

Luis Fernando Paullo Muñoz

Análise Dinâmica Não Linear de Pórticos com Base Elasto-Plástica sob Ação Sísmica

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Prof. Paulo Batista Gonçalves Co-orientador: Prof. Ricardo Azoubel da Mota Silveira

Rio de Janeiro Março de 2015

Luis Fernando Paullo Muñoz

Análise Dinâmica Não Linear de Pórticos com Base Elasto-Plástica sob Ação Sísmica

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Decanato do CTC da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Paulo Batista Gonçalves Orientador Departamento de Engenharia Civil - PUC-Rio

Prof. Ricardo Azoubel da Mota Silveira Co-orientador Departamento de Engenharia Civil – UFOP

Prof. Sebastião Arthur Lopes de Andrade Departamento de Engenharia Civil – PUC-Rio

Prof. Deane de Mesquita Roehl Departamento de Engenharia Civil – PUC-Rio

Prof. José Guilherme Santos da Silva Universidade do Estado do Rio de Janeiro

Prof^a. Michéle Schubert Pfeil Universidade Federal do Rio de Janeiro

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 27 de Março de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Luis Fernando Paullo Muñoz

Graduou-se em Engenharia Civil no Departamento de Engenharia Civil da UNSAAC (Universidad Nacional de San Antônio Abad Del Cusco), em 2006. Obteve o grau de Mestre em Engenharia Civil pelo Departamento de Engenharia Civil da PUC-Rio em 2010. Atualmente tem continuado com a linha de pesquisa na área de instabilidade e análise dinâmica não linear de estruturas, com o estudo de análise sísmica de pórticos com iteração solo-estrutura.

Ficha Catalográfica

Paullo Muñoz, Luis Fernando

Análise dinâmica não linear de pórticos com base elastoplástica sob ação sísmica / Luis Fernando Paullo Muñoz; orientador: Paulo Batista Gonçalves; co-orientador: Ricardo Azoubel da Mota Silveira. – 2015.

214 f. : il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2015. Inclui bibliografia

1. Engenharia civil – Teses. 2. Análise dinâmica não linear. 3. Excitação sísmica. 4. Análise em frequência. 5. Instabilidade dinâmica. 6. Métodos de integração no tempo. 7. Método do balanço harmônico. I. Gonçalves, Paulo Batista. II. Silveira, Ricardo Azoubel da Mota. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título

CDD: 624

PUC-Rio - Certificação Digital Nº 1012320/CA

Aos meus pais, Fernando e Rosa. A minha irmã, Yesenia.

Agradecimentos

A Deus, por permitir-me culminar mais uma etapa na minha vida.

A minha mãe Rosa e ao meu pai Fernando, a quem devo tudo o conseguido na vida.

A minha irmã Yesenia, que foi e é meu apoio nos momentos mais difíceis.

Ao Professor Paulo B. Gonçalves, pela orientação, serenidade e conhecimentos transmitidos.

Aos Professores Ricardo Silveira e Andréa da Silva pela ajuda e orientação prestada.

Aos professores do setor estruturas do DEC da PUC-Rio, pelo ensino acadêmico e motivação dada ao longo do mestrado.

À UNSAAC (Universidad de San Antônio Abad del Cusco), pela base académica necessária para minha formação.

Aos colegas da PUC-Rio, pela ajuda acadêmica, pessoal e pelos momentos de convívio, em especial aos colegas que começaram esta aventura académica ainda em 2008.

À CNPq e à PUC-Rio, pelo auxílio financeiro.

Ao instituto Tecgraf da PUC-Rio, pela oportunidade de desenvolver outras áreas de conhecimento e sua contribuição na minha estabilidade financeira.

A todas as pessoas que de alguma forma contribuíram com a elaboração deste trabalho.

Resumo

Paullo Muñoz, Luis Fernando; Gonçalves, Paulo Batista; Silveira, Ricardo Azoubel da Motta. Análise Dinâmica Não Linear de Pórticos com Base Elasto-plástica sob Ação Sísmica. Rio de Janeiro, 2015. 214p. Tese de Doutorado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

A resposta dinâmica de sistemas estruturais não lineares tem sido um item de grande interesse nas pesquisas em engenharia civil. Problemas onde há interação base flexível-estrutura são de grande importância na análise estrutural, já que a maioria das estruturas civis é apoiada sobre sistemas flexíveis (solo ou sistemas de apoio com dissipação de energia). Nesta área, o estudo de sistemas submetidos a ações sísmicas é um tópico relevante, já que estas solicitações têm um grande conteúdo de frequências, o que pode influenciar consideravelmente as respostas da estrutura. Neste contexto, o conhecimento da resposta em frequência de estruturas não lineares sob uma excitação de base é uma ferramenta útil para avaliar os potenciais efeitos de ações sísmicas sobre estes sistemas. Na presente tese é desenvolvida uma metodologia de análise não linear dinâmica de sistemas estruturais reticulados sob excitações de base, considerando não linearidade geométrica e apoios flexíveis, representados por molas unidimensionais, com comportamento elasto-plástico. Através de uma análise paramétrica é avaliada a variabilidade das respostas de sistemas esbeltos submetidos a ações sísmicas reais, sismos artificiais, assim como ações sísmicas sucessivas. O problema no espaço é resolvido pelo método dos elementos finitos. Para a análise em frequência, é apresentada uma metodologia baseada no método do balanço harmônico e no método de Galerkin, juntamente com técnicas de continuação para a obtenção das curvas de ressonância não lineares. O problema no tempo é abordado através da integração das equações de movimento pelos métodos de Runge-Kutta e Newmark, associado ao método de Newton-Raphson.

