

Fredy Alvaro Elorrieta Agramonte

Aplicação do método dos elementos discretos na modelagem do mecanismo de tombamento bloco-flexural em taludes rochosos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Euripedes do Amaral Vargas Jr. Co-orientador: Prof. Rodrigo Pelucci de Figueiredo

> Rio de Janeiro Junho de 2014

Fredy Alvaro Elorrieta Agramonte

Aplicação do método dos elementos discretos na modelagem do mecanismo de tombamento bloco-flexural em taludes rochosos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Euripedes do Amaral Vargas Jr Orientador Departamento de Engenharia Civil – PUC-Rio

> **Prof. Sérgio Augusto Barreto da Fontoura** Departamento de Engenharia Civil – PUC-Rio

> > Prof. Emílio Velloso Barroso Universidade Federal do Rio de Janeiro

> > > Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 24 de Junho de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem a autorização da universidade, do autor e do orientador.

Fredy Alvaro Elorrieta Agramonte

Graduou-se em Engenharia de Minas, pela Universidad Nacional San Antonio Abad del Cusco – Perú. Trabalhou como engenheiro de minas em operações subterrâneas; em 2012 iniciou o curso de mestrado em Engenharia Civil na PUC-Rio, na área de geotecnia, atuando na linha de pesquisa em Mecânica das Rochas

Ficha Catalográfica

Elorrieta Agramonte, Fredy Alvaro Aplicação do método dos elementos discretos na modelagem do mecanismo de tombamento blocoflexural em taludes rochosos/ Fredy Alvaro Elorrieta Agramonte; orientador: Euripedes do Amaral Vargas Jr.; co-orientador: Rodrigo Pelucci de Figueiredo. -Rio de Janeiro PUC, Departamento de Engenharia Civil, 2014. v., 107 f,; il. ; 29,7 cm Dissertação (mestrado) Pontifícia 1. Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil. Inclui referências bibliográficas. Engenharia Civil – Teses. 2. Método dos 1. Elementos Discretos 3. Estabilidade de taludes; 4. Tombamento bloco-flexural; 5. Mecânica das Rochas. 6. Resistência à tração das rochas. I. Vargas, Eurípedes Jr. II. Figuiredo, Rodrigo P. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

Agradecimentos

A meus pais e meu irmão pela imensa motivação, compreensão, amor; e por me influenciar positivamente na escolha dos meus paradigmas.

À Capes e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Ao meu orientador e co-orientador pelo apoio e orientação outorgados.

A Luis, pela sua amizade e apoio na realização desta dissertação.

Resumo

Elorrieta Agramonte, Fredy Alvaro; Vargas, Euripedes Jr.; Figueiredo, Rodrigo Pelucci. **Aplicação do método dos elementos discretos na modelagem do mecanismo de tombamento bloco-flexural em taludes rochosos**. Rio de Janeiro, 2014. 106p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Em um maciço rochoso, as fraturas apresentam-se de forma irregular e descontínua. A complexidade na distribuição espacial destas descontinuidades faz com que o mecanismo de ruptura por tombamento ocorra mais frequentemente por uma combinação de dois tipos de fenômenos: Tombamento de blocos e flexural. Assim, a ruptura por tombamento do tipo bloco-flexural pode ser considerada a forma mais comum presente neste tipo de mecanismo. Trabalhos utilizando o método de equilíbrio limite ou modelos físicos estudam a influência desta combinação, mas a literatura relata poucos trabalhos numéricos que possam ajudar na compreensão dos fenômenos envolvidos neste processo de ruptura. O presente trabalho procura modelar o mecanismo de ruptura por tombamento bloco-flexural através do método dos elementos discretos (DEM), utilizando o software PFC (Particle Flow Code). Em particular, procura-se avaliar as potencialidades do método para estudos deste tipo, utilizando um novo modelo de contato entre partículas e a calibração das propriedades elásticas do material sintético. Apresentam-se também detalhes da metodologia utilizada e exemplos de validação, incluindo comparações com soluções analíticas e semi-analíticas disponíveis na literatura.

Palavras-chave

Método dos Elementos Discretos; Estabilidade de taludes; Tombamento bloco-flexural; Mecânica das Rochas; Resistência à tração das rochas.

