
5 
Case studies  

In this chapter, we present the case studies done to evaluate the proposed 

approach. As described in the previous chapter, the most time-consuming part of 

the computational effort associated with this methodology lies in the reservoir 

simulations required to determine optimal proactive control strategies. For this 

reason, in the first case study we propose a simple model to allow a proof of 

concepts for the timing for control. There are varieties of strategies that follow the 

general approach, differing by the degree of flexibility that is afford to the strategy 

at each step. The exact solutions from the simple model are known, and yet is 

sufficiently detailed to portray and delineate the valve optimization problem, so we 

can use it to validate the flexible optimization process proposed, and incorporates 

both model uncertainty and future information under very low computational cost. 

We also consider a synthetic reservoir model with properties similar to a real 

reservoir in the remaining case studies, incorporating geological uncertainty and 

future information by wells and field measurements.  

We divided the tests into 4 case studies. In Case 1, we seek to proof some 

concepts of methodology (described in chapter 4), and for that we use a “toy” model 

to verify that our approach has potential for the valuation of flexibility. Case 2 is a 

preliminary reservoir study, representing the first attempt to apply the proposed 

approach on a reservoir model, with 50 geological realizations chosen randomly. 

Case 3 considers the same reservoir model presented in Case 2, but with an 

improved reservoir development plan, and the importance of prior information in 

detection the influence of the flow restriction by the smart wells. Finally, Cases 4 

and 5 we consider the full approach, including validation, considering “toy” and 

reservoir models, respectively. 
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5.1. 
Case 1 - Using a “toy” model to proof the concepts of the proposed 
approach 

In order to evaluate the proposed approach, verifying that our concept has 

potential for valuation of flexibility, we choose to start the study cases, using 

reservoir models, because the nonlinearity of the solution space makes it difficult 

to be certain for comparison with the proposed solution. Before that and the 

considerable computational cost resulting from the high degree of combinatorics of 

the problem and the subsequent optimization process, we developed a simple 

demonstration-class analytical problem for which exact solutions are known, and 

yet is sufficiently detailed to portray and delineate the valve optimization problem.  

The main concept of the optimization strategy proposed in this thesis is that 

the consideration of uncertainties and acquisition of information during the 

optimization process can allow us to get more certain answers, reducing the 

probability of losing money, dynamically responding to reducing uncertainties. As 

result we can better quantify the benefit of operation flexibility, here represented 

by valves control. So we want to proof this basic concept before proceed with a 

large scale application that make use of costly reservoir simulations.  

This “toy” model, named “single tank model”, was proposed to evaluate the 

approach to value flexibility previously described in chapter 4, when we incorporate 

both model uncertainty and future information. It can also incorporate the issue of 

reliability, considering that when a valve setting change is requested, there is a 

probability that this request will fail.  

 

5.1.1. 
Single tank model 

The single tank model is a demonstration-class problem used to validate the 

approach proposed in this thesis, and evaluate the performance of the methodology 

in a study case that we know the optimal solution. It considers a large “tank” which 

contains a mixture of oil and water.  For simplicity, we assume no emulsion at the 

oil/water contact. A schematic of a proposed continuous tank model is shown in 

Figure 5.1.The tank height and diameter have equal values of 101.44 ft.  This tank 

has three output valves, a valve located exactly half-way up (50.72 ft), another 

located at the top of the tank (101.44 ft), and a third valve located between these 
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two (76.08 ft).  The valves control an outflow aperture that varies continuously 

between 0 (fully closed) and 100% (fully open). In order to conserve mass, this tank 

has continuous water injection at its base. In this greatly simplified problem, we do 

not consider the effects of pressure or fluid compressibility. 

 

 

Figure 5.1: The canonical tank of oil. 

 

The objective is to find the valve settings over time that provide the greatest 

net present value (NPV). The simplified NPV is computed using the current oil 

price of US$ 90.00/bbl, a water processing cost of US$ 25.00/bbl, and a discount 

rate of 0.08. We consider the simulation time horizon equal to one year. 

In real reservoir development there is uncertainty associated with the 

geological parameters.  Despite the canonical tank is not a reservoir model, it can 

still be used to represent the problem, through the incorporation of uncertainty on 

the model that describe the tank. The uncertainty considered in our canonical model 

is the depth of the water/oil contact (OWC), which is unknown and following a 

uniform distribution ranging from the bottom to the top of the tank. We simply the 

problem by subdividing the tank height into 11 “bins”, i.e., the oil/water contact 

may take one of 11 discrete (height) positions (Table 5.1). This particular tank 

model problem can be trivial once future information is available. 
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Table 5.1: The binning of the depth of the water/oil contact. 

 

  

 

5.1.2. 
Test 1 – Valuing considering uncertainty and future information 

According our literature review on chapter 2, it is possible to incorporate 

geological uncertainty in the optimization workflow considering or ignoring the 

information at some level, so we analyze the impact of incorporating information 

in the optimization process. In this test, we choose the best flow control strategy for 

the tank considering: 1) optimization with clairvoyance, 2) optimization with prior 

information (both optimization strategies described on literature review in the 

second chapter) and 3) optimization assuming future information (this last one is 

the approach proposed in this thesis, described on the previous chapter).  Since this 

tank model be extremely fast to evaluate, we use an exhaustive search to find the 

optimum valve settings. 

Considering no uncertainty in the tank model, i.e., the OWC is known, the 

expected NPV is equal to US$4.6 x 106. For each scenario we know exactly the 

OWC, adjusting the valves to close as the water comes, so for the case where the 

tank is fully filled with oil, the NPV is equal to US$8.3 x 106, while for the case 

fully filled with water, the NPV is zero, because no valve is open. 

Optimization assuming clairvoyance is done considering perfect information, 

ergo this optimization is based on OWC information that is assumed to be 

previously identified, for example, the optimist, pessimist and/or realist model.  In 

this study case, since all uncertainty models have the same probability to occur, we 
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choose just one scenario to be the realist case, considering no more uncertainty 

about the OWC. For this we consider a tank water saturation equal 50%, OWC 

height is 40.57 ft (bin 4). As the optimization with clairvoyance consider a perfect 

information we just need to do a determinist optimization, but the best flow control 

strategy here (specifically for this tank model) can be easily identified using a 

reactive strategy – when the water/oil contact arrives at the valve, the optimal 

response is to close it. The Table 5.2 shows the flow control strategy for this 

deterministic case, and the associated NPV is equal to US$ 5.5 x 106. If we observe 

the flow control strategy for this case, we can note that the valve closest to the 

contact oil/water considered is maintained fully open only for the first time step and 

its flow is approximately 70% reduced at time 1, and at time 2 this valve is closed. 

Valve 2 is maintained fully open until time 7 and from this time it is closed. Only 

valve 3 is maintained fully open for the entire time horizon. This results in a 

production 100% of oil because every time when the water contact arrive to the 

valve, the valve setting are readjusted.  