Palavras-chave

Análise dinâmica não linear; Excitação sísmica; Análise em frequência; Instabilidade dinâmica; Métodos de integração; Método do balanço Harmônico.

Abstract

Paullo Muñoz, Luis Fernando; Gonçalves, Paulo Batista (Advisor); Silveira, Ricardo Azoubel da Motta (Co-advisor). **Nonlinear Dynamic Analysis of Frames with Elasto-plastic Base under Seismic Excitation.** Rio de Janeiro, 2015. 214p. Doctoral Thesis – Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

The dynamic response of nonlinear structures has been a topic of interest in civil engineering research. Problems in which base-structure interaction is present have a great importance in structural analysis, since most structures rests on flexibel systems (soil or supports with dissipation). In this research area, the study of structures under the action of seismic loads represent a relevant topic, since this kind of excitations may excite several vibration modes and thus influence strongly the dynamic response. In this context, the prediction of the nonlinear structural behavior in frequency domain of structures under base excitation is a useful resource to assess the potential effects of sismic loads on these systems. In this thesis, a methodology for nonlinear dynamic analysis of plane frame structures under base excitation is presented considering geometric nonlinearity and elastic supports represented by elasto-plastic unidimensional springs. Trough a parametric analysis, the variability of the dynamic responses of slender structural systems under the actions of real earthquakes, synthetics earthquakes, as well as the action of multiple earthquakes is assessed. The structural systems here analyzed are discretized in space using a nonlinear finite element formulation. For the response in frequency domain, a scheme based on the Balance Harmonic Method and the Galerkin method, in conjunction with continuation methods, is formulated to obtain the nonlinear resonance curves. The nonlinear dynamic response in the time domain is calculated by direct integration of the equations of motion. For this, the Runge-Kutta method and the Newmark method in association with the iterative Newton-Raphson scheme are employed.

Keywords

Nonlinear dynamic analysis; Earthquakes; Analysis in frequency domain; Dynamic instability; Direct integration methods; Harmonic Balance method.

Sumário

1 Introdução	27
1.1. Considerações Iniciais	27
1.2. Objetivos	28
1.3. Revisão Bibliográfica	28
1.3.1. Não Linearidade Geométrica e Física	28
1.3.2. Aspectos de Dinâmica Estrutural e Análise Sísmica.	31
1.3.3. Consideração de base flexível	34
1.4. Organização e Descrição da Tese	40
2 Formulação Não Linear Estática e Dinâmica no Domínio do Tempo	42
2.1. Formulação do Elemento Finito Não Linear	42
2.1.1. Medidas de deformação não linear	42
2.1.1.1. Formulação Não Linear FN1	43
2.1.1.2. Formulação Não Linear FN2	44
2.1.2. Forças Internas Resultantes e Energia Potencial Total	45
2.1.3. Discretização do sistema por elementos finitos	49
2.1.4. Matriz de rigidez, vetor de forças internas e equilíbrio estático	50
2.1.5. Formulação do elemento com ligação semirrígida	51
2.1.6. Matriz de rotação e montagem do sistema global estático	56
2.2. Formulação para Análise Dinâmica no Domínio do Tempo	57
2.2.1. Energia potencial e equação de movimento	57
2.2.2. Matriz de massa considerando ligações semirrígidas	59
2.2.3. Matriz de amortecimento e sistema global de equilíbrio	60
2.2.4. Equação de movimento para excitação de base	61
2.3. Solução no domínio do Tempo	62

2.3.1. Frequências naturais e modos de vibração	62
2.3.2. Analise transiente e integração direta no domínio do tempo	64
2.3.3. Métodos de integração para análise linear	65
2.3.3.1. Método implícito de Newmark	65
2.3.3.2. Métodos explícitos de Runge-Kutta	66
2.3.3.3. Integração do sistema dinâmico linear pelos métodos Runge-	
Kutta explícitos	72
2.3.3.4. Método implícito de Runge-Kutta-Gauss	73
2.3.4. Integração direta para análise não linear	74
2.3.4.1. Método Implícito de Newmark para análise não linear	74
2.3.4.2. Método de Runge-Kutta para análise não linear	75
2.4. Aspectos de Solução Estática Não Linear	77
2.4.1. Método iterativo de Newton-Raphson	78
2.4.2. Método do controle de arco	79
2.5. Consideração de Base Flexível	81
2.5.1. Formulação dinâmica do modelo contínuo com subestruturação	81
2.5.2. Formulação dinâmica com modelos discretos	82
2.5.3. Elemento de Base Elasto-plástica	84
3 Excitação Sísmica	86
3.1. Conceitos Gerais Sobre Sismos e Sismicidade	86
3.1.1. Definição e principais características dos sismos	86
3.1.2. Propagação e tipo de ondas sísmicas	89
3.2. Efeito dos Sismos sobre os Sistemas Estruturais	90
3.3. Formulação da Excitação Sísmica na Análise Estrutural	92
3.3.1. Registro da Aceleração sísmica	92
3.3.2. Potência da excitação sísmica	93
3.4. Geração de Sismos Artificiais	96
3.4.1. Formulação de sismos artificiais	96
3.4.2. Função intensidade e correção da linha base	98
4 Exemplos Numéricos da Análise no Domínio do Tempo	101
4.1. Descrição dos modelos estudados	101
4.1.1. Torre esbelta de três graus de liberdade T-1	101