Abstract

Elorrieta Agramonte, Fredy Alvaro; Vargas, Euripedes Jr. (Advisor); Figueiredo, Rodrigo Pelucci. **Application of the Discrete Element Method for Modelling the Block-Flexural Toppling Mechanisms in Rock Slopes.** Rio de Janeiro, 2014. 106p. MSc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Joints exhibit an irregular and discontinuous behavior inside the rock mass. The spatial distribution complexity of these discontinuities causes the toppling failure occurs more often by a combination of two types of toppling phenomena: toppling of rock blocks and flexural toppling. Thus, the block-flexural toppling can be considered the most common when a toppling process is being developed in rock slopes. Analytical and physical models approach, were presented in order to study each process individually, but the literature reports few works that may help to understand the influence of the two processes together. The present work aims to represents the mechanism of block-flexural toppling through the discrete elements method (DEM) using the PFC (Particle Flow Code) software. In particular, the objective is to assess the potential of the method for studies of this type, using a new model of contact between particles and the elastic properties calibration of the synthetic material. In order to do that, the work shows the methodology details and validation examples, including comparisons with analytical and semi-analytical solutions that are available in the literature.

Keywords

Discrete element method; Rock slopes stability; Block-flexural toppling; Rock mechanics; Rock tensile strength.

Sumário

1. Introdução	16
1.1. Definição do problema	16
1.2. Objetivo do trabalho	17
1.3. Estrutura do trabalho	17
2. Estudos de tombamento	19
2.1. Análise cinemática	22
2.2. Métodos analíticos	23
2.2.1. Solução analítica para tombamento de bloco	23
2.2.2. Equilíbrio limite para tombamento flexural	25
2.2.3. Equilíbrio limite para tombamento bloco-flexural	27
2.3. Modelos físicos	32
3. Método dos elementos discretos (DEM)	34
3.1. Código de Fluxo de Partícula (PFC)	34
3.1.1. Ciclo de cálculo no PFC	35
3.1.2. Modelo de contacto do tipo Flat-Joint	41
4. Calibração do material	48
4.1. Geração do material	48
4.2. Flexão em vigas	49
4.3. Resistência à tração da rocha	52
4.3.1. Ensaio de tração direta	54
4.3.2. Ensaio Brasileiro	55
4.3.3. Ensaio de flexão de quatro pontos	57
4.3.4. Ensaio de flexão de três pontos	58
4.4. Ensaio de corte direto em descontinuidades de rocha	
modeladas pelo modelo de contacto do tipo Smooth-Joint	62

5. Modelagem de taludes em processos de tombamento e	
comparação com métodos analíticos físicos e semi-analíticos	66
5.1. Analise do tombamento de um bloco sobre uma base	
inclinada	66
5.2. Problema do tombamento de blocos em uma base do tipo	
escada	69
5.3. Tombamento flexural pelo método de Aydan e Kawamoto	71
5.4. Tombamento flexural em modelos físicos	76
5.4.1. Modelagem numérica do talude físico	76
5.5. Tombamento bloco-flexural	80
5.5.1. Avaliação do talude com a interação das falhas	
simultaneamente	84
5.5.2. Tombamento bloco-flexural com famílias de falhas	
distribuídas aleatoriamente	87
6. Conclusões e sugestões de trabalhos futuros	90
6.1. Conclusões	90
6.2. Sugestões para estudos futuros	94
Referencias Bibliográficas	96
A Cálculo analítico Aydan e Kawamoto	100
B Cálculo analítico Bloco-flexural, método Amini et al.	102