 

Table 5.2: Optimal flow control strategy for the tank model with no uncertainty in the depth 

of the contact. In this case, the oil/water contact is at 40.57 ft., located a few feet below the valve 

1. 

 

 

To calculate the expected value of the optimization with clairvoyance we 

need to apply the optimum valve settings (Table 5.2) to the 10 uncertainty scenarios 

remaining. As we can see in Table 5.3, when we apply the best valve settings found 

by optimization with clairvoyance to the remain OWC scenarios, the NPV`s are 

large for all case with the OWC below the true height (since they won’t produce 

water), and degrade for the cases with higher OWC (since more higher is the contact 

more water it will produce). The expected NPV is calculated as an average over all 

values, totaling US$ 3.0 x 106. These results show that although this valve settings 

may be optimal for the model with an OWC at bin 4, the results is certainly not 
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optimal when the goal is to maximize expected NPV over the range of model 

uncertainty.  

 

Table 5.3: Assuming the water/oil contact height bin 4 as the most probable model, we 

compare the NPV for each possible water/oil contact height with the expected NPV over these 11 

height possibilities. 

 

 

Optimization with prior information considers the maximization of expected 

NPV over the range of uncertainty scenarios.  This is the most used approach for 

optimization under uncertainty.  The optimal strategy found holds valve 1 closed 

and valves 2 and 3 open for the entire time horizon (Table 5.4).  The associated 

NPV results are shown in Table 5.5.  Although this valve setting allows for water 

production in some scenarios where the oil/water contact is very high, the expected 

NPV is positive since this flow control strategy allow positives NPVs for the most 

of the contact models, and consequently results in a higher expected NPV.  

Comparing the expected NPV obtained by optimization with clairvoyance (1) with 

the optimization with prior information (2) we demonstrates that the optimization 

with prior information achieves a 7% improvement in expected NPV. The value of 

information is the difference between the ENPVs with and without information, so 

the value of information here is US$ 2 x 105.  Note that while the expected NPV is 

increased, the effect of this strategy on the NPV of the individual models has mixed 

results, with some improving and some worsening. 

 

Table 5.4: Optimal flow control strategy for maximizing expected NPV while accounting 

for model uncertainty. 
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Table 5.5: Comparison of expected NPV with the individual model NPVs for an optimal 

strategy that maximizes expected NPV over the range of model uncertainty. 

 

 

Finally, we applied the methodology proposed in this thesis, optimization 

incorporating both: uncertainty and future information.  For future information, we 

use the appearance of water on the commingled outlet pipes as the only 

measurement. The optimization process starts by finding the valve settings that 

maximize expected NPV over all time, neglecting all future information.  This 

result is same as the one shown in Table 5.5. With these optimal settings for time 

0, we then acquire information on the appearance of water in the outflow pipe at 

time 1 for each of the models.  These measurements are used to cluster the 

uncertainty models into two groups, those with water production and those without.  

As is shown in Figure 5.2, there are 3 models with water and 8 without water at 

time 1.  Thus, even after only one time step, the incorporation of future information 

has significantly reduced model uncertainty.  The optimization problem is then split 

into two parts, with a separate optimization being run for each of the two clusters.  

The valve settings for time 0 are kept fixed to those found in the first optimization, 

but the settings for all later times are allowed to vary in order to maximize expected 

NPV for the two reduced problems.  Thereafter this process of optimization 

followed by clustering and re-optimization is recursive until either all time steps are 

complete or all uncertainty in a branch is eliminated.  In the end of this process, the 

methodology delivers a decision tree that describes a flexible strategy of optimum 

valve settings that properly accounts for future measurements and their impact on 

uncertainty reduction.  This tree is illustrated in Figure 5.3Figure 5.3.  We can note 

that for the branch of the tree showing water at time 1, all uncertainty is eliminated 

by time 3, while the “without water” branch requires up to time 7 to resolve all 

uncertainty.  The resulting expected NPV is shown in Table 5.6. 
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Figure 5.2:  Illustration of the first time step of our optimization strategy that considers both 

model uncertainty and future information. 

 

 

Figure 5.3: Complete decision tree for our optimization strategy that considers both model 

uncertainty and future information. Models associated with commingled water production are 

highlighted in blue. 

 

It is important to emphasize that the valve settings found by optimization with 

future information for the first time step are the same as those found by optimization 

with prior information.  This ensures that the ENPV obtained by the proposed 

approach (that considers both uncertainty and future information) never will be less 

than the ENPV obtained by the optimization with prior information. Future 

information can reduce the uncertainty over time, allowing us to make better 
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decisions. Again comparing the expected NPV obtained by optimization with 

clairvoyance (1), but now with the optimization with future information (3), we can 

see the use of future information improves the expected NPV by 38%, and the value 

of information increase to US$ 1.2 x 106.  

 

Table 5.6: Comparison of expected NPV with the individual model NPVs for an optimal 

strategy that maximizes expected NPV while accounting for both model uncertainty and future 

information. 

 

 

While improving the average NPV is advantageous in improving the results 

of a portfolio of oilfield assets, it is also important to consider the exposure to 

downside risks in pursuing a particular strategy.  One approach for doing this is to 

compare the deterministic NPVs for each individual model in the expectation 

ensemble.  This is done in Table 5.3, 5.5 and 5.6 under the column labeled 

“Deterministic”.  Examining the downside first, both the deterministic and 

uncertainty optimization cases yielded losses for three of the eleven models, while 

the optimization using future information yielded a loss in only one of the models, 

and this loss was minimal.  On the upside, the use of future information significantly 

improved the NPV of each of the models over the results for optimization under 

uncertainty. Another way to examine risk is by plotting the cumulative probability 

of achieving a particular NPV (Figure 5.4).  The three curves represent the three 

optimization approaches we have considered.  As the cumulative probability curve 

moves to the right, downside risk is reduced and upside gains are increased.  Note 

that the downside risk of optimization under uncertainty is the same as that of 

deterministic optimization in this example, while a comparison of the up sides 

shows that optimization under uncertainty provides more upside potential.  

Meanwhile, optimization incorporating future information is superior to both other 

methods on both the up side and the down side.  In particular, the probability of 

losing money is about 9% when future information is considered, and is 27% for 

the other two strategies. 
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We also compare the cumulative probabilities of the NPV obtained by the 

optimization considering uncertainty and future information, as proposed in this 

thesis, with the case without uncertainty, as shown in Figure 5.5. We can note that 

the probability of to lose money, even considering uncertainty, is low when the 

future information is also considered.  

 

5.1.3. 
Test 2 – Timing for measurement assimilation 

 

As described in the previous chapter, the measurement assimilation reduces 

uncertainty over time. In this test we use the single tank model to evaluate the 

smartness of the methodology proposed, showing that the use of measurements as 

future information can define when a set of valves should be re-optimized based on 

uncertainty reduction. 

