 405 437 430 430

↪→ with virtual prof 16 30 24 20 20

% of satisfied credits 7.69 7.64 8.05 7.86 7.86

Satisfied stud-dem 438 435 461 450 450

Non-satisfied stud-dem 5175 5178 5152 5163 5163

Total Run Time 10h14’18” 10h14’19” 10h12’35” 10h09’47” 10h10’10”

Multi-objective function + Polish

Table B.3: Solution quality of tests for scenario A solved with multi-objective
function, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 397 364 345 400 415

Prof Gaps ign. displac 223 208 197 252 273

Prof long displac 43 54 45 35 39

Used professors 379 381 364 374 376

Real professors 277 277 277 277 277

Virtual professors 102 104 87 97 99

Credits assigned to prof 5598 5582 5591 5608 5596

↪→ to real prof 5401 5395 5420 5409 5399

↪→ to virtual prof 197 187 171 199 197

Courses sections 5471 5460 5467 5481 5471

↪→ with real prof 5275 5275 5297 5283 5276

↪→ with virtual prof 196 185 170 198 195

% of satisfied credits 98.67 98.64 98.66 98.86 98.79

Satisfied stud-dem 5537 5534 5536 5548 5543

Non-satisfied stud-dem 76 79 77 65 70

Total Run Time 2h28’58” 4h39’37” 4h29’10” 4h34’53” 3h50’19”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 124

Multi-objective function + No Polish

Table B.4: Solution quality of tests for scenario A solved with multi-objective
function, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 249 234 244 242 227

Prof Gaps ign. displac 245 229 235 228 221

Prof long displac 0 1 1 2 1

Used professors 96 97 97 96 95

Real professors 88 90 90 89 88

Virtual professors 8 7 7 7 7

Credits assigned to prof 275 271 269 271 274

↪→ to real prof 256 258 254 252 253

↪→ to virtual prof 19 13 15 19 21

Courses sections 269 265 263 265 268

↪→ with real prof 250 252 248 246 247

↪→ with virtual prof 19 13 15 19 21

% of satisfied credits 4.74 4.67 4.64 4.67 4.72

Satisfied stud-dem 269 265 263 265 268

Non-satisfied stud-dem 5344 5348 5350 5348 5345

Total Run Time 8h22’47” 8h19’33” 8h16’13” 8h15’59” 8h15’17”

B.1.2
Scenario B1

Goal Programming + Polish

Table B.5: Solution quality of tests for scenario B1 solved with goal
programming, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 434 497 547 555 512

Prof Gaps ign. displac 290 327 416 406 362

Prof long displac 128 135 124 118 133

Used professors 644 685 667 667 656

Real professors 471 471 471 471 471

Virtual professors 173 214 196 196 185

Credits assigned to prof 9269 9269 9268 9269 9268

↪→ to real prof 8897 8816 8871 8862 8865

↪→ to virtual prof 372 453 397 407 403

Courses sections 9028 9028 9027 9028 9027

↪→ with real prof 8660 8579 8634 8626 8629

↪→ with virtual prof 368 449 393 402 398

% of satisfied credits 99.98 99.98 99.97 99.98 99.98

Satisfied stud-dem 9182 9182 9181 9182 9182

Non-satisfied stud-dem 1 1 2 1 1

Total Run Time 10h08’07” 9h50’38” 10h22’00” 10h14’27” 10h09’44”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 125

Goal Programming + No Polish

Table B.6: Solution quality of tests for scenario B1 solved with goal
programming, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 0 0 0 0

Prof Gaps ign. displac 0 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 0 0 0 0 0

Real professors 0 0 0 0 0

Virtual professors 0 0 0 0 0

Credits assigned to prof 0 0 0 0 0

↪→ to real prof 0 0 0 0 0

↪→ to virtual prof 0 0 0 0 0

Courses sections 0 0 0 0 0

↪→ with real prof 0 0 0 0 0

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 0 0 0 0 0

Satisfied stud-dem 0 0 0 0 0

Non-satisfied stud-dem 9183 9183 9183 9183 9183

Total Run Time 9h09’03” 9h01’10” 9h12’00” 9h08’50” 9h05’37”

Multi-objective function + Polish

Table B.7: Solution quality of tests for scenario B1 solved with
multi-objective function, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 520 493 435 440 492