4.1.2. Torre esbelta de com massa concentrada no topo T-2	102
4.1.3. Pórtico de dois andares Po-2	103
4.1.4. Pórtico de seis andares Po-6	103
4.1.5. Arco circular abatido Ac-1	104
4.2. Exemplos de sistemas lineares sob excitação harmônica	105
4.2.1. Validação dos métodos de integração	105
4.2.2. Estudo de desempenho e estabilidade	107
4.2.3. Influência de base elástica	110
4.2.3.1. Influência na resposta no tempo	110
4.2.3.2. Influência na ressonância	111
4.3. Exemplos da Análise Não Linear – Excitação Harmônica	113
4.3.1. Influência da não linearidade geométrica	113
4.3.1.1. Validação da integração direta no tempo	113
4.3.1.2. Não linearidade geométrica na ressonância	116
4.3.1.3. Não linearidade geométrica e variação da amplitude da	
aceleração	118
4.3.1.4. Não linearidade geométrica e variação da rigidez	119
4.3.2. Consideração de base elasto-plástica	121
4.4. Análise Sísmica	123
4.4.1. Geração de sismo artificial	123
4.4.2. Comparação entre as resposta com sismos real e artificial	126
4.4.3. Excitação sísmica e não linearidade geométrica	127
4.4.4. Excitação sísmica e elasto-plasticidade da base	127
5 Formulação Dinâmica Não Linear no Domínio da Frequência	129
5.1. Obtenção de Curvas de Ressonância Através da Análise	
no Tempo	130
5.2. Método do Balanço Harmônico	131
5.3. Formulação Linear do Equilíbrio Dinâmico na Frequência	133
5.4. Formulação Não Linear do Equilíbrio Dinâmico na Frequência:	
Método	
do Balanço Harmônico-Galerkin	134

5 C	.5. Solução do Sistema de Equações Não Lineares na Frequência: controle	
c	de Arco	137
5	.6. Não Linearidade Geométrica na Frequência	140
5	.7. Rotação da Matriz de Rigidez Não Linear no Domínio	
е	Montagem do Sistema Global	
6	Exemplos Numéricos no Domínio da Frequência	145
6	.1. Resposta em Frequência: Formulação linear	145
6	.1.1. Pilar engastado e livre	145
6	.1.2. Torre com massa concentrada	148
6	.2. Resposta em Frequência: Formulação Não Linear	149
6	.2.1. Sistema de um grau de liberdade com rigidez não linear	
q	uadrática	149
6	.2.2. Influência da intensidade da excitação e não linearidade cúbica	151
6	.2.3. Arco bi-engastado: Efeito da não linearidade quadrática	152
6	.3. Efeito de não linearidade geométrica em estruturas esbeltas	153
6	.3.1. Estrutura de galpão com cobertura de duas águas	153
6	.3.1.1. Resposta para solicitação de base	156
6	.3.1.2. Resposta para solicitação na direção vertical	158
6	.3.1.3. Resposta para solicitação horizontal e vertical simultânea	159
6	.3.2. Estrutura de galpão com cobertura em arco	161
6	.3.2.1. Resposta para solicitação sísmica horizontal	163
6	.3.2.2. Resposta para solicitação sísmica Vertical	164
6	.3.2.3. Resposta para solicitação sísmica horizontal e vertical	
si	imultâneos	165
7	Estruturas Submetidas a Sismos Reais e Artificias com Interação	
S	olo-Estrutura	167
7	.1. Solicitações Sísmicas	167
7	.1.1. Solicitações sísmicas reais	167
7	.1.2. Solicitações sísmicas artificiais	169
7	.2. Pórtico Plano PT-1	171
7	.2.1. Resposta aos sismos reais	172

7.2.2. Resposta a sismos artificiais com semelhança de potência	175
7.2.3. Resposta a sismo artificial com potência concentrada nas regiõe	es
de ressonância	180
7.2.3.1. Obtenção do espectro de potência	180
7.2.3.2. Resposta a sismos artificias com potência concentrada na	
ressonância	183
7.3. Galpão com duas águas:	185
7.3.1. Resposta a sismos reais	186
7.3.2. Resposta a sismos artificiais com semelhança de potência	187
7.3.3. Resposta a sismos artificiais com potência concentrada nas	
regiões de ressonância.	191
7.4. Galpão Cobertura em Arco	194
7.4.1. Respostas máximas em sismos reais e artificias gerados a parti	r
de potências reais	195
7.4.2. Resposta a sismos artificiais com potência concentrada nas	
regiões de ressonância.	196
7.4.3. Resposta a ações sísmicas múltiplas	198
8 Conclusões e Sugestões	201
8.1. Conclusões	201
8.2. Sugestões para Trabalhos Futuros	203
9 Referências Bibliográficas	205