Lista de figuras

Figura 2.1 - Modos primários de Toppling, (a) Tombamento de	
blocos contendo juntas ortogonais com grande espaçamento,	
(b) Tombamento flexural, (c) Tombamento bloco-flexural,	
caracterizado por deslocamentos acumulados em colunas	
pseudocontínuas a traves de juntas ortogonais [24]	20
Figura 2.2 - Modos primários de Toppling, (a) Tombamentos	
por deslizamentos inferiores (slide-head-toppling), (b)	
Tombamentos por deslizamentos na base (slide base	
toppling), (c) Tombamentos por deslizamentos superiores	
(slide-toe-toppling, (d) Tombamentos por juntas de tensão	
(tension crack toppling); [24]	20
Figura 2.3 - Representação do processo de tombamento em	
formações com descontinuidades cataclinais [17]	20
Figura 2.4 - Estereograma com a representação dos limites	
geométricos para à Ocorrência do tombamento.	22
Figura 2.5 - Bloco em posição limite para o tombamento, [24]	24
Figura 2.6 - Condições cinemáticas para o deslizamento entre	
blocos o qual precede o tombamento; representação do talude	
e a direção da tensão principal, projeção estereográfica para a	
condição de tombamento [24]	25
Figura 2.7 - Modelo para o analise de equilíbrio limite para	
tombamento flexural em taludes [7]	26
Figura 2.8 - Idealização do tombamento bloco-flexural; Amini et	
al. [5].	29
Figura 3.1 - Representação do contato entre partículas (A-B) e	
parede partícula (W-b), Itasca [30]	36
Figura 3.2 - Representação geométrica do flat joint contact	
model [35]	41
Figura 3.3 - Velocidade das superfícies imaginárias do flat-joint	
no contato [35]	42

Figura 3.4 - Cinemática do contato do tipo flat-joint mostrando	
a interface (azul) com deslocamentos relativos das superfícies	
(vermelho e verde) [35]	43
Figura 3.5 - "Gap" relativo ao deslocamento da superfície e a	
interface [35]	43
Figura 3.6 - Forças atuantes nas superfícies imaginárias e a	
sua segmentação [35]	44
Figura 3.7 - Tensões normais na interface para superfícies	
compostas por quatro segmentos [35]	45
Figura 3.8 - Lei de Força-Deslocamento para o segmento	
desligado (a) tensão normal no centroide do segmento versus	
o "gap" (g), (b) tensão no centroide do segmento versus o	
deslocamento relativo, (c) envolvente de ruptura [35]	47
Figura 3.9 - Lei de Força-Deslocamento para o segmento	
ligado (a) tensão normal no centroide do segmento versus o	
gap (g), (b) tensão cisalhante no centroide do segmento versus	
o deslocamento relativo, (c) envolvente de ruptura [35]	47
Figura 4.1 - Gerado de partículas.	49
Figura 4.2 - Flexão da viga pelo carregamento pontual no	
extremo, pontos de monitoramento, tensões de tração e	
compressão geradas.	50
Figura 4.3 - Comparativo na flexão, calculado pelo PFC2D vs a	
fórmula Analítica de Timoshenko	51
Figura 4.4 - Comparativo na flexão, calculado pelo PFC2D vs a	
fórmula analítica de Timoshenko	52
Figura 4.5 - Comparativo do erro na flexão em diferentes	
pontos das vigas; Espécimes 1 e 2 parallel-bond, Espécime 3	
contact bond mais parallel bond, Espécimes 4 e 5 at-joint	
contact model	53
Figura 4.6 - Corpo de prova submetido à tração direta e	
círculos de medição	55
Figura 4.7 - Diferentes espécimes ensaiados a tração direta e	
localização das fraturas.	56

Figura 4.8 - Ensaio Brasileiro, representação das rupturas do	
modelo de contato do tipo flat-joint por cisalhamento e tração	57
Figura 4.9 - Ensaio de flexão quatro pontos	58
Figura 4.10 - Diferentes espécimes ensaiados a flexão de	
quatro pontos e o posicionamento das fraturas.	59
Figura 4.11 - Ensaio de tração direta, Hawkes and Mellor	
(1970).	59
Figura 4.12 - Diferentes espécimes ensaiados em flexão de	
três pontos e posicionamento das fraturas.	60
Figura 4.13 - Valores de resistência pico de diferentes ensaios	
à tração.	61
Figura 4.14 - Comparação curvas tensão deformação.	62
Figura 4.15 - Ensaio de corte direto na descontinuidade de	
rocha.	63
Figura 4.16 - Criação de um novo contato do tipo "lineal"	
durante o ensaio de corte direto	64
Figura 4.17 - Comparação entre o modelamento convencional	
da fratura vs o modelamento com o código de correção a	
diferentes tensões normais aplicadas (1.0, 0.8 e 0.6 KPa).	65
Figura 5.1 - Bloco exposto ao tombamento.	67
Figura 5.2 - Blocos avaliados contra o tombamento. a. θ = 32°;	
b. $\theta = 38,65^{\circ}$; c. $\theta = 31^{\circ}$	68
Figura 5.3 - Curvas do deslocamento do vértice superior de	
cada bloco na coordenada "X" versus o time step.	69
Figura 5.4 - Tombamento de bloco em uma base inclinada do	
tipo escada Goodman e Bray [24].	70
Figura 5.5 - Modelamento no PFC do tombamendo de bloco	
em uma base do tipo escada Goodman e Bray [24].	71
Figura 5.6 - Velocidades do bloco no pé do talude com	
diferentes ângulos de atrito avaliados no PFC2D, para o	
problema de toppling Goodman e Bray [24].	72
Figura 5.7 - Modelamento do tombamento flexural segundo	
Aydan e Kawamoto [7], considerando as condições de	
contorno.	73

