3 Características do projeto de mineração Pampa de Pongo no Peru

3.1. Introdução

As informações básicas sobre os taludes da mineração Pampa de Pongo, situada no Peru, apresentadas neste capítulo, foram extraídas do relatório "Estudio de Estabilidad de Taludes de los Tajos Mina 2 y Mina 4" apresentado pelos projetistas (Buenaventura Ingenieros S.A, 2011) à empresa contratante Jinzao Mining Peru SA.

A região do projeto Pampa de Pongo está localizada na porção sudoeste do Peru, no distrito de Bella Unión, provincia de Caravelí, região de Arequipa, 50 km ao Sul da cidade de Nazca e a 550 km da capital Lima (Figura 3.1). As coordenadas UTM de um ponto central são 8.301,000N e 518,000E, a altitude é de 400 metros acima do nível do mar e a profundidade da mineração a céu aberto é, em média, de 800 a 900 m.

Figura 3.1 - Mapa de localização geográfica do projeto Pampa de Pongo, Peru.

O projeto possui grandes recursos minerais, principalmente em ferro (Fe), ouro (Au) e cobre (Cu). A área aqui investigada constitui a principal jazida, tendo uma dimensão de 2,8km de comprimento por 2,1km de largura, com uma orientação aproximada de 40°N - 50°W. A jazida mineral está abaixo de 450 m de profundidade, contendo 37% Fe, 0,09% Cu e 0,06 ppm Au.

A mineração está localizada na depressão Ica-Nazca, limitada na borda oeste da Cordilheira Ocidental pela falha Bella Union. O mapeamento da geologia estrutural nesta região evidenciou a existência de cinco famílias de falhas:

- Falhas de direção NW-SE, correspondentes a falhas sinistrais.
- Falhas de direção NEE-SWW, EW correspondentes a falhas destrais.
- Falhas de direção NS, NNW-SSE, de maior continuidade na parte central do projeto Pampa de Pongo, mergulhando na direção NE, correspondentes a falhas decorrentes.
- Falhas NE-SW
- Falhas de direção NW-SE, correspondentes a falhas regionais que atravessam a região do projeto, observadas por meio de imagens de satélite.

De acordo com estas orientações, as falhas podem ser classificadas em dois tipos principais: falhas longitudinais e falhas transversais. As falhas longitudinais apresentam azimute N140° e mergulhos acima de 65° E, são paralelas à direção do corpo de mineração, sendo aqui designadas como falhas E-W. As falhas transversais têm azimute aproximado de N40° e mergulho acima de 70°E/W, cruzando as falhas longitudinais. Na região do projeto (Figura 3.2) a falha transversal Norte atravessa todo o corpo de mineração.

3.2. Propriedades geotécnicas do maciço rochoso

A classificação da qualidade do maciço rochoso foi feita empregando o critério geomecânico Bieniawski (RMR - Rock Mass Rating-1989). De acordo com este sistema, o valor do índice RMR varia de 0 a 100 e classifica o maciço em cinco categorias: RMR de 0-20 como muito fraco, de 21 a 40 como fraco, 41-60 como regular, 61-80 como bom e 81-100 como muito bom.

Na mineração Pampa do Pongo tais intervalos foram subdivididos de acordo com Tabela 3.1. A rocha predominante (56%) no maciço foi classificada como do tipo bom (II) e regular A (IIIA), com 11% de rocha regular B (IIIB), 16% do tipo fraco A (IVA), 11% do tipo fraco B (IVB) e 6% como rocha muito fraca (V).