Prof Gaps ign. displac 386 368 317 299 339

Prof long displac 115 92 101 108 107

Used professors 662 686 685 687 681

Real professors 471 471 471 471 471

Virtual professors 191 215 214 216 210

Credits assigned to prof 9306 9307 9311 9317 9311

↪→ to real prof 8903 8838 8846 8830 8845

↪→ to virtual prof 403 469 465 487 466

Courses sections 9058 9060 9061 9070 9063

↪→ with real prof 8659 8595 8600 8587 8601

↪→ with virtual prof 399 465 461 483 462

% of satisfied credits 99.98 99.98 99.97 99.98 99.98

Satisfied stud-dem 9182 9182 9181 9182 9182

Non-satisfied stud-dem 1 1 2 1 1

Total Run Time 4h57’04” 5h06’12” 5h07’31” 5h08’09” 5h03’00”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 126

Multi-objective function + No Polish

Table B.8: Solution quality of tests for scenario B1 solved with goal
programming, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 0 0 0 0

Prof Gaps ign. displac 0 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 0 0 0 0 0

Real professors 0 0 0 0 0

Virtual professors 0 0 0 0 0

Credits assigned to prof 0 0 0 0 0

↪→ to real prof 0 0 0 0 0

↪→ to virtual prof 0 0 0 0 0

Courses sections 0 0 0 0 0

↪→ with real prof 0 0 0 0 0

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 0 0 0 0 0

Satisfied stud-dem 0 0 0 0 0

Non-satisfied stud-dem 9183 9183 9183 9183 9183

Total Run Time 8h36’30” 8h37’10” 8h41’06” 8h30’12” 8h34’13”

B.1.3
Scenario B2

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 127

Goal Programming + Polish

Table B.9: Solution quality of tests for scenario B2 solved with goal
programming, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 391 493 383 455 480

Prof Gaps ign. displac 301 392 279 355 380

Prof long displac 80 87 89 75 85

Used professors 636 639 637 644 637

Real professors 471 471 471 471 471

Virtual professors 165 168 166 173 166

Credits assigned to prof 9159 9149 9157 9160 9153

↪→ to real prof 8834 8845 8858 8841 8839

↪→ to virtual prof 325 304 299 319 314

Courses sections 8918 8908 8916 8919 8912

↪→ with real prof 8599 8610 8621 8604 8604

↪→ with virtual prof 319 298 295 315 308

% of satisfied credits 98.83 98.72 98.81 98.83 98.77

Satisfied stud-dem 9073 9063 9071 9073 9067

Non-satisfied stud-dem 110 120 112 110 116

Total Run Time 8h44’26” 9h22’32” 9h25’12” 10h19’32” 9h36’43”

Goal Programming + No Polish

Table B.10: Solution quality of tests for scenario B2 solved with goal
programming, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 0 0 0 0

Prof Gaps ign. displac 0 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 0 0 0 0 0

Real professors 0 0 0 0 0

Virtual professors 0 0 0 0 0

Credits assigned to prof 0 0 0 0 0

↪→ to real prof 0 0 0 0 0

↪→ to virtual prof 0 0 0 0 0

Courses sections 0 0 0 0 0

↪→ with real prof 0 0 0 0 0

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 0 0 0 0 0

Satisfied stud-dem 0 0 0 0 0

Non-satisfied stud-dem 9183 9183 9183 9183 9183

Total Run Time 8h41’38” 8h42’27” 8h30’28” 8h50’44” 8h51’01”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 128

Multi-objective function + Polish

Table B.11: Solution quality of tests for scenario B2 solved with
multi-objective function, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 479 511 521 448 555

Prof Gaps ign. displac 388 380 400 343 433

Prof long displac 76 82 82 75 74

Used professors 655 645 649 659 657

Real professors 470 470 469 470 470

Virtual professors 185 175 180 189 187

Credits assigned to prof 9205 9196 9180 9213 9203

↪→ to real prof 8838 8816 8821 8850 8818

↪→ to virtual prof 367 380 359 363 385

Courses sections 8955 8947 8930 8963 8955

↪→ with real prof 8592 8571 8577 8606 8575

↪→ with virtual prof 363 376 353 357 380

% of satisfied credits 98.89 98.75 98.66 98.93 98.79

Satisfied stud-dem 9079 9065 9057 9082 9069

Non-satisfied stud-dem 104 118 126 101 114

Total Run Time 4h45’30” 5h00’54” 4h50’33” 4h47’59” 4h59’23”

Multi-objective function + No Polish

Table B.12: Solution quality of tests for scenario B2 solved with
multi-objective function, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 0 0 0 0

Prof Gaps ign. displac 0 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 0 0 0 0 0