Listas de Figuras

Figura 1.1 – Referenciais Lagrangianos. Ref. Silva (2009).	
29	
Figura 1.2 – Análise não linear geométrica e inelástica de pórtico	
metálico. Ref. Silva (2009).	31
Figura 1.3 – Modelos de solo como meios elásticos contínuos.	
Ref. Paullo (2010).	35
Figura 1.4 – Métodos diretos e de sub estruturação na análise de	
interação solo-estrutura. Ref. Villaverde (2009).	36
Figura 1.5 – Esquema e modelo de elementos finitos no estudo de	
interação estrutura-solo-estrutura através de modelo contínuo. Ref.	
Clouteau et al. (2009).	37
Figura 1.6 – Sistema discreto de interação base-estrutura. Ref. Wolf	
(1994).	38
Figura 1.7 – Representação de solo por sistema de barras	
unidimensionais.	
Ref. Halabian (1994).	39
Figura 1.8 – Modelos unidimensionais de solo. Esquerda: Sistema de	
molas	
Ref. Miguel e Bouaanani (2011). Direita: Sistema de mola-amortecedor	
Ref. Ganjavi e Hao (2012).	40
Figura 2.1 – Comportamento da seção transversal do elemento barra.	
Ref. Silva (2009).	44
Figura 2.3 – Graus de liberdade do elemento finito de viga-coluna.	49
Figura 2.4 – Idealização de ligação semirrígida.	51
Figura 2.5 – Sistema auxiliar de barra com molas.	54
Figura 2.6 – Sistema Estrutural submetido a deslocamento de base.	62
Figura 2.7 – Esquema de integração do método de Euler.	67
Figura 2.8 – Aproximação iterativa secante.	76
Figura 2.9 – Aproximação tangente no método de Newton-Raphson.	78

Figura 2.10 – Aproximação por arco esférico.	80
Figura 2.11 – Sistema base-estrutura (Halabian,2002).	81
Figura 2.12 – Sistema unidimensional discreto solo-estrutura 1985).	
Figura 2.13 – Relação de força vs. Deslocamento de mola transl	
rotacional unidimensional com comportamento elasto-plástico bi-	
(Wolf, 1985).	
Figura 3.1 – Localização geográfica do hipocentro e epicentro de	
sismo (https://bussoladeplasma.wordpress.com/tag/epicentro).	88
Figura 3.2 – Distribuição de atividades sísmicas no mundo	
(http://www.visionlearning.com).	89
Figura 3.3 – Tipo e forma de propagação das ondas sísmicas no solo.	90
Figura 3.4 – Falha do solo por ação sísmica: a) fratura de solo em	
estrutura	
de estrada devida à vibração excessiva no terremoto de Kobe-Japão	
1995. b) Tombamento de estrutura devido à liquefação do solo no	
terremoto de Nigata-Japão 1964 (http://www.ngdc.noaa.gov/).	91
Figura 3.5 – Colapso de edificação devido a vibração excessiva no	
terremoto	
em Ica-Perú 2007 (http://www.elcomercio.pe).	92
Figura 3.6 – Registro de aceleração do sismo "El Centro	
(Califórnia 1940)" direção Norte-Sul (Clough e Penzien, 1995).	93
Figura 3.7 – FDEP gerada a partir de um acelerograma normalizado	
(Roehl, 2000).	95
Figura 3.8 – Fluxograma para a geração de um sismo artificial a	
partir de	
uma FDEP (Roehl, 2000).	100
Figura 4.1 – Modelo de torre esbelta T-1.	101
Figura 4.2 – Modelo de torre esbelta T-2.	102
Figura 4.3 – Modelo de pórtico de dois andares Po-2.	103
Figura 4.5 – Modelo de arco circular abatido.	105
Tabela 4-4. Três primeiras frequências e períodos de vibração da	
torre T-1	105

	tempo
	Figura
	T-1 n
	A = 0
	Figura
	C=0.2
	Figura
	C=0.2
	Figura
	C = (
۲.	Figura
\$20/C	perm
0123	Figura
N° 1	perm
ligital	Figura
ão D	C = 0
ificaç	Figura
Cert	0.80r
-Rio -	Figura
- C	ω = 0
	Figura

Figura 4.6 – Variação do deslocamento horizontal no topo da torre	
T-1 no	
tempo com métodos Runge-Kutta explícitos.	106
Figura 4.7 – Variação do deslocamento horizontal no topo da torre	
T-1 no tempo com os métodos de RKG4 implícito e Newmark.	
A = 0.4g, C = 0.25M, ω = 5.8rad/s.	107
Figura 4.8 – Deslocamento horizontal do ponto B em Po-2. A=0.4g,	
C=0.25M, ω=7.86 rad/s.	109
Figura 4.10 – Deslocamento horizontal do ponto B em T-2. A=0.4g,	
C=0.25M, ω=5.1 rad/seg.	111
Figura 4.11 – Deslocamento horizontal do ponto B em Po-6. A = $0.4g$,	
C = 0.25M, ω =2.3 rad/seg.	111
Figura 4.12 – Deslocamento horizontal máximo de B em T-2 na fase	
permanente vs. frequência de excitação. A = 0.4g, C = 0.25M.	112
Figura 4.13 – Deslocamento horizontal máximo de B em Po-6 na fase	
permanente vs. frequência de excitação. A = 0.4g, C = 0.25M.	112
Figura 4.14 – Deslocamento vertical de B vs. t em Ac-1. A = 0.8g,	
C = 0.50M. P = 0.0kN, ω = 1.95rad/s. Base rígida.	113
Figura 4.15 – Deslocamento vertical de B em Ac-1 vs. t. C = 0. 5M, ω	=
0.80rad/s, P = 0.2kN.	114
Figura 4.16 – Deslocamento vertical de B em Ac-1 vs. t. C = 0.75M,	
ω = 0.80rad/s. Duração da excitação de base Tg = 15s.	115
Figura 4.17 – Relação P vs. deslocamento vertical de B em Ac-1 na	
fase permanente. A = 0.4g, C = 0.75M, ω = 0.80rad/s. Duração da	
excitação de base Tg = 15s.	115
Figura 4.18 – Relação P vs. Deslocamento vertical de B em Ac-1 na	
fase permanente. C = 0.75M, ω = 0.80rad/s; duração da excitação de	
base Tg = 15s.	116
Figura 4.19 – Deslocamento horizontal máximo de B em T-1 na fase	
permanente vs. frequência de excitação. A = 0.4g, C = 0.25M.	117
Figura 4.20 – Deslocamento horizontal máximo de B em Po-6 na fase	
permanente vs. frequência de excitação. A=0.4g, C=0.25M.	117
Figura 4.21 – Deslocamento horizontal máximo de B em T-2 na fase	
permanente vs. A. ω = 5.19rad/s, C = 0.25M, k _r = infinito (rígido).	118