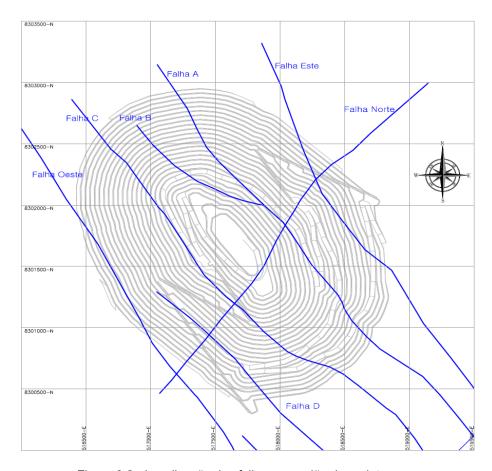


Figura 3.2 - Localização das falhas na região do projeto.

Tabela 3.1 - Critério de classificação do maciço rochoso segundo (Buenaventura Ingenieros Bisa, 2012).

II >60 Bom III A 51-60 Regular A III B 41-50 Regular B IV A 31-40 Fraco A IV B 21-30 Fraco B	Tipo de rocha	Classificação RMR	Qualidade segundo RMR
III B 41-50 Regular B IV A 31-40 Fraco A	II	>60	Bom
IV A 31-40 Fraco A	III A	51-60	Regular A
	III B	41-50	Regular B
IV B 21-30 Fraco B	IV A	31-40	Fraco A
	IV B	21-30	Fraco B
V <21 Muito fraco	V	<21	Muito fraco

3.2.4. Resumo das propriedades para a mineração Pampa de Pongo

As Tabelas 3.2, 3.3. e 3.4, associadas com a Figura 3.3 e equações (2.29) e (3.18), mostram os valores das propriedades geotécnicas do maciço rochoso necessárias para a execução das análises numéricas do comportamento dos taludes da mineração Pampa de Pongo.

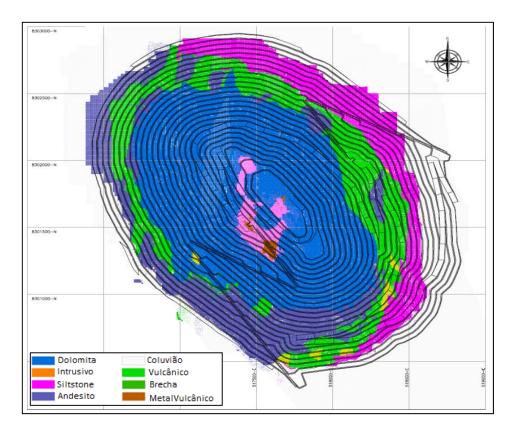


Figura 3.3 - Unidades litológicas observadas na última fase de escavação da mina a céu aberto.

Um dois parâmetros mais importantes do comportamento mecânico do maciço rochoso é a resistência a compressão simples da rocha intata. Os valores de resistência a compressão simples foram obtidos dos ensaios de carga pontual e ensaios de compressão triaxial feitos em amostras obtidos dos furos de perfuração. Um ressumo dos valores obtidos são apresentados na tabela 3.2.

Outro parâmetro importante da rocha intata e a constante m_i da rocha intata do critério de ruptura de Hoek & Brown (Hoek et al., 2002) foi obtido dos ensaios de compressão triaxial em amostras cilíndricas onde cada ensaio foi feita para 10 amostras de rocha; adicionalmente foram feitos ensaios de determinação de propriedades físicas. Um resumo dos pesos especificos e da constante m_i da rocha intata é apresentado na tabela 3.2.

Tabela 3.2 - Parâmetros do maciço rochoso (Buenaventura Ingenieros S.A, BISA, 2011).

Tipo de Material (Solo/rocha)	γ (KN/m³)	mi	σ _{ci} (MPa)			GSI			v
(Solo/rocha)				VI B	VI A	III B	III A	Ш	
Solo coluvião	17,0	-	-	-	-	-	-	-	
Brecha	22,0	-	-	-	-	-	-	-	0,25
Calcário e Dolomita	25,0	12,1	52,10	31	34	47	57	64	0,25
Metavulcânico	25,0	15,0	115,6	-	34	45	53	64	0,23
Intrusivo	26,0	28,6	126,6	-	39	39	56	65	0,25
Siltito - Arenito	23,0	13,0	124,1	27	38	38	55	64	0,25
Andesito	24,0	27,5	123,5	27	32	44	56	65	0,24
Vulcânico	25,0	26,0	133,3	28	32	43	56	65	0,23

Tabela 3.3 - Módulos de elasticidade do maciço rochoso pelo critério de Hoek-Brown.