To better investigate the influence of measurement assimilation, we continue 

the use of the tank model with a time horizon of one year, but we increase the 

number of steps to change the valves from once a month to every day. This change 

allow us to re-define the valves setting 364 times, but we want to investigate if so 

many re-optimizations are really needed in order to accurately determine the value. 

To compare the results we also look for a reduction in the number of evaluations 

required. 

We remind that this approach allows us just to re-optimize the valve settings 

if the data measurement acquired may reduce the present uncertainty, otherwise we 

keep the previous valve settings, reducing the need of extra optimizations, since the 

search space remain the same. We can observe on the results at the Table 5.7 that 

was possible to reduce in 99% the number of simulations done and still possible to 

find a similar expected NPV. We also compare the number of simulations found in 

dictionary and the total simulations required. The results confirm our expectation 

about the smartness of the approach that just require for new optimization if the 

uncertainty scenario change.      
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Table 5.7: Comparison about optimizing all time steps and the approach that uses the 

measurements to define the optimization time steps. 

 

 

 

 

Figure 5.4: Comparison of the cumulative probabilities of NPV for the three flow control 

optimization strategies. 

 

 

Figure 5.5: Comparison of the cumulative probabilities of NPV for the case without 

uncertainty and the case considering uncertainty and future information. 
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5.1.4. 
Test 3 – Accounting for technical uncertainty  

Against the possibility of valve fail, in this test we investigate the 

performance of the proposed approach accounting for this technical uncertainty. As 

described on Chapter 4, in this thesis we consider that there are some ways to 

accounting for technical uncertainty, where they distinguish of each other by the 

way that the flow control strategy are defined, i.e., including or not possible failures 

on the proactive strategy (being pessimist or optimist) and considering or not if the 

failures effectively happen during the life time (being lucky or unlucky). We can 

summarize the proposed considerations saying that they can give to us an evaluation 

of the smart well considering failures whose value is between: 1) the case that 

account for fail all time, and the fail already happen (Unlucky Pessimist case) and 

2) the successful case that the proactive strategy does not account for fail and 

failures never happen as well (Lucky Optimist case).  

Generally when valves fail they will be stuck with the valve aperture that they 

were previously assigned, but for some valve types there is also a (small) possibility 

that the valve will be stuck in a different position, including fully open or fully 

closed. As with the failure of many devices, it is often the case that the failure rate 

of valves is higher at early or late times.  One possible model for the failure rate of 

valves that can capture this behavior is a specific failure distribution, but to simplify 

our analysis somewhat, and in the absence of relevant data to justify more 

complicated models, we shall assume that the failure rate of valves is constant.  In 

all that follows it would be easy to modify our methodologies to include a more 

sophisticated model of valve failure.  We also will only consider failures in which 

the valve is stuck in its previously assigned position. 

First of all, to understand possible impact of failure on value we considered 

an extremely pessimistic case when all of the valves fail at the same time.  We did 

that because all others failure case will have a result between the cases when all 

valves never fail and all valves fail. We also consider that the valve can fail just in 

the previous settings. In Figure 5.5, we analyze the tank model behavior when the 

failure occurs at the beginning (Time 1) (as an Unlucky Pessimist approach 

proposed), middle (Time 5) and end (Time 10) of the time horizon (according the 
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Unlucky Optimist approach). We also compare the results with the results by 

optimization with prior information (Table 5.5), as it is the most used approach we 

are calling it as the base case, and the results by optimization with future 

information (Table 5.6). We can observe that if all valves fail in the Time 10 the 

expected NPV still the same and if the failures occur in the Time 5 the NPV lost is 

just around 5%. But if all valves fail at Time 1 the NPV is basically the same if the 

strategy adopted was the strategy of the base case, that optimize without incorporate 

future information. 

In order to know the failure influence for each uncertainty scenario (water/oil 

contact) we did the same analyses for each scenario individually. Again, we 

compare the results with the value given by optimization with prior information 

(base case) and the optimization with future information, considering that the valves 

never fail. The others 3 curves, in the graphics of Figure 5.7 represent what happen 

if all valves (by the strategy of optimization with future information) fail at Time 

1, Time 5, and Time 10. We can note that when the valves fail at the beginning the 

failure influence on NPV is higher than when the valve fails at other times. 

Consequently, the NPV does not have a bit varied when the valves fail close to the 

end of the time horizon. Otherwise, we can note that if all valves fail at the middle 

and at the end of the time horizon the NPV curves continuous close to the best curve 

when the valves never fail. In addition, if all valves fail at the beginning the NPV 

curve is the same of the base case. So we can said that if the worst case happen and 

all valves fail in the beginning we yet don`t lose more money compared with we 

adopted just an uncertainty optimization. Therefore, in that case, if we choose to 

use the flexible optimization approach, the minimum NPV obtained is the same 

NPV got with an uncertainty optimization without future measurement.   

We know that in some valves design it is possible that the valve fail in a 

completely open or closed position, independently of its previous position. 

Therefore, we can observe in Figure 5.8 that, compared with the case that the valves 

never fail, even in this setting, there is only a significant loss of value when failure 

occurs at early times and on a fully close position. However, if these happen the 

expected NPV for the failure case will be the same of the base case. Therefore, the 

results show once again that the improvement in the NPV will always be the same 

or better than the results acquired by the optimization with prior information (base 

case). 
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Figure 5.6: ENPV behavior when all valves fail on the previous settings vary the time fail. 

 

 

Figure 5.7: ENPV behavior when all valves fail on the previous settings varying the time of 

failure for each uncertainty scenario. 
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We also analyze theses ENPV results presenting them in groups of three, as 

shown in Figure 5.9. For comparison, the horizontal blue line shows the value 

resulting from the optimistic optimization with no failure. The horizontal red line 

shows the value of static valves whose settings are optimized, without considering 

future information, to maximize ENPV (Valve 1 is fully closed and Valves 2 and 3 

are fully open , as in Table 5.4, resulting in the NPV values shown in Table 5.4). 

The leftmost group presents the case where the valves fail in the position of the 

previous setting. We can observe that if all valves fail at the end of the time horizon 

(Time 10), the ENPV is not impacted, and exactly equals the no-failure case. This 

happens because the no-failure policy does not change the valve settings at the end 

of the time horizon. If failure occurs in the middle of the time horizon (Time 5), the 

ENPV is reduced by only around 5% compared with the no-failure case. If all valves 

fail at the beginning of the time horizon (Time 1), the ENPV losses are greatest, 

reducing the value down to the base case (red line) because this is now equivalent 

to the optimized static case. This analysis shows that in the event of failure, our no-

failure policy never produces ENPV results that are worse than optimized static 

valves when the valves fail into their previous positions.  

The middle group in Figure 5.9 examines what happens to the ENPV when 

values failure into an open position. Once again, the ENPV increases as failure 

occurs later in the time horizon. However, the ENPV is consistently lower than it 

was in the previous failure case. In particular, in the beginning- and middle-time 

failure cases, the ENPV falls below the red line that indicates the ENPV of the 

optimized static policy. These additional losses happen because the valves fail in 

the open position, while the optimal static policy requires that Valve 1 be in the 

closed position, and thus the higher-than-optimal production rate induces additional 

losses due to increased water production. The rightmost group in Figure 5.9 

examines what happens to the ENPV when values failure into a closed position. 