Real professors 0 0 0 0 0

Virtual professors 0 0 0 0 0

Credits assigned to prof 0 0 0 0 0

↪→ to real prof 0 0 0 0 0

↪→ to virtual prof 0 0 0 0 0

Courses sections 0 0 0 0 0

↪→ with real prof 0 0 0 0 0

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 0 0 0 0 0

Satisfied stud-dem 0 0 0 0 0

Non-satisfied stud-dem 9183 9183 9183 9183 9183

Total Run Time 8h25’15” 8h21’04” 8h20’44” 8h22’09” 8h24’56”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 129

B.1.4
Scenario C

Goal Programming + Polish

Table B.13: Solution quality of tests for scenario C solved with goal
programming, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 89 120 80 102 95

Prof Gaps ign. displac 76 108 74 92 84

Prof long displac 17 16 12 14 14

Used professors 260 260 259 263 259

Real professors 243 243 243 243 243

Virtual professors 17 17 16 20 16

Credits assigned to prof 2646 2646 2646 2646 2646

↪→ to real prof 2621 2621 2622 2617 2620

↪→ to virtual prof 25 25 24 29 26

Courses sections 2584 2584 2584 2584 2584

↪→ with real prof 2559 2559 2560 2555 2558

↪→ with virtual prof 25 25 24 29 26

% of satisfied credits 99.93 99.93 99.93 99.93 99.93

Satisfied stud-dem 2624 2624 2624 2624 2624

Non-satisfied stud-dem 1 1 1 1 1

Total Run Time 5h45’09” 6h08’04” 5h40’37” 5h35’34” 5h48’13”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 130

Goal Programming + No Polish

Table B.14: Solution quality of tests for scenario C solved with goal
programming, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 0 0 0 0

Prof Gaps ign. displac 0 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 0 0 0 0 0

Real professors 0 0 0 0 0

Virtual professors 0 0 0 0 0

Credits assigned to prof 0 0 0 0 0

↪→ to real prof 0 0 0 0 0

↪→ to virtual prof 0 0 0 0 0

Courses sections 0 0 0 0 0

↪→ with real prof 0 0 0 0 0

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 0 0 0 0 0

Satisfied stud-dem 0 0 0 0 0

Non-satisfied stud-dem 2625 2625 2625 2625 2625

Total Run Time 8h09’59” 8h05’39” 8h11’00” 8h05’50” 8h07’27”

Multi-objective function + Polish

Table B.15: Solution quality of tests for scenario C solved with
multi-objective function, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 192 240 204 186 207

Prof Gaps ign. displac 176 214 193 181 198

Prof long displac 12 29 8 10 7

Used professors 256 260 261 259 258

Real professors 243 243 243 243 243

Virtual professors 13 17 18 16 15

Credits assigned to prof 2657 2658 2657 2653 2660

↪→ to real prof 2632 2630 2625 2628 2638

↪→ to virtual prof 25 28 32 25 22

Courses sections 2591 2591 2593 2589 2594

↪→ with real prof 2566 2563 2562 2564 2572

↪→ with virtual prof 25 28 31 25 22

% of satisfied credits 99.93 99.93 99.93 99.93 99.93

Satisfied stud-dem 2624 2624 2624 2624 2624

Non-satisfied stud-dem 1 1 1 1 1

Total Run Time 2h28’17” 2h04’03” 1h49’47” 2h43’24” 2h50’15”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 131

Multi-objective function + No Polish

Table B.16: Solution quality of tests for scenario C solved with
multi-objective function, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 0 0 0 0

Prof Gaps ign. displac 0 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 0 0 0 0 0

Real professors 0 0 0 0 0

Virtual professors 0 0 0 0 0

Credits assigned to prof 0 0 0 0 0

↪→ to real prof 0 0 0 0 0

↪→ to virtual prof 0 0 0 0 0

Courses sections 0 0 0 0 0

↪→ with real prof 0 0 0 0 0

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 0 0 0 0 0

Satisfied stud-dem 0 0 0 0 0

Non-satisfied stud-dem 2625 2625 2625 2625 2625

Total Run Time 8h06’20” 8h11’10” 8h10’14” 8h06’58” 8h07’07”

B.1.5
Scenario D

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 132

Goal Programming + Polish

Table B.17: Solution quality of tests for scenario D solved with goal
programming, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 23 22 24 21 22