Tipo de Rocha	D			E _m (GPa)		
	_	VI B	VI A	III B	III A	II
Brecha	0,85	-	-	6,000	8,000	-
Calcário e Dolomita	0,85	1,390	1,652	3,492	6,210	9,292
■ Metavulcânico	0,85	-	2,289	4,312	6,834	1,873
■ Metavulcânico Profundo*	0,70	-	2,588	4,874	7,725	14,552
Intrusivo	0,85	-	3,053	3,053	8,122	13,635
Siltito - Arenito	0,85	1,530	2,882	2,882	7,668	12,873
Andesito	0,85	1,530	2,040	4,071	8,122	13,635
Vulcânico	0,85	1,621	2,040	3,843	8,122	13,635
Vulcânico Profundo*	0,70	1,832	2,306	4,344	9,181	15,414

^{*} Rocha mais profunda

Os parâmetros de resistência nesse trabalho foram determinados empregando o software RocLab (Rocsience, 2015a) com seguintes dados de entrada:

- σ_{ci} : resistência à compressão simples da rocha intacta;
- GSI: Geological Strangh Index;
- m_i: constante de rocha no modelo de Hoek & Brown;
- D: fator de dano;
- y : peso especifico;
- H: altura do talude.

Tabela 3.4 - Parâmetros de resistência do maciço rochoso empregados nas análises.

Descrição	Tipo de Rocha	D	c' (kPa)	Φ´ (°)	c' (kPa)	Ф' (°)						
Descrição	Tipo de Rocha	"	VI B		VI A		III B		III A		ii	
	Brecha	0,85	-	-	-	-	4000	35	5000	35	-	-
	Calcário e Dolomita	0,85	-	-	-	-	500	35.23	1368	30	2432	28.35
	Metavulcânico	0,70	-	-	925	27.28	4155	23.85	-	-	-	-
Seção	Intrusivo	0,85	-	-	-	-	4250	22.88	6414	31.44	-	-
A-A	Siltito - Arenito	0,85	-	-	-	-	850	32	-	-	-	-
	Andesito	0,85	-	-	-	-	4654	25.02	1792	46.62	1447	56.78
	Vulcânico	0,85	1400	26	3525	19	1063	42.42	-	-	-	-
	Vulcânico Profundo	0,70	-	-	1180	37.33	5554	27.33	7275	33.31	-	-
	Brecha	0,85	-	-	-	-	4000	35	5000	35	-	-
	Calcário e Dolomita	0,85	-	-	601	21.5	860	28	1161	32.02	1334	36.45
	Metavulcânico	0,85	-	-	3159	20	4312	20.93	4964	27.33	2067	47.57
	Intrusivo	0,70	-	-	-	-	-	-	-	-	6291	32.29
Seção B-B	Siltito - Arenito	0,85	-	-	-	-	-	-	-	-	-	
D-D	Andesito	0,85	-	-	1000	289	3000	17	-	-	-	-
	Vulcânico	0,85	-	-	594	33.87	4654	25.02	6178	31.11	-	-
	Vulcânico Profundo	0,85	942	30	3525	18.92	1100	42.64	-	-	-	-
	Brecha	0,70	-	-	4252	22.46	1017	47.94	7275	33.31	-	-
	Brecha	0,85	-	-	-	-	4000	35	5000	35	-	-
Seção	Calcário e Dolomita	0,85	-	-	-	-	693	30.5	1268	31	2434	28.35
F-F	Metavulcânico Profundo	0,70	-	-	-	-	4155	23.85	4964	27.33	6291	32.29
	Intrusivo	0,85	-	-	-	-	-	-	-	-	-	-