These results possess the same features as the case with failure in the open position, 

namely monotonic improvement with later failure times and the poor results in early 

and middle times, but present even lower ENPV that the previous two cases. The 

reason for this should be clear, because failure in the closed position causes valuable 

production to be lost whenever there is a failure. 
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Figure 5.8: ENPV behavior over time when all valves fail fully open or fully closed varying 

the time of failure. 

 

Figure 5.9: The cumulative ENPV behavior when all valves fail fully open or fully closed. 
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To understand possible impact of failure on value we considered an extremely 

pessimist case when all of the valves fail at the same time.  Even in this setting, 

there is only a significant loss of value when failure occurs at early times and on a 

fully close position. So due to analysis results did about failure case, we also  

analyze when the valves can fail on each time with probabilities that consider if a 

valve fail or do not fail in the past, as showed at the Table 5.8. So we assume that 

the probability of the valve failure in the begging is higher than the probability of 

failure in the end of the time horizon, showing the probability failure proportion at 

time. So at the graphic showed by the Figure 5.10, we can see the impact of failure 

probability on the expected NPV, considering that the valve just can fail on the 

previous settings, but it can fail at the beginning, middle or end of the time horizon. 

The probability of failure was vary between 0 and 1, where 1 mean 100% of failure. 

 

Table 5.8: Probability of the valve failure on the previous settings on time. 

 

 

We can see clearly that when the probability of failure alpha grow the 

expected NPV decrease and yet for the case with probability of failure is 1 the 

expected NPV is equal to the base case. This results show that for this case we can 

have a higher probability of failure and continue been advantage using the flexible 

optimization proposed in this work, this justify the same results found when we 

considered probability of failure during the optimization process and when we do 

not consider failures. 

However, if we want consider that the valves also can failure fully open or 

fully close with a certain probability β? On this case we want to show the influence 

of β on the expected NPV. For that we fixed α value equal 0.1 and vary β between 

0 and 0.2. As happened with α, if β grows the expected NPV decrease, as show the 

graphic showed by the Figure 5.11. The red line represent the limit where the 

expected NPV from the base case is located, so bellow this line represent cases 
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where our approach considering failure has lower ENPV then the base case without 

failure.  

 

 

Figure 5.10: ENPV behavior when all valves fail with different probability of failure alpha 

considering that valve fail on the previous settings. The red line represent the limit of ENPV 

obtained by the base case without consider failure. 

 

 

Figure 5.11: ENPV behavior when all valves fail with different probability of failure beta 

considering alpha constant equal 0.1 and that valve fail fully open or fully closed position. The red 

line represent the limit of ENPV obtained by the base case without failure 

 

We consider that with the technology advancement the probability of the 

valves fail fully open or fully close may be lower than the probability of the valve 

failure on the previous settings. Therefore, how we establish alpha equal 10% the 

cases more realistic are with beta less or equal alpha. In the curve at the graphic 

showed by the Figure 5.10, we can note that just when beta is more than 12% the 
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ENPV is below to the red line. This show that for the tank model the best solution 

found using the flexible optimization approach proposed here is robust enough to 

have equal or better ENPV compared with the base case even we consider a 

probability of failure vary on time, like on the real problems. 

In order to mitigate possible losses by valve failures, we performed a test 

using the Lucky Pessimist approach.  Applying the Lucky Pessimist approach to 

our tank case with 3 valves this multiplies the number of scenarios to be considered 

by 8 (23), representing the possible failure scenarios at time. We assumed that 

failures occur with probability alpha whenever a setting change is applied 

(independently and identically distributed). We considered that each valve can fail 

only when your control is being changed, and the fail means that the control will 

remain the same as defined in the previous control. Using this model fails, the 

probability of failure is allocated for all possible combinations that the valves may 

fail. We consider a probability of failure equal 10%.  

As expected according the previous analyses, we obtained as results the same 

valve settings found for the flexible optimization approach without consider failure 

(Figure 5.3), i.e. it is not worthwhile altering our strategy in response to future 

possibility of failure. This is because in the tank model, the water contact always 

proceeds from the bottom to the top of the tank, and so there is no mitigating 

strategy for a failed valve. In a real reservoir setting, such a linear progression of 

water is rarely present, allowing neighboring valves to be adjusted to reduce the 

impact of a failed valve. Nevertheless, we keep in mind that the use of rolling static 

optimization allows us to have a Lucky Pessimist approach, generating reasonable 

results accounting for failure.  

 

 

5.2. 
Case 2 – Preliminary investigation with a reservoir model 

 

After we apply the proposed approach to a “toy model”, this approach was 

evaluated against a reservoir model based on the Namorado field, Campos Basin, 

Brazil. We compare the results with scenarios involving a conventional well, i.e., 

without smart completions, and an entirely proactive control strategy, that does not 
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consider future information. We choose to use the synthetic reservoir model known 

as UNISIM-I. The UNISIM-I model (Gaspar et al., 2013) was built by the UNISIM 

group in UNICAMP as a benchmark problem that can be used to facilitate, and give 

a direct comparison between research efforts among participating Brazilian 

universities.  The reservoir model is intended to be used for projects that have a 

focus on history matching and optimization of reservoir production design and 

management.  

The geological model used in this test describes the Namorado field, part of 

the Campos basin offshore from Brazil.  The reservoirs of the Namorado field 

represent marine turbidite deposits lying above the Albian limestones of the Macaé 

formation.  The reservoir models therefore shows coarse sand deposits (with high 

porosity and permeability) intercalated with shale deposits (showing low porosity, 

permeability and net-to-gross ratio). Along with the UNISIM-I model, a project has 

been launched that provides a case study for optimizing well placement.  This 

project assigns a complete set of rules for well placement along with rules for 

production and injection.  It also was provided a simplified economic model for the 

capital costs associated with the well-placement strategy and the operating revenue 

and costs (UNISIM-I, Avansi, & Schiozer, 2014). 

 

 

5.2.1. 
Modified UNISIM – 9 wells 

The UNISIM-I model was built using seismic and production data provided 

by ANP (Agência Nacional de Petróleo - Brazilian National Petroleum Agency), 

along with petrophysical logging data provided by Petrobras.  The reservoir is split 

into two blocks by a fault which was assumed to be sealing (see Figure 5.12).  The 

smaller East block is believed to have a lower oil-water contact than the larger west 

block.  The model includes four vertical wells (all penetrating the larger western 

block), along with history data for the first 1461 days of production from these 

wells.  Indeed one such optimized well-placement solution has already been 

released for the UNISIM-I-H case study (Maschio et al., 2013), a study designed 

with the aim of history matching production data for the UNISIM-I model. 
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The simulation model provided with UNISIM-I was built for CMG’s IMEX 

simulator.  To be able to include a more sophisticated handling of the completions 

equipment and to be able to use our existing workflows, it was necessary to use an 

equivalent model constructed in Eclipse. The detail about UNISIM model for 

Eclipse simulator can be found on Appendix B.  