Figura 4.22 – Deslocamento horizontal máximo de B em Po-6 na fase	
permanente x A. ω = 1.95rad/s, C = 0.25M, k _r =10 ⁶ kNm/rad.	119
Figura 4.23 – Deslocamento vertical de B em Ac-1 x t. A=0.4g,	
C=0.75M, ω=5. 0rad/s, P=0.2kN. k _h =rígido. Duração da	
excitação de base Tg = 15s.	120
Figura 4.24 – Deslocamento vertical de B em Ac-1 vs. t. A=0.4g,	
C=0.75M, ω=5. 0rad/s, P=0.2. k _r =rígido. Duração da excitação de	
base Tg = 15s.	121
Figura 4.25 – Deslocamento horizontal máximo de B em Ac-1 na fase	
permanente vs. frequência de excitação. A = 0.4g, C = 0.25M, P = 0,	
k _h = infinito.	121
Figura 4.26 – Deslocamento horizontal de B em T-1 x t. A=0.4g,	
C=0.25M, k _r =10 ¹¹ kNm/rad, ω=5.40rad/s, Mp=160MNm.	122
Figura 4.27 – Relação Momento vs. Rotação na base. A=0.4g,	
C=0.25M, k_r =10 ¹¹ kNm/rad, ω =5.40rad/s, Mp=160MNm.	123
Figura 4.28 – Sismo artificial gerado a partir do espectro de potência	
do sismo "El centro (1940)" direção Norte-Sul.	124
Figura 4.29 – Superposição de acelerogramas do sismo artificial	
e o sismo "El Centro ".	125
Figura 4.30 – Comparação entre espectros de densidade de potência.	125
Figura 4.31 – Deslocamento horizontal no tempo do topo do sistema	
Po-6. C=0.25M, k_r =10 ¹¹ kNm/rad. ts=50seg, tif = 5seg, tff = 40seg.	126
Figura 4.32 – Deslocamento horizontal de B em Po-6 x t, sismo	
Artificial. C = 0.25M, $k_r = 10^7 kNm/rad$, ts = 50seg, tif = 5seg.	127
Figura 4.33 – Deslocamento horizontal de B em T-1 x t, sismo	
Artificial. C=0.25M, k _r =10 ¹¹ kNm/rad. ts=55s, tif = 5s, tff = 45s.	
Mp=80MNm.	128
Figura 4.34 – Relação Momento x Rotação na base. Sismo artificial.	
C = 0.25M, $k_r = 10^{11}$ kNm/rad, ts = 55s, tif = 5s, tff = 45s, Mp = 80MNm.	128
Figura 5.1 – Variação do deslocamento no tempo de um sistema de	
um grau de liberdade submetido a uma carga harmônica com	
frequência de excitação ω ; fase transiente e fase permanente.	131
Figura 6.1 – Pilar engastado e livre, submetido a deslocamento	
harmônico de base.	146

Figura 6.2 – Deslocamento horizontal vs. tempo. Ag = 0.4g. (y) =	
9 16rad/s	147
Figura 6.3 – Norma da amplitude do deslocamento horizontal máximo	
no	
topo do elemento vs. frequência, Ag = 0.4g.	147
Figura 6.5 – Norma da amplitude do deslocamento horizontal máximo	no
topo vs. frequência de excitação.	149
Figura 6.6 – Sistema de 1 grau de liberdade com rigidez não linear	
não amortecido.	149
Figura 6.7 – Sistema de 1 grau de liberdade não amortecido com	
rigidez não linear.	151
Figura 6.8 – Norma do deslocamento horizontal máximo no topo <i>vs.</i>	
frequência.	152
Figura 6.9 – Arco abatido bi-engastado submetido a movimento	
harmônico vertical.	152
Figura 6.10 – Norma da amplitude vertical no meio do vão <i>vs.</i>	
frequência. A=1.0g, L=100m.	153
Figura 6.11 – Geometria de galpão com cobertura a duas águas.	154
Figura 6.12 – Primeiro e terceiro modos de vibração natural. Modos	
assimétricos.	155
Figura 6.13 – Segundo e quarto modo de vibração natural. Modos	
simétricos.	156
Figura 6.14 – Amplitude de vibração horizontal no meio do vão vs.	
frequência de excitação. Agx = 0.8g.	157
Figura 6.15 – Amplitude de vibração vertical no meio do vão vs.	
frequência de excitação. Agy = 0.8g.	159
Figura 6.16 – Amplitude de vibração horizontal e vertical no meio do	
vão vs. frequência de excitação. Agx = 0.8g, Agy = 0.667Agx.	160
Figura 6.17– Geometria de galpão com cobertura em arco circular.	
(dimensões em metros)	161
Figura 6.18 – Primeiro e terceiro modos de vibração natural. Modos	
não simétricos.	162
Figura 6.19 – Segundo e quarto modos de vibração natural.	163