Descrição	Tipo de Rocha	D	c' (kPa)	Φ´ (°)	c' (kPa)	Ф' (°)						
Descrição	Tipo de Rociia		VI B		VI A		III	III B		Α	I	I
	Siltito - Arenito	0,85	-	-	3000	16,93	738	32,87	-	-		
	Andesito	0,85	2830	17,05	3338	19,31	4654	25,02	1377	49,84	7542	35,84
Seção F-F	Andesito	0,70	3488	20,69	4023	22,88	-	-	-	-	-	-
1-1	Vulcânico	0,85	1125	28	1234	31	4801	24,09	1488	49,22	-	-
	Vulcânico Profundo	0,70	4252	-	-	-	-	-	-	-	-	-
	Brecha	0,85	-	-	-	-	4000	35,00	5000	35	-	-
	Calcário e Dolomita	0,85	466	23.4	645	19,89	1037	25,09	1047	33,42	2432	28,32
	Metavulcânico	0,70	-	-	3159	20	4155	23,85	4964	27,33	5755	30,14
Seção	Intrusivo	0,85	-	-	-	-	-	-	-	-	-	
G-G	Siltito - Arenito	0,85	-	-	-	-	3000	16,96	-	-	-	
	Andesito	0,85	-	-	384	38,97	4654	25,02	6178	31,11	-	-
	Vulcânico	0,85	923	30	1289	30,03	4801	24,09	6548	30,64	-	-
	Vulcânico Profundo	0,70	3796	20,72	-	-	-	-	-	-	-	-

3.2. Propriedades geotécnicas das descontinuidades

3.2.1 Resistência ao cisalhamento

O critério generalizado de Hoek e Brown (2002) pode ser empregado para rocha intacta ou maciço rochoso altamente fraturado, o qual pode ser considerado um meio contínuo homogêneo e isotrópico. Não deve ser aplicado quando uma das famílias de descontinuidades é significativamente menos resistente que outras, caso onde deve ser utilizado o critério de resistência ao cisalhamento de Barton - Bandis ou de Mohr-Coulomb, aplicados diretamente às descontinuidades. O comportamento de uma descontinuidade depende das caraterísticas de rugosidade das paredes e do material de preenchimento. Segundo Bhawani & Goel (2011) o material de preenchimento é geralmente um material finamente granulado resultante do atrito entre as paredes da falha.

Da análise dos resultados de ensaios de cisalhamento direto Barton (1974) indicou que os preenchimentos podem ser classificados em dois grupos, um com argilas e outro com brechas. No caso de argilas (montmorilonita ou bentonita) o ângulo de atrito varia de 8° a 20° e a coesão entre 0 a 200 kPa. No caso de brechas pode existir uma combinação de argilas com material granular, alcançando-se valores para o ângulo de atrito de 25° a 45° e para a coesão entre 0 a 100 kPa.

A Tabela 3.5 apresenta valores típicos de ângulos de atrito para areias, siltes e argilas segundo Terzaghi e Peck (1967).

Tabela 3.5 – Ângulos de atrito para areias, argilas e siltes (Terzaghi e Peck 1967).

Tipo do colo	Ângulo de	atrito ¢′ (°)
Tipo de solo	Fofo	Denso
Areia, grãos arredondados	27,5	34
Areia, grãos angulares	33	45
Pedregulho arenoso	35	50
Areia siltosa	27-33	30-34
Silte inorgânico	27-30	30-35

O efeito do preenchimento na resistência ao cisalhamento depende tanto da sua espessura quanto das propriedades de resistência ao cisalhamento. Se a espessura for maior do que 25–50% da amplitude das asperezas, então o contato entre as paredes da descontinuidade pode não existir e as propriedades de

resistência da fratura serão aquelas do material de preenchimento (Goodman, 1970). Haque (1999) estudou as características de resistência ao cisalhamento de falhas não preenchidas e preenchidas em ensaios de cisalhamento direto, constatando que falhas não preenchidas diminuem drasticamente sua resistência com a adição de uma camada fina de material de preenchimento.