Along with the UNISIM-I model, a project (UNISIM-I-AD, Gaspar et al.) 

was launched that provides a case-study for optimizing well-placement.  This 

project assigns a complete set of rules for well placement along with rules for 

production and injection.  It has a simplified economic model for the capital costs 

associated with the well-placement strategy and the operating revenue and costs.  

The challenge of optimal well-placement falls outside the scope of this project, 

although it would be possible to produce a reasonable plan for the development of 

the reservoir.  It is expected that in the coming months optimized well-placement 

strategies (without the use of intelligent completions) will be produced by the 

universities of the SIGER group who are participants in the UNISIM-I-AD project.  

In this work, we will be able to use these strategies as a base case to which 

intelligent completions can be added. 

 

Figure 5.12: Porosity map of UNISIM-I showing position of the perforated 

wells and the location of the fault. 

 

The model of operating revenues and costs and NPV calculation from 

UNISIM-I-AD is also useful for this project.  The model for the NPV is defined by  
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𝑁𝑃𝑉 =∑
𝑁𝐶𝐹𝑗

(1 + 𝑟)𝑡𝑗

𝑁𝑡

𝑗=1

 

 

(5.1) 

 

where 𝑁𝐶𝐹𝑗 is the net cash flow at period 𝑗, 𝑁𝑡 is the number of time periods, 𝑡𝑗 is 

the (average) time of period 𝑗, and 𝑟 is the discount rate.  In turn the net cash flow 

during each time-period is defined by  

 

𝑁𝐶𝐹 = (𝑅 ∗ (1 − 𝑅𝑜𝑦 − 𝑆𝑇) − 𝐶𝑂) ∗ (1 − 𝑇) − 𝐼𝑛𝑣 − 𝐴𝐶, (5.2) 

 

where the variables are defined in Table 5.9.  

The total expenditure on facility investments and abandonment costs will not 

impact the absolute gain that can be achieved by the introduction of intelligent well 

technology.  The cost of this technology can of course be included as an investment 

cost; however, within the scope of this project it is reasonable to contrast the gain 

in value against the cost of the technology.  The UNISIM-I-AD model does not 

specify either a price or a production cost.  We therefore assume that gas production 

is revenue neutral with the production costs balanced out by the sale of gas.  The 

values for the economic parameters important to this project are given by Table 

5.10. 

 

Table 5.9: Components of net cash flow 

𝑅 Gross revenues from sale of oil and gas 

𝑅𝑜𝑦 Royalties rate (charged over gross revenue) 

𝑆𝑇 Social taxes rate (charged over gross revenue) 

𝐶𝑂 Operational costs (oil production, water production/injection) 

𝑇 Corporate tax rate 

𝐼𝑛𝑣 Facility investments 

𝐴𝐶 Abandonment costs 

 

Note that the cost of water production/injection is much lower than the 

revenue generated from oil production. There is no strong incentive to minimize the 

rate of production of water itself; however, under liquid-rate control the production 

of water leads to a loss of oil production, reducing revenue.  We therefore expect 
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that for this model strong gains will only be achievable while the well is under 

liquid-rate control rather than bottom-hole pressure control. 

 

Table 5.10: Values of economic parameters 

Variable Value Unit 

Oil price 50 USD/bbl 

Oil production cost 62.9 USD/m3 

Water production cost 6.29 USD/m3 

Water injection cost 6.29 USD/m3 

Corporate tax rate, 𝑇 34.0 % 

Social taxes rate, 𝑆𝑇 9.25 % 

Royalties rate, 𝑅𝑜𝑦 10.0 % 

Annual discount rate, 𝑟 9.00 % 

 

 

For the tests performed here, we used a development plan with 4 vertical 

producer wells, previously allocated as in Maschio et al. (2013), surrounded by 5 

nearby horizontal injector wells, totaling 9 wells, for that reason we call this model 

as the Modified UNISIM model (Figure 5.13). For this case, the smart well 

technology will be applied to just the producer wells. In Appendix D, we described 

how the multi-segment wellbore was modeled in the Eclipse simulator.  

 

 

Figure 5.13. Modified UNISIM - Reservoir and well model 
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In addition to the reference model, UNISIM-I-AD also describes the 

geological uncertainties associated with the model.  The principal uncertainties 

relating to the entire model were the petrophysical properties (porosity, horizontal 

and vertical permeabilities, net-to-gross) and water relative permeability. 

There is additional uncertainty in the smaller eastern block, where the PVT 

properties and the oil-water contact are unknown.  The uncertainty in the 

petrophysical properties was captured by 500 images and by a distribution of values 

of a vertical permeability multiplier.  The petrophysical images were generated by 

sequential Gaussian simulation of both facies and the properties themselves.  Data 

from well-logs for the four wells used in the simulation model were used to 

constrain the petrophysical properties and to define the geostatistical correlations 

and variograms (Avansi and Schiozer). 

The uncertainty in the water relative permeability corresponds to an 

uncertainty in the relative permeability when the rock is fully saturated with water.  

The relative permeability models (0, 1, 2, 3, 4) correspond to maximum water 

relative permeability values of (0.42, 0.15, 0.24, 0.33, 0.51).  Note that the 

permeability models are therefore best ordered as (1, 2, 3, 0, 4) to indicate 

increasing permeability to water. 

Knowing that the reservoir model used in this study case has 500 geological 

models, to perform the tests we must select limited number of uncertainty models, 

so that the methodology is feasible to evaluate, since our approach requires 

reservoir simulations. In the following initial investigation with the UNISIM model, 

we randomly selected 50 uncertainty scenarios over the 500 scenarios available, 

varying the relative permeability and petrophysical characteristics. 

 In the field, the downhole valve adjustment was done from surface by a 

computer command. Nowadays, there is no operating limit on the interval adjust of 

the valves, but we have imposed a 50-days minimum duration between consecutive 

valve adjustments. This was reflected in simulation reporting times. Consequently, 

considering 3700 days, there are a maximum of 74 times at which an adjustment of 

the valve settings can be applied. 
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5.2.2. 
Test 4 – Static versus flexible strategies  

 

This test consists of an initial investigation with the UNISIM model, 

considering 50 uncertainty scenarios randomly selected, where the main objective 

is to compare the possible improvement by flexibles strategies over static strategies 

(detailed on “Timing for Optimal Control” section, in the previous chapter). As a 

first test, we consider change the valve settings at three time intervals, after 400, 

1200 and 2000 days of production, with a total simulation period of 10 years. Each 

producer well contains a valve that permits us to restrict flow from the lower section 

of the reservoir. The base case used to compare the obtained results consists of two 

producers fully completed in the reservoir and two producers completed in only the 

upper section of the reservoir. This base case was chosen for this case study based 

on the best combination of open/closed completions for the producer wells in this 

reservoir model and well placement strategy. 