Figura 6.20 – Amplitude de vibração horizontal no meio do vão vs.	
Frequência. Agx = 0.8g.	164
Figura 6.21 – Amplitude de vibração vertical no meio do vão vs.	
Frequência. Agy = 0.8g.	165
Figura 6.22 – Amplitude de vibração horizontal e vertical no meio do	
vão vs. Frequência. Agx = 0.8g, Agy = 0.66Agx.	166
Figura 7.1 – Registo de aceleração e FDEP. a) Aceleração do sismo	
Kobe, componente Leste-Oeste. b) FDEP sismo Kobe. c) Aceleração	
do sismo El Centro, componente Norte-Sul. d) FDEP sismo El Centro.	168
Figura 7.2 – Registo de aceleração artificiais gerados a partir do sismo)
El Centro.	170
Figura 7.3 – Registo de aceleração artificiais gerados a partir do	
sismo Kobe.	171
Figura 7.4 – Geometria e parâmetros de pórtico plano PT-1.	
Parâmetros da mola elasto-plástica:	
kr = 5 * 1010Nm/rad, $kep = 0.1 * kr$, $Mp = 105Nm$.	172
Figura 7.5 – Resposta de deslocamento e aceleração no centro do	
vão central. Sismo Kobe (1995).	173
Figura 7.6 – Resposta de deslocamento e aceleração no centro do	
vão. Sismo El Centro (1940).	174
Figura 7.7 – Relação momento-rotação no apoio elasto-plástico.	175
Figura 7.8 – Resposta de deslocamento e aceleração horizontal	
no topo de PT-1. SAKB1.	176
Figura 7.9 – Resposta de deslocamento e aceleração no centro do	
vão.	177
Figura 7.10 – Relação momento rotação no apoio elasto-plástico.	178
Figura 7.11 – Superior: FDEP com concentração de potência nas	
regiões de ressonância. Inferior: Amplitude de vibração horizontal	
no topo de PT-1 sob aceleração harmônica com componente	
horizontal e vertical.	182
Figura7.12 – Aceleração do sismo SAPCP1.	183
Figura 7.13 – Deslocamento e aceleração horizontal do topo de PT-1	
submetido ao sismo artificial SAPCP1.	184

Figura 7.14 – Geometria e propriedades de galpão a duas águas	
GPD-1. Parâmetros da mola elasto-plástica:	
kr = 5 * 1010Nm/rad, kep = 0.1 * kr, Mp = 105Nm.	185
Figura 7.15 – Deslocamento horizontal do meio do vão	
(topo da estrutura).	186
Figura 7.16 –. Relação momento-rotação no apoio elasto-plástico.	187
Figura 7.17 – Deslocamento horizontal no meio do vão central.	188
Figura 7.18 – Relação momento rotação no apoio elasto-plástico.	189
Figura 7.19 – Superior: FDEP com concentração de potência nas	
regiões de ressonância. Inferior: Amplitude de vibração horizontal	
no topo de PT-1 sob carga harmônica com aceleração horizontal e	
vertical.	192
Figura 7.20 – Aceleração do sismo SAPCG1.	192
Figura 7.21 – Deslocamento e aceleração horizontal do topo de	
GPD-1 submetido ao sismo artificial SAPCP1.	193
Figura 7.21 – Geometria e parâmetros de galpão a duas águas GPA-1.	
Parâmetros da mola elasto-plástica:	
kr = 5 * 1010Nm/rad, $kep = 0.1 * kr Mp = 105Nm$.	195
Figura 7.24 – Superior: FDEP com concentração de potência nas	
regiões de ressonância.	197
Figura 7.24 – Deslocamento horizontal no meio do no topo de GPA-1,	
com sismo replicado.	199
Figura 7.25 – Deslocamento horizontal no meio do no topo de GPA-1,	
sismos sucessivos alternados.	200

Listas de Tabelas

Tabela 2-1. Estrutura do Arranjo de coeficientes de Butcher	68
Tabela 2-2. Arranjo de Butcher do método clássico de RK4	
(Butcher,2003)	69
Tabela 2-3. Coeficientes de Niström de sexta ordem (Butcher,2003)	70
Tabela 2-4. Arranjo de coeficientes para o método de RKF45	
(Butcher,2003)	71
Tabela 2-5. Arranjo de Butcher para o método de RKG4	73
Tabela 2-6. Esquema do algoritmo de Newmark para problema	
não linear	75
Tabela 2-7. Esquema do algoritmo de Runge-Kutta para problema não	C
linear	77
Tabela 4-1. Parâmetros físicos e geométricos da estrutura T-1	102
Tabela 4-2. Parâmetros físicos e geométricos da estrutura T-2	102
Tabela 4-3. Parâmetros físicos e geométricos do arco Ac-1	105
Tabela 4-4. Três primeiras frequências e períodos de vibração	
da torre T-1	105
Tabela 4-5. Tempo de processamento para análise de T-1	108
Tabela 4-6. Δt máximo mantendo estabilidade na ressonância	108
Tabela 6-1. Frequências e períodos de vibração	146
Tabela 6-2. Primeiras quatro frequências vibração	154
Tabela 6-3. Primeiras quatro frequências	162
Tabela 7-1. Deslocamento e aceleração máxima no topo de PT-1	
obtidos	
com o sismo real e artificiais a partir de El Centro	179
Tabela 7-2. Deslocamento e aceleração máxima no topo de PT-1	
o sismo real e artificiais a partir do registro de Kobe	180
Tabela 7-3. Deslocamento e aceleração máxima no topo de PT-1	184