No caso de descontinuidades geológicas contínuas (juntas persistentes, falhas) a estimativa dos parâmetros de coesão e ângulo de atrito é feita considerando-se retroanálises ou provenientes de informações da literatura considerando projetos com características semelhantes (Tabela 3.6). São parâmetros difíceis de serem estimados, pois variam com a profundidade da falha, mas que devem ser cuidadosamente selecionados devido ao alto grau de influência nos resultados finais das análises.

Tabela 3.6 - Valores de resistência ao cisalhamento para descontinuidades com preenchimento. Modificado Hoek & Bray (1974).

		Doois	stencia F	Diag	Res	istencia		
Rocha	Descrição	Resi	stericia r	100	Residual			
		c' (Kg/cm²)	c' (KPa)	φ°	c' (Kg/cm²)	c' (KPa)	φ°	
Diorito,	Falha com argila	0	0	26,5				
granodiorito	(2% de argila, Pi=17%)	U	U	20,5	-	-	-	
	Falha preenchida com argila	0-1	0-100	24-25	-	-	-	
	Falha preenchida com areia	0,5	50	40	-	-	-	
Granito	Zona de cisalhamento, granitos							
	fragmentados, roca desintegrada	2,42	240	42	-	-	-	
	e brecha							
	Preenchimento de 6 mm de argila	-	-	-	-	-	-	
Calcário	Preenchimento de 1 a 2 cm com	1	100	13-14	0	0	13	
Calcallo	argila	ı	100	13-14	U	U	13	
	Preenchimento < 1 mm com argila	0,5-2	50-200	17-21				

O relatório de geologia estrutural da mineração Pampa de Pongo (Buenaventura Ingenieros S.A, BISA, 2012) descreve que a espessura das falhas pode atingir até 1m e apresentam preenchimento com materiais grossos e finos (argilas, silte) combinados. Nestas condições, adoptou-se para todas as falhas presentes na mineração os valores c' = 80 kPa e φ' =28°.

3.3.2 Parâmetros de rigidez

Para a modelagem numérica com o programa computacional Phase2 é necessária à determinação do módulo de rigidez normal (k_n), sendo obtido com a aplicação da equação (2.9) e a obtenção do módulo de cisalhamento (k_s) é obtido da relação k_n/k_s =11, considerando os diversos tipos de litologia da área em estudo. Os correspondentes valores estão listados nas Tabelas 3.7 e 3.8.

Tabela 3.7 - Rigidez normal empregado no programa Phase2.

Descontinuidade			k_n (MPa/1	n)	
Descontinuadae	VI B	VI A	III B	III A	II
Brecha	-	-	2000,00	2666,67	-
Calcário e Dolomita	463,41	550,76	1164,03	2069,98	3097,17
Metavulcânico	-	763,04	1437,30	2277,96	4290,88
Intrusivo	-	101,53	1017,53	2707,36	4545,13
Siltito - Arenito	509,97	960,61	960,61	2555,92	4290,88
Andesito	509,97	680,06	1356,90	2707,36	4545,13
Vulcânico	540,19	680,06	1280,99	2707,36	4545,13

Tabela 3.8 - Rigidez cisalhante empregado no programa Phase2.