For comparison, we first performed an optimization under uncertainty 

without considering future information (optimization with prior information), using 

both static and flexible strategy. As described on the previous chapter, the static 

strategy chooses a single setting for each valve over the entire time horizon, while 

the flexible strategy allows each valve to be adjusted at each of the three time steps. 

The results obtained with static and flexible optimization under uncertainty (Table 

5.11) show that the use of smart wells in this case can be promising, increasing the 

expected NPV compared with the base case that represents the use of conventional 

wells. Therefore, we can say that the use of smart wells for this reservoir model can 

be attractive. 

Continuing our investigation, we next considered the value of incorporating 

future information using the proposed approach. The acquisition of future 

information is done passively, using measurements from each well of the oil and 

water production rates and the bottom hole pressures and the cumulative production 

of water and oil by the field. We applied both the rolling-static and the rolling-

flexible policies. We report these results in Table 5.11. The rolling-static and 

rolling-flexible optimization policies allow further increases to the expected NPV. 

This can be attributed to using the combined system (with uncertainty and future 
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measurements) to optimize the flow control valves. We also note that there is not a 

big difference between the values for the rolling-static and rolling-flexible policies. 

We suspect this is due to the limited number of time steps (only three) at which the 

valves can be adjusted, and project further gains as the number of steps is increased.  

 

Table 5.11: The Expected NPV and increase obtained using different optimization 

strategies 

 

ENPV 

(US$ E+09) 

Increase 

(US$ E+06) 

Base case 1.72881 --- 

Static Optimization 1.73743 8.62 

Flexible Optimization 1.74008 11.27 

Rolling-Static Optimization 1.75631 27.50 

Rolling-Flexible Optimization 1.75862 29.81 

 

  

 The use of future information significantly improved the NPV of each of 

the policies over the results for optimization under uncertainty. One way to examine 

risk is by plotting the cumulative probability of achieving a particular NPV. This is 

shown in Figure 5.14. The curves represent the four optimization approaches we 

have considered. As the cumulative probability curve moves to the right, downside 

risk is reduced and upside gain is increased. In order of increasing ENPV, the 

policies show cumulative probability curves that consistently move to the right with 

few, if any, cases showing a reduction in NPV. While the variation in NPV due to 

uncertainty is far greater than the gain that can be expected due to the use of smart 

well technology, such a consistent gain still shows a clear value.  There is a slight 

tendency towards greater increases in NPV amongst those models that represent an 

initially lower NPV, i.e. the reduction in downside risk appears greater than the 

increase in upside gain.  For this case, our solution is naturally slightly risk averse.  
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Rolling-flexible optimization is superior to the other methods in both the increase 

of upside gain and the reduction of downside risk. 

 

 

Figure 5.14. Comparison of the cumulative probabilities of NPV for the optimization 

strategies 

Our methodology designed the optimal usage of smart wells and assigns a 

quantitative value to the benefits that they provide, both in terms of the flow control 

valves (flexibility) and measurement gauges (information). The methodology 

proposed here considers both uncertainty and future information, and provides a 

qualitative valuation that indicates whether a field benefits from intelligent 

completions. The results here demonstrate some economic benefit of using smart 

well technology for the field case considered, showing that this methodology can 

efficiently optimize the flow control strategy while reducing risk and increasing 

NPV compared with other methods. Now we want to investigate if we can apply 

our approach to a set of uncertainty scenarios where the smart wells can be even 

more attractive. 
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5.3. 
Case 3 – Performance of the proposed approach with a reservoir 
model 

 

This study case intend to demonstrate the proposed approach on a reservoir 

model that highlights its novel aspects: asset optimization under uncertainty, 

flexible control based on future information, quantifying the value of flexibility and 

future measurements, and considering potential financial loss due to the failure of 

a smart completion.  

We want to demonstrate that the proposed approach yields the highest ENPV. 

The sensitivity of the approach to changes in the number of time steps used for both 

proactive and reactive control was also considered. For proactive control, the 

sensitivity analysis examined frequency of valve adjustment in the absence of new 

information and for reactive control, how fast one needs to react to new and 

revealing measurement data. This examination revealed that while being 

operationally proactive is important, there is no value in planning for frequent valve 

adjustments when there is an absence of new information. 

  

5.3.1. 
Modified UNISIM – 18 wells 

After the promising previous results, we increase the number of wells in the 

reservoir development plan from 9 to 18 wells, strategic located since the 

complexity of the reservoir model and number of uncertainty scenarios available.  

As described on Section 5.2.1, the two key uncertainties in UNISIM model are the 

distributions of porosity (φ) and permeability (k) across the reservoir and the end 

points of the water relative permeability curves. Within UNISIM-I the uncertainty 

of porosity and permeability is represented by 500 equiprobable realizations of 

geological models, along with five distinct relative permeability curves. These 

realizations exhibit several layers of low porosity and low permeability that cover 

much of the reservoir and correspond to shale bodies. The lateral extent, and 

uniformity, of these bodies also represents a major source of uncertainty. Smart 

wells are deemed suitable here in order to isolate the production from the zones 

either side of each shale body, but the optimal control of the wells may be affected 

by whether there is communication these pay zones. 
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A basic reservoir development plan has 18 vertical wells, as shown in Figure 

5.15. Production is planned for 10 years. The development plan used is restricted 

to vertical wells, and is largely based around injection of water from the margins of 

the reservoir. Among the producers, three distinct groups exist:  

• wells that probably did not intersect any low permeability zones and might 

be susceptible to water coning;  

• wells that intersect many low permeability layers and are likely to have 

lower flow rates; and 

• wells that probably intersect a single low permeability layer that might run 

across much of the reservoir.  

 

The smart wells considered are equipped with flow control valves in two 

production zones, as Figure 5.16 shows. Annular flow control valves are used for 

production in the upper and lower regions.  The adjacent log view shows the shale 

probability map that is useful for creating a preliminary completion design before 

actual petrophysical log data is available.  The simulation results show us that the 

water saturation around the smart wells can change a lot according the uncertainty 

geological scenario considered (Figure 5.17), and is known the ability of smart 

wells to restrict the flow rate in different production zones is better used for the 

cases with different water breakthrough per zones. In Figure 5.17, the well depicted 

with a red line corresponds to one of the smart wells considered.  Missing grid block 

cells correspond to zero pore-volume cells, for which the water saturation is not 

defined. 