Prof Gaps ign. displac 18 16 17 15 17

Prof long displac 0 0 0 0 0

Used professors 68 71 70 68 70

Real professors 58 58 58 58 58

Virtual professors 10 13 12 10 12

Credits assigned to prof 648 649 649 647 648

↪→ to real prof 631 630 630 629 629

↪→ to virtual prof 17 19 19 18 19

Courses sections 648 649 649 647 648

↪→ with real prof 631 630 630 629 629

↪→ with virtual prof 17 19 19 18 19

% of satisfied credits 99.54 99.54 99.69 99.39 99.54

Satisfied stud-dem 650 650 651 649 650

Non-satisfied stud-dem 3 3 2 4 3

Total Run Time 3h29’52” 5h30’14” 4h38’04” 5h06’52” 4h46’44”

Goal Programming + No Polish

Table B.18: Solution quality of tests for scenario D solved with goal
programming, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 28 51 56 55 24

Prof Gaps ign. displac 22 47 52 51 20

Prof long displac 0 0 0 0 0

Used professors 69 68 67 69 68

Real professors 58 58 58 58 58

Virtual professors 11 10 9 11 10

Credits assigned to prof 649 649 648 649 649

↪→ to real prof 631 630 631 631 630

↪→ to virtual prof 18 19 17 18 19

Courses sections 649 649 648 649 649

↪→ with real prof 631 630 631 631 630

↪→ with virtual prof 18 19 17 18 19

% of satisfied credits 99.69 99.69 99.54 99.69 99.69

Satisfied stud-dem 651 651 650 651 651

Non-satisfied stud-dem 2 2 3 2 2

Total Run Time 4h55’27” 4h16’57” 4h32’30” 4h47’00” 4h40’17”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 133

Multi-objective function + Polish

Table B.19: Solution quality of tests for scenario D solved with
multi-objective function, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 22 29 25 26 33

Prof Gaps ign. displac 20 26 22 22 28

Prof long displac 0 0 0 0 0

Used professors 68 67 67 67 67

Real professors 58 58 58 58 58

Virtual professors 10 9 9 9 9

Credits assigned to prof 648 648 649 649 294

↪→ to real prof 631 631 631 631 276

↪→ to virtual prof 17 17 18 18 18

Courses sections 648 648 649 649 649

↪→ with real prof 631 631 631 631 631

↪→ with virtual prof 17 17 18 18 18

% of satisfied credits 99.54 99.54 99.69 99.69 99.69

Satisfied stud-dem 650 650 651 651 651

Non-satisfied stud-dem 3 3 2 2 2

Total Run Time 1h01’00” 0h39’54” 1h14’40” 1h27’03” 1h17’14”

Multi-objective function + No Polish

Table B.20: Solution quality of tests for scenario D solved with
multi-objective function, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 84 24 24 22 28

Prof Gaps ign. displac 69 23 20 18 22

Prof long displac 0 0 0 0 0

Used professors 74 66 66 68 70

Real professors 58 58 57 58 58

Virtual professors 16 8 9 10 12

Credits assigned to prof 651 649 649 649 649

↪→ to real prof 608 631 631 630 630

↪→ to virtual prof 43 18 18 19 19

Courses sections 651 649 649 649 649

↪→ with real prof 608 631 631 630 630

↪→ with virtual prof 43 18 18 19 19

% of satisfied credits 100 99.69 99.69 99.69 99.69

Satisfied stud-dem 653 651 651 651 651

Non-satisfied stud-dem 0 2 2 2 2

Total Run Time 2h33’21” 3h01’46” 1h53’40” 1h25’53” 2h17’24”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 134

B.1.6
Scenario E

Goal Programming + Polish

Table B.21: Solution quality of tests for scenario E solved with goal
programming, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 0 0 0 0

Prof Gaps ign. displac 0 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 35 35 35 35 35

Real professors 35 35 35 35 35

Virtual professors 0 0 0 0 0

Credits assigned to prof 434 434 434 434 434

↪→ to real prof 434 434 434 434 434

↪→ to virtual prof 0 0 0 0 0

Courses sections 434 434 434 434 434

↪→ with real prof 434 434 434 434 434

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 100 100 100 100 100

Satisfied stud-dem 443 443 443 443 443

Non-satisfied stud-dem 0 0 0 0 0

Total Run Time 0h29’11” 0h36’58” 0h37’33” 0h34’50” 0h35’32”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 135

Goal Programming + No Polish

Table B.22: Solution quality of tests for scenario E solved with goal
programming, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 0 0 0 0