Descontinuidade			k_s (MPa/r	n)	
Descontinuidade	VI B	VI A	III B	III A	II
Brecha	-	-	181,82	242,42	-
Calcário e Dolomita	42,13	50,07	105,82	188,18	281,56
Metavulcânico	-	69,37	130,66	207,09	390,08
Intrusivo	-	92,50	92,50	92,50	92,50
Siltito - Arenito	46,36	87,33	87,33	232,36	390,08
Andesito	46,36	61,82	123,35	246,12	413,19
Vulcânico	49,11	61,82	116,45	246,12	413,19

Nos programas computacionais Plaxis 2D e Plaxis 3D as propriedades dos elementos de interface estão relacionadas com os parâmetros da rocha adjacente. Quando a interface é assumida elástica tanto deslocamentos tangenciais (deslizamentos relativos das superfícies da falha) quanto normais podem ocorrer.

As propriedades de rigidez da interface são obtidas das seguintes equações:

$$\frac{\sigma}{k_n} = \frac{\sigma t_i}{E_{oed,i}}$$
 = Deslocamento elástico normal (3.1)

$$\frac{\tau}{k_s} = \frac{\tau t_i}{G_i}$$
 = Deslocamento elástico cisalhante (3.2)

onde G_i é o módulo de cisalhamento da interface, $\mathsf{E}_{\mathit{oed},i}$ o módulo de compressão unidimensional da interface, t_i é uma espessura virtual atribuída para cada interface e estabelecida durante a geração da malha de elementos finitos, k_n a rigidez elástica normal e k_s a rigidez elástica de cisalhamento.

Os programas computacionais Plaxis 2D / 3D atribuem para cada interface uma espessura virtual t_i, dimensão imaginária usada para definição das propriedades da interface. Quanto maior o valor da espessura virtual, tanto maiores serão as deformações elásticas geradas. Como elementos de interface devem produzir pouca deformação elástica, então o valor da espessura virtual deve ser pequeno, mas não tão pequeno a ponto de introduzir mal condicionamento no sistema de equações. A espessura virtual é calculada pela multiplicação do fator de espessura virtual (valor padrão de 0,1) vezes o tamanho do elemento global determinado em função do grau de discretização da malha de elementos finitos. Nas análises aqui efetuadas foram utilizados os valores previamente definidos pelos programas Plaxis.

Os módulos de cisalhamento (G_i) e de compressão unidimensional $(E_{oed,i})$ são relacionados pela seguinte expressão

$$E_{oed,i} = 2G_i \frac{1 - \nu}{1 - 2\nu} \tag{3.3}$$

Substituindo a equação (3.3) nas equações (3.1) e (3.2), é então possível calcular os valores de rigidez para cada interface levando em conta a rocha adjacente.

$$k_n = \frac{E_{oed,i}}{t_i} = \frac{2G_i(1-\nu)}{(1-2\nu)t_i}$$
(3.4)

$$k_{\rm s} = G_i/t_i \tag{3.5}$$

onde o coeficiente de Poisson é assumido como v = 0.45.

As Tabela 3.9 e 3.10 listam os módulos de cisalhamento das descontinuidades para cada tipo de rocha nas análises 2D e as Tabelas 3.11 e 3.12 apresentam os correspondentes valores utilizados nas análises 3D.

Tabela 3.9 - Parâmetros do modulo de cisalhamento das descontinuidades empregadas para as análises 2D para as seções 1-1 e 2-2.

		Gi	(MPa) (Se	ç 1-1)			Gi (MF	Pa) (SECCI	ÓN 2-2)	
	VIB	VI A	III B	III A	II	VIB	VI A	III B	III A	П
Brecha	-	-	345,64	460,85	-	-	-	347,09	462,79	-
Calcário e Dolomita	80,09	95,18	201,17	357,73	535,25	80,42	95,58	202,01	359,24	537,50
Metavulcânico	-	131,87	248,39	393,67	741,54	-	132,42	249,44	395,33	744,66
Intrusivo	-	175,85	175,85	467,88	785,48	-	176,59	176,59	469,85	788,79
Siltito - Arenito	88,13	166,01	166,01	441,71	741,54	88,50	166,71	166,71	443,57	744,66
Andesito	88,13	117,53	234,50	467,88	785,48	88,50	118,02	235,48	469,85	788,79
Vulcânico	93,35	117,53	221,38	467,88	785,48	93,75	118,02	222,31	469,85	788,79
		t _i =	1,901				t _i =	1,909		

Tabela 3.10 - Parâmetros do modulo de cisalhamento das descontinuidades empregadas para as análises 2D para as seções 3-3 e 4-4.