Smart wells could also be useful in the case of mitigating-water coning. While 

we acknowledge that water coning is a complex phenomenon that is affected by 

numerous aspects of the reservoir and geometry, for the purposes of this thesis, we 

ensured that water coning would not impact our results. This was achieved by 

making the vertical distance between the OWC and the lowest completion in the 

string as large as possible. Tests using analytic approximations for critical rate 

(Papatzacos et al, 1989) (Yang & Wattenbarger, 1991) confirmed that water coning 

would not be manifest during the period of simulation. The wells with lower 

productivity indexes were unlikely to produce large volumes of water over the 10-

year timeframe, and so smart wells would have limited utility. Finally, the wells 

that typically intersect a single low permeability layer were capable of producing 

DBD
PUC-Rio - Certificação Digital Nº 1212906/CA



113 
Chapter 5. Case studies 

significant volumes of water from either the lower or upper zones over the 

timeframe. They are, therefore, better suited for smart well application, with the use 

of packers at the likely location of the low-permeability layer (thereby isolating 

production from the upper and lower zones). There are three such wells in this 

development plan, thus leading us to consider a problem with six valves (for each 

well there is a valve in the upper and lower zone). 

 

 

 

Figure 5.16  Design of a completion string, with packers at the top of the reservoir and at 

the level of the low permeability layer.   

 

Figure 5.15.: Reservoir and well model, with producer wells in red and in water injector wells in blue. 

DBD
PUC-Rio - Certificação Digital Nº 1212906/CA



114 
Chapter 5. Case studies 

We follow the economic model of Avansi & Schiozer (2014), as detailed 

described on Section 5.2.1, where the total expenditure on facility investments and 

abandonment costs will not impact the absolute financial gain that can be achieved 

by the introduction of smart well technology. The cost of this technology can be 

considered as a capital cost; however, within the scope of this paper, it is reasonable 

to contrast the gain in net value against the cost of deploying the technology. For 

gas production, the UNISIM-I model specifies neither unit production revenues nor 

costs. We therefore assume that gas production is revenue-neutral (production costs 

balanced out by gas sale).  

 

  

  

Figure 5.17: Multiple realizations of the water saturation after 6 years of production with 

conventional completions.   

 

We have imposed a 50-day minimum duration between consecutive valve 

adjustments. This is reflected in simulation reporting times. Consequently, there are 

a maximum of 74 times at which an adjustment of the valve settings can be applied. 

As described previously, this methodology uses simulated measurement values 

as future information to reduce the uncertainties over the time. Five different 
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measurements were used in all of the following tests: the bottom-hole pressure from 

each of the three smart wells and the field oil and water production rates. The 

decision resolutions used for the bottom-hole pressure and flow production rate are, 

respectively, 50 bars and 1000 Sm3/day. 

 

5.3.2. 
Test 5 – Rolling strategies considering full range of uncertainty 
scenarios  

 

In this test, we evaluate the smart strategies by simulating the reservoir model 

over 3700 days (around 10 years), using various time-periods for valve control. The 

full enumeration of models representing uncertainty amounts to 2500 different, 

where we randomly consider 50 scenarios by them to describe reservoir uncertainty 

in this test. We consider 8 time steps approximately evenly spaced over the 10 year 

simulation and valuation period to adjust the valves and for the future information 

acquisition, used by the rolling strategies, the same measurement information was 

used: the total field oil and water production, and extremely low resolution (only to 

within 50 bars accuracy) BHP values.   

In Figure 5.17, we show the distribution of percentage changes in the final NPV, 

and cumulative oil and water productions for several different valuation 

approaches, namely robust optimization without future information for both static 

and flexible controls, and rolling strategies with differing numbers of time steps for 

proactive control.   

Note that although the percentages refer to changes relevant to the field as a 

whole, they are calculated by comparison relative to the productions of the group 

of wells that contain intelligent completions.  The NPV for this group of wells is 

calculated using the group oil and water production rates and an ‘injection rate’ that 

is equal to the total group liquid production rate to account for pressure 

maintenance.  We believe that the percentage change relative to the group 

production is the most relevant quantity since with only a fraction of all wells in the 

field containing intelligent completions it is clear that the impact is smaller.  Also 

note that the NPV does not include any capital expenditure, and percentage gains 

may be significantly higher once this is taken into account. 
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From Figure 5.18 we notice that the exact details of the proactive control are 

not as important as the use of future information, where the horizontal bars 

represent the P10, P50 and P90 values respectively, with the solid marker 

representing the mean or expected behavior.  Without future information, in this 

case, there is relatively little difference between static and flexible controls.  While 

this certainly is not universally true, in this case there is almost no net gain from the 

use of flow control valves when no future information is available.  This is because 

cases where we should choke valves to reduce water production are balanced out 

by cases where the pressure drop is already too large to maintain production at the 

desired rate, and introducing an additional pressure drop will only serve to reduce 

the total production.  Without knowing which case our reservoir corresponds to it 

is not possible to determine how we should adjust the flow control valves. 

Once basic data from the reservoir is available flow control valves provide a 

clear potential for benefit.  The benefit that is obtained depends significantly on the 

particular scenario, with some cases showing significant increases in the NPV and 

oil production and decreases in water production while other cases see little to no 

gain (but also no loss) from the use of flow control valves.  At least for this case, 

there is not a large difference between the results obtained for each of the different 

possible number of time steps used for proactive control (rolling-static, rolling-

flexible-k, and full rolling-flexible).  Nevertheless, while there is essentially no 

difference between the rolling-flexible-2 and the full rolling-flexible case, we do 

see some differences for the rolling-static approach.  The NPV and total oil 

production have a somewhat lower expected value and particularly P50 value with 

the rolling static approach, and a significantly lower reduction in the total produced 

water volume. 

The large difference in the reduction of total volume of produced water 

between the rolling-static approach and the rolling-flexible approaches suggests 

that for assets with higher productivity (or lower maximum production rates) the 

rolling-static approach might show a larger difference in the optimized NPV.  We 

therefore believe that while rolling-static has some attractive features (reduced 

number of reservoir simulations required as Table 5.12 shows, it is generally 

preferable to include some proactive flexibility in the optimization.  However, it 

appears that even with only two time steps in the proactive optimization scheme we 

ultimately obtain a result that is almost identical to that of the fully flexible 
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optimization scheme.  Therefore, due to the lower number of reservoir simulations 

required to obtain a near identical result we believe that rolling-flexible-k with k=2 

(or a similar small number) is generally the best approach, and is the approach that 

we shall use in the remainder of this results section. 

 

 

 

 

Figure 5.18.  Percentage changes in NPV and cumulative oil and water production for 

each of the different approaches, relative to the base case without flow control valves.   

 

We also note that although we have demonstrated a gain from the use of 

intelligent completions, the gain in the expected NPV was not particularly high.  

Given the robust nature of the calculation relative to reservoir uncertainty, the 

demonstrated gains are likely sufficient to justify the use of intelligent completions 
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based on a simple comparison with the cost of the equipment.  For this synthetic 

study, and with the use of vertical wells, pressure maintenance and a low 

productivity index relative to the planned production rates are major challenges.   