Prof Gaps ign. displac 0 0 0 0 0

Prof long displac 0 0 0 0 0

Used professors 35 35 35 35 35

Real professors 35 35 35 35 35

Virtual professors 0 0 0 0 0

Credits assigned to prof 434 434 434 434 434

↪→ to real prof 434 434 434 434 434

↪→ to virtual prof 0 0 0 0 0

Courses sections 434 434 434 434 434

↪→ with real prof 434 434 434 434 434

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 100 100 100 100 100

Satisfied stud-dem 443 443 443 443 443

Non-satisfied stud-dem 0 0 0 0 0

Total Run Time 0h39’02” 0h33’00” 0h40’26” 0h35’54” 0h50’57”

Multi-objective function + Polish

Table B.23: Solution quality of tests for scenario E solved with
multi-objective function, polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 0 1 0 0 1

Prof Gaps ign. displac 0 1 0 0 1

Prof long displac 0 0 0 0 0

Used professors 35 35 35 35 35

Real professors 35 35 35 35 35

Virtual professors 0 0 0 0 0

Credits assigned to prof 435 434 435 434 435

↪→ to real prof 435 434 435 434 435

↪→ to virtual prof 0 0 0 0 0

Courses sections 435 434 435 434 435

↪→ with real prof 435 434 435 434 435

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 100 100 100 100 100

Satisfied stud-dem 443 443 443 443 443

Non-satisfied stud-dem 0 0 0 0 0

Total Run Time 0h42’52” 1h32’14” 0h57’16” 1h52’03” 0h42’27”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

Appendix B. Appendix 2 136

Multi-objective function + No Polish

Table B.24: Solution quality of tests for scenario E solved with
multi-objective function, no polishing method and without professor priority

Features
Rounds

1 2 3 4 5

Prof Gaps 47 0 1 0 1

Prof Gaps ign. displac 43 0 1 0 1

Prof long displac 0 0 0 0 0

Used professors 35 35 35 35 35

Real professors 35 35 35 35 35

Virtual professors 0 0 0 0 0

Credits assigned to prof 437 435 435 434 434

↪→ to real prof 437 435 435 434 434

↪→ to virtual prof 0 0 0 0 0

Courses sections 437 435 435 434 434

↪→ with real prof 437 435 435 434 434

↪→ with virtual prof 0 0 0 0 0

% of satisfied credits 100 100 100 100 100

Satisfied stud-dem 443 443 443 443 443

Non-satisfied stud-dem 0 0 0 0 0

Total Run Time 2h08’47” 1h45’31” 1h16’37” 1h37’00” 1h39’27”

DBD
PUC-Rio - Certificação Digital Nº 1312389/CA

	A MIP-Based Approach to Solve a Real-World School Timetabling Problem
	Contents
	Introduction
	Introducing the basic timetabling problem
	Brazilian school timetabling problem
	Practical and realistic formulation
	Main similar formulations and their differences
	Data accuracy and Politics
	Timetabling Groups and Conferences
	Dissertation Outline

	Trieda's Timetabling Problem
	Introducing the system
	Simulation usability
	Multiple scenarios
	Interface and solver interaction
	Manual changes
	Initial solution
	Reasons for non–satisfaction of demands
	Virtual professor tips

	Introducing the school timetabling problem
	Entities and Concepts
	Constraints

	Data quality
	Credits split rule
	Availability times
	Assignments between courses and rooms

	Mathematical Formulation
	Integer programming
	Alternative formulations
	Optimality and relaxation
	Integrality gap
	Branch and Bound
	MIP Solver

	IP - Assignment Formulation for the Timetabling Problem
	Notation
	Formulation

	Solving Strategies
	Phases of problem solving
	Real teaching resource
	Virtual teaching resource

	Goal programming
	General concept
	Applying Goal Programming

	Polishing Method
	The general idea
	The polishing algorithm developed for the problem

	Computational Experiments
	Computational resources
	Scenarios
	Approaches
	Approaches to combine
	Gurobi Parameters

	Results
	Model features
	Solver performance
	Solution quality

	Conclusions
	Best approaches
	Goal Programming
	Phases
	Polishing method
	Hard vs soft constraints
	Fixing partial solution over phases

	Future Work

	Bibliography
	Appendix 1
	XHSTT format
	General structure
	Times
	Resources
	Events
	Constraints

	Converting XHSTT problem into Trieda's problem
	Suggestions for expansion of XHSTT format
	Travel time between different blocks
	Limited number of blocks in teachers/classes timetables

	Appendix 2
	Solution quality of individual computational experiments
	Scenario A
	Scenario B1
	Scenario B2
	Scenario C
	Scenario D
	Scenario E