Tabela 7-4. Deslocamento e aceleração máxima no topo de GPD-1 obtidos	100
Tabela 7-5. Deslocamento e aceleração máxima no topo de GPD-1 obtidos	130
com o sismo real e sismos artificiais a partir do sismo Kobe	191
Tabela 7-6. Deslocamento e aceleração máxima no topo de GPD-1 obtidos	
com potências concentradas	194
Tabela 7-7. Deslocamento e aceleração máxima no topo de GPA-1 obtidos	
com sismos reais e artificiais a partir do sismo Kobe	195
Tabela 7-8. Deslocamento e aceleração máxima no topo de GPA-1 btidos	
com o sismo real e artificiais a partir do sismo El Centro	196
Tabela 7-9. Deslocamento e aceleração máxima no topo de GPD-1 obtidos com potências concentradas	197

Lista de Símbolos

<i>a</i>	Coeficiente de arranio de Butcher
A	Área da seção transversal do elemento. Amplitude de vibração
A .	I-ésimo coeficiente de um polinômio que define uma função de
11	interpolação Amplitude de harmônico.
A R	Coeficientes da série de Fourier
A	Enésimo Vetor de Amplitudes modais em coseno:
A .	Vetor global de Amplitudes modais em coseno;
\overline{A}	Vetor global de Amplitudes modais
h:	Coeficiente de arranio de Butcher
B(x)	Matriz de relação cinemática deslocamento- deformação
B	Enésimo Vetor de Amplitudes modais em seno:
\boldsymbol{B}_{1}	Vetor global de Amplitudes modais em seno;
<i>c</i>	Coeficiente de amortecimento
с: С:	Coeficiente de arranio de Butcher
<i>C</i>	Matriz de amortecimento de um elemento:
C	Matriz global de amortecimento:
$C(\tau)$	Matriz auxiliar:
Ē	Matriz equivalente de amortecimento no domínio da frequência:
C _i	Valor da funcão densidade de espectro de potência:
e	Parcela linear de deformação longitudinal;
Ε	Módulo de elasticidade de Young;
f(t)	Campo de forças externas variável no tempo;
f	Freqüência de excitação de carregamento harmônico.
f(x,t)	Função arbitrária dependente do tempo e da coordenada longitudinal;
f_i	Valor i-ésimo de função discreta;
f(t)	Função arbitrária dependente do tempo;
f(x)	Função arbitrária dependente da coordenada x;
F_i	Campo de forcas internas em um elemento:
F _a	Vetor de forças internas de um sistema aumentado;
F_{aux}	Vetor auxiliar de forças internas;
Fint	Vetor de Forças nodais internas em um elemento em coordenadas
the second	locais;
Fe	Vetor de Forças nodais externas em um elemento em coordenadas
	locais;
Fia	Vetor de Forças internas nodais em um elemento em coordenadas
9	globais;
F_r	Vetor de forças de referencia em um elemento;
Fe	Vetor global de forças nodais externas;
Fi	Vetor global de forças nodais internas;
Fr	Vetor global de forças de referencia;
Ê	Vetor global de forças equivalente no método de Newmark;

\overline{F}	Vetor de amplitudes de força externa no domínio da frequência;
$\overline{F}i$	Vetor de amplitudes de força externa no domínio da frequência;
F_n	Valor enésimo de função transformada discreta;
$F(\xi)$	Transformada de Fourier da função $f(\eta)$;
g	Resíduo de equação de restrição;
h	Altura da seção transversal;
H_i	I-éssima função de interpolação;
H(x)	Matriz que contem as funções de interpolação;
I(t)	Função de intensidade no tempo;
Ι	Momento de inércia da seção transversal do elemento viga-coluna;
i, j	Indice contador de uma série de elementos;
I ₃	Matriz identidade de ordem 3x3;
k_r, k_h	rigidez de elemento unidimensional que modela solo em rotação e translação;
$\mathbf{k}_{r}^{EP}, \mathbf{k}_{h}^{EP}$	rigidez de elemento unidimensional que modela solo em rotação e
	translação em regime elasto-plástico;
k	Índice contador de iterações;
k _i	Coeficiente de aproximação de tangente nos métodos de Runge-
	Kutta;
Ka	Matriz de rigidez aumentada;
K_L	Matrix de rigidez Linear;
$K_{ au}$	Matrix de rigidez Dependente do estado de tensão;
Ke	Matriz de rigidez equivalente do elemento coordenadas locais;
Keg	Matriz de rigidez equivalente do elemento coordenadas globais;
K _{aux}	Matriz de rigidez auxiliar;
К	Matriz global de rigidez
Ƙ	Matriz de rigidez equivalente no método de Newmark;
$\overline{\mathbf{K}}(\omega)$	Matriz de impedância;
L	Comprimento do elemento e/ou estrutura;
М	Matriz de massa de um elemento;
M	Matriz global de massa;
M	Matriz equivalente de Massa no domínio da frequência;
Μ	Momento Fletor;
n	Número contador associado a uma equação;
N, N	Esforço normal, Número total de elementos de um grupo;
P	Força axıal;
Q	Estorço cortante;
<i>R</i>	Residuo a minimizar;
r	Vetor global de referencia de deslocamentos de corpo rigido
R	Vetor de forças de receite de hase
R	Pasídua da farasa na fraguancia:
$\mathbf{K}(\omega, \mathbf{A})$	Área superficial de um elemente:
S	Alea superincial de uni elemento, Digidaz da madala da ligação rotagional:
S_c	Matriz espectral model:
3 (1)	Tempo.
tol	Tolerância:
ιοι T	Matriz de rotação:
1 T'	Matriz de rotação equivalente:
1	maine de rotação equivalence,