Figura 5.8 - Deformação apresentada no topo do talude vs o	
time step para diferentes valores de rigidezes.	74
Figura 5.9 - Avaliação na estabilidade do modelo numérico	
com diferentes valores de rigidez nas fraturas.	75
Figura 5.10 - Modelo numérico, condições de contorno e	
condições iniciais, talude físico estudado por Adhikary et al. [1]	77
Figura 5.11 - Deslocamentos horizontais do ponto "A" da	
simulação numérica do talude do trabalho de Adhikary et al. [1]	
para diferentes valores de rigidez nas descontinuidades.	79
Figura 5.12 - Comparação entre as superfícies de fratura do	
modelo físico e o modelo numérico. Apresentação dos pontos	
de monitoramento "A" e "B".	80
Figura 5.13 - Tensões de tração (vermelha) e compressão	
(preta) nas colunas que conformam o talude, zona de flexão	
onde é gerada a superfície de fratura.	81
Figura 5.14 - Talude com descontinuidade secundária com	
característica não contínua, para a modelagem do	
tombamento bloco-flexural.	82
Figura 5.16 - Ruptura do talude A por tombamento bloco-	
flexural com descontinuidade não persistente a 18º de	
mergulho, fratura da última coluna no pé do talude.	82
Figura 5.15 - Mudança da locação do ponto de aplicação da	
força intercolunar para o cálculo analítico do tombamento	
bloco-flexural (para Amini et al. [5]).	83
Figura 5.17 - Ruptura do talude B por tombamento bloco-	
flexural, começo da fratura na antepenúltima coluna.	83
Figura 5.18 - Ruptura dos taludes com a interação das falhas	
simultaneamente, fig. (a) talude C com falhas de 18º e 32º	
graus de mergulho; fig. (b) talude D com falhas de 18º; 23º e	
32º graus de mergulho.	84
Figura 5.19 - Deslocamentos do topo do talude para ação das	
descontinuidades secundárias interagindo simultaneamente.	85
Figura 5.20 - Evolução do falhamento à tração em contactos	
do tipo flat-joint nos taludes baixo o tombamento bloco-flexural.	86

Figura 5.21 - Tombamento bloco-flexural com diversas famílias	
de falhas, estado inicial a 0 g´s e no estado final a 15 g´s.	87
Figura 5.22 - Tombamento bloco-flexural com diversas famílias	
de falhas aleatórias.	88
Figura A.1 - Cálculo analítico tombamento flexural pelo método	
de Aydan e Kawamoto	101
Figura B.1 - Cálculo analítico do tombamento bloco-flexural no	
talude A; Amini et al.(2010).	103
Figura B.2 - Cálculo analítico da estabilidade do talude A	
considerando as mudanças dos pontos de aplicação das	
forças.	104
Figura B.3 - Cálculo analítico do tombamento bloco-flexural no	
talude B; Amini et al.(2010).	105
Figura B.4 - Cálculo analítico da estabilidade do talude B	
considerando as mudanças dos pontos de aplicação das	
forças.	106
Figura B.5 - Cálculo analítico do tombamento bloco-flexural no	
talude B com a re-definição da "coluna chave" e considerando	
a mudança dos pontos de aplicação das forças	107

Lista de tabelas

54
63
63
73
78
78

PUC-Rio - Certificação Digital Nº 1112024/CA

Porque não existe experiência no presente como tal, se antes não foi refletida.

Sören Kierkegaard.