			Gi (MP	a) (SECC	IÓN 3-3)		Gi (MPa) (SECCIÓN 4-4)					
		VIB	VI A	III B	III A	II	VIB	VI A	III B	III A	П	
	Brecha	-	-	253,45	337,94	-			344,00	458,67		
Calcário e D	olomita	58,73	69,80	147,51	262,32	392,50	79,71	94,73	200,21	356,04	532,71	
Metavu	ulcânico	-	96,70	182,14	288,68	543,77	-	131,24	247,22	391,81	738,03	
lı	ntrusivo	-	128,95	128,95	343,10	575,99	-	175,01	175,01	465,67	781,76	
Siltito -	Arenito	64,63	121,74	121,74	323,90	543,77	87,72	165,22	165,22	439,62	738,03	
А	ndesito	64,63	86,18	171,96	343,10	575,99	87,72	116,97	233,39	465,67	781,76	
Vι	ulcânico	68,46	86,18	162,34	343,10	575,99	92,91	116,97	220,33	465,67	781,76	
			t _i =	1,394				t _i =	1,892			

t_i: Espessura virtual (m)

Tabela 3.11 - Parâmetros do modulo de cisalhamento das descontinuidades empregadas para as análises 3D para as seções 1-1 e 2-2.

		Gi (MP	a) (SECC	IÓN 1-1)		Gi (MPa) (SECCIÓN 2-2)					
	VIB	VI A	III B	III A	II	VIB	VI A	III B	III A	П	
Brecha	-	-	405,09	540,12	-	-	-	406,73	542,30	-	
Calcário e Dolomita	93,86	111,55	235,77	419,26	627,32	94,24	112,01	236,72	420,96	629,85	
Metavulcânico	-	154,55	291,12	461,39	869,10	-	155,17	292,29	463,25	872,61	
Intrusivo	-	206,10	206,10	548,36	920,60	-	206,93	206,93	550,58	924,31	
Siltito - Arenito	103,29	194,57	194,57	517,69	869,10	103,71	195,35	195,35	519,78	872,61	
Andesito	103,29	137,74	274,83	548,36	920,60	103,71	138,30	275,94	550,58	924,3	
Vulcânico	109,41	137,74	259,46	548,36	920,60	109,86	138,30	260,51	550,58	924,3	
		t _i =	2,228				t _i =	2,237			

Tabela 3.12 - Parâmetros do modulo de cisalhamento das descontinuidades empregadas para as análises 3D para as seções 3-3 e 4-4.

	Gi (MPa) (SECCIÓN 3-3)					Gi (MPa) (SECCIÓN 4-4)				
	VIB	VI A	III B	III A	II	VIB	VI A	III B	III A	П
Brecha	-	-	213,09	284,12	-	-	-	287,82	383,76	-
Calcário e Dolomita	49,37	58,68	124,02	220,55	329,99	66,69	79,26	167,51	297,89	445,71
Metavulcânico	-	81,30	153,14	242,71	457,17	-	109,81	206,84	327,82	617,50
Intrusivo	-	10841	108,41	288,46	484,26	-	146,43	146,43	389,61	654,09
Siltito - Arenito	54,34	10235	102,35	272,32	457,17	73,39	138,24	138,24	367,82	617,50
Andesito	54,34	72,46	144,57	288,46	484,26	73,39	97,87	195,27	389,61	654,09
Vulcânico	57,55	72,46	136,48	288,46	484,26	77,74	97,87	184,35	389,61	654,09
		t _i =	1,172				t _i =	1,583		

t_i : Espessura virtual (m)