ť	Submatriz de rotação equivalente;
\overline{T}	Matriz de transformação cinemática;
Т	Período de tempo, Indicador temporal, Período de vibração;
ü _g	Função de aceleração de base;
u	Vetor de deslocamentos nodais de um elemento;
\boldsymbol{u}_{aux}	Vetor uxiliar de deslocamentos nodais de um elemento;
U	Energia pontencial de deformação;
U	Vetor global de deslocamentos nodais;
Ū	Vetor global de deslocamento nodais relativos à base;
V	Volume de um elemento;
W	Trabalho das forças externas;
W_n	Enésima componente complexa da transformada rápida de Fourier;
$\mathbf{u}(t)$	Campo de deslocamentos dependentes tempo;
$\dot{\mathbf{u}}(t)$	Campo de velocidades dependentes no tempo;
$\ddot{\mathbf{u}}(t)$	Campo de acelerações dependentes do tempo;
\boldsymbol{u}_N	Vetor de deslocamentos nodais em coordenadas naturais do
elemento.	
х	Coordenada horizontal, coordenada longitudinal;
У	Coordenada vertical, coordenada transversal;
x_0	Valor inicial arbitrário para x;
X	Função de suposição de harmônicos;
ÿ _{nc}	Função de aceleração sem correção de linha base;
ÿ _{cc}	Função de aceleração com correção de linha base;
Y_n	Enésima componente par da transformada rápida de Fourier;
Z	Coordenada transversal do espaço;
Z_n	Enésima componente ímpar da transformada rápida de Fourier;
Z	Função auxiliar no método de integração Runge-Kutta em sistemas
	dinâmicos;
0	Vetor de componentes nulas;
Operadores	

sign()	Operador que calcula o sinal de um número real;
floor()	Operador que devolve o valor absoluto do inteiro mais próximo;
I ()	Operador que aplica a transformada de Fourier;
$\mathfrak{I}^{-1}()$	Operador que aplica a transformada inversa de Fourier;

Símbolos gregos

α_i	Í-ess	sin	10	âng	gul	0	de	fase;	
	~	~				-	-		

- β Coeficiente de Newmark;
- Incremento de deformação; Δε
- Incremento de deslocamento longitudinal; Δu
- Incremento de deslocamento transversal; Δv
- Parcela não linear do incremento de deformação; Δη
- Parâmetro de incremento de arco; Δl
- Deformação longitudinal; Variação; δ
- Fração ou incremento de uma grandeza; Δ

λ	Parâmetro de carga;
ξ	Taxa de amortecimento;
θ	Deformação rotacional;
γ	Coeficiente de Newmark;
ρ	Densidade de material;
ΔΠ	Variação da energia potencial total;
τ	Tensor de tensões, coordenada de tempo periódico
μ	Coeficiente de proporcionalidade;
φ	Coeficiente de proporcionalidade no método do controle de arco;
$\phi_{ff}(\omega)$	Função densidade de espectro de potência;
φ	Rotação relativa entre elemento e ligação;
φ	Vetor que define modo de vibração;
Ψ	Rotação de corpo rígido;
Ψ	Função arbitrária de ponderação;
ω	Freqüência circular de vibração/excitação externa;
a. 1	

Siglas

Ac-1	Modelo de arco abatido;
FDEP	Função densidade espectro de Potencia de uma função no tempo;
FFT	Transformada rápida de Fourier;
GPD-I	Modelo de galpão a duas águas;
GPA-I	Modelo de galpão com cobertura em arco;
MBH	Método do Balanço Harmônico;
Po-2	Modelo de pórtico de dois andares;
PT-I	Modelo de pórtico plano de um andar;
Po-6	Modelo de pórtico de seis andares;
PK-II	Segundo tensor de Piola-Kirchhof;
RLT	Referencial Lagrangiano Total;
RLA	Referencial Lagrangiano Atualizado;
T-1	Modelo de torre esbelta;
T-2	Modelo torre esbelta com massa concentrada no topo;

"Engineers ... are not superhuman. They make mistakes in their assumptions, in their calculations, in their conclusions. That they make mistakes is forgivable; that they catch them is imperative. Thus it is the essence of modern engineering not only to be able to check one's own work but also to have one's work checked and to be able to check the work of others."

Henry Petrosky