 

Table 5.12.  ENPV gain and total number of reservoir simulations required for each of the 

approaches shown in Figure 5.14 

 
Gain in ENPV 

($US x 106) 

Number of reservoir 

simulations 

Static 1.4 980 

Flexible 1.9 3430 

Rolling static 10.8 3926 

Rolling-flexible-k, k=2 13.3 6653 

Rolling flexible 13.7 14060 

 

Since flow control valves restrict flow by generating an additional pressure 

drop across the valve, when a well is under bottom-hole pressure control it is 

inevitable that using flow control valves to restrict the flow from a particular 

section, will also reduce the overall liquid production rate.  As this case study also 

has low costs associated with water production relative to the value of produced oil, 

it is therefore usually only beneficial to use the intelligent completion when the well 

is under rate control.  In real reservoirs, as the pre-salt, we expect that wells will 

have much higher productivity indexes both because of high formation permeability 

and because of greater formation thickness.  Production from pre-salt wells is more 

likely to be limited by vertical flow performance and surface processing facilities, 

meaning that intelligent completions can be used to restrict flow from water 

producing zones without a corresponding reduction in the liquid production rate. 

 

5.3.3. 
Test 6 – Rolling strategies considering limited range of uncertainty 
scenarios 

Simulating 500 uncertainty model we could observe that the most part of them 

control the valves aperture by the operational constraints by the BHP limit. For that 

reason we expected that the use of promising uncertainty scenarios in the test can 

allow us to find better results.  Continuing our analysis with small gains in the 

expected NPV, due to limited capacity to restrict flow leads to a large number of 
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wasted reservoir simulations (corresponding to reservoirs where intelligent 

completions are not beneficial). For that reason the follow tests will be done using 

a selected set of uncertainty scenarios, instead of to choose it randomly.  

Therefore, before we evaluate the performance of rolling strategies, we try to 

choose the ensemble of uncertainty scenarios where the smart valves could be more 

useful. We judge that the uncertainty scenarios considered on the previous test was 

not so appropriated, since it was choose randomly and in many case the BHP limit 

lead the flow control. So in order to choose a set of uncertainty models that really 

can allow the valves be operated without extrapolate the BHP limit we check their 

pressure confronting the first day and the end of the first month. We did it for the 

three producer wells. We can observe on the graphics in Figure 5.19 that some 

models have the wells reaching the pressure limit just on the first month and we are 

interested on the models that it will take as much as possible.  

We plot the BHP of the wells: NA1 vs NA5, NA1 vs NA8 and NA5 vs NA8, 

as the Figure 5.20, respectively.  We can observe in the graphic of BHP of well 

NA5 vs BHP of well NA8 that some uncertainty scenarios are less influenced by 

the minimum pressure limit. Considering that we have five water relative 

permeability, we re-plot the graphic (c) of Figure 5.20, but coloring the models 

according these values, as shown in Figure 5.21. We can note that basically the 

uncertainty models that has the water relative permeability altered has the pressure 

behavior smoothly modified. For this reason, we firstly selected the uncertainty 

models with the higher water relative permeability and then we try to select at most 

50 models with the higher BHP by well NA5 vs NA8. We used a cutoff equal 270 

bar for each of the two wells used in the selection and 48 models were selected 

(Figure 5.22). 

So that we may consider a case related to the synthetic case study for which 

intelligent completions are more useful, we therefore restrict the set of 

representative models to models with higher values (upper quintile) of the 

productivity index of the wells that might be installed with intelligent completions.  

In practice, this information can be determined relatively easily through a formation 

test, so it is not entirely unreasonable that this information could be available before 

the final completion design is chosen.  Figure 5.23 shows the bottomhole pressure 

over time for the same well considering both the original set of uncertainty 
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scenarios, selected randomly, and the new set of uncertainty scenarios that will be 

used in future sections.  

 

a) BHP of well NA1 at day 1 vs day 30 

 

b) BHP of well NA5 at day 1 vs day 30 

 

c) BHP of well NA8 at day 1 vs day 30 

 

Figure 5.19: BHP of the smart wells varying from day 1 to day 30. 
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a) BHP of well NA1 vs BHP of well NA5 

 

b) BHP of well NA1 vs BHP of well NA8 

 

c) BHP of well NA5 vs BHP of well NA8 

 

Figure 5.20: BHP of each smart well. 

 

The plot in Figure 5.24 shows the pressure for the conventional completion, 

with the dashed and solid line representing the P10/P90 and P50 values 

respectively.  We show the pressure for both the original sample of models and for 

the new sample of models, taken after adjusting the uncertainty model by filtering 
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out cases with lower well productivity indexes. In almost all cases, the well is never 

under bottomhole pressure control and so there is more scope for creating a pressure 

drop within flow control valves without affecting the total liquid production. 

 

 

Figure 5.21: BHP of well NA5 vs BHP of well NA8, coloring the water relative 

permeability. 

 

Figure 5.22: BHP of well NA5 vs BHP of well NA8 with the 48 selected uncertainty 

models. 
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Before filtering After filtering 

 

Figure 5.23: Bottomhole pressure over time in one of the wells that is considered for 

installation of intelligent completion.   

 

The main objective of this test is to identify the better parameters to be used 

on the optimization strategy, i.e., the rolling policy that return an expected NPV 

with a number of simulations acceptable. We exercise the optimization approach 

using the Rolling static, flexible and flexible-k strategies and we consider the 

number of time steps equal to 4. For the rolling-flexible-k we consider k equal to 2 

with a geometry time partition, i.e., for each time step the valves can be adjusted 2 

times, with the valve settings being held constant between these times, while the 

time horizon is divided in 2 partitions where the size of successive partitions 

increases approximately geometrically.  As the total simulation time is equal 10 

years, 4 times steps means that the valves are adjusted with an interval of 2.5 years. 

As described on the chapter 4, the measurements are used by this 

methodology as future information to reduce the uncertainties over the time. The 

measurements used in this test are five: the BHP of each smart wells and the oil and 

water production rate from the field. In this test we are interesting in evaluate the 

possible economic gains by the optimization strategy proposed by us. So we 

compare the expected NPV obtained by our optimization strategy that includes 

future information (highlighted on the follow tables), with: 

1. The expected NPV obtained by an optimization strategy without 

information, called Optimization without future information. 

2. The expected NPV obtained by the strategy with no flexibility, called 

Base Case. 
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The Table 5.13 shows the expected NPV obtained by the optimizations 

without future information and the optimization strategy proposed in this thesis that 

incorporate future information, showing the gain in ENPV compared with the base 

case (representing an alternative with conventional wells). Analyzing the results 

obtained on the tests with static, flexible-k and flexible strategies, we can note that 

incorporating future information on the optimization strategy definition allows us 

to have better revenue and the gains obtained exceeds US$ 32x106. We also can 

observe that using 4 time steps the rolling policy that returned the higher expected 

NPV was the rolling flexible-k. Comparing the ENPV obtained by the base case 

with both optimization, with and without future information, we can note that for 

all cases performed, using 4 time steps, the biggest gains were obtained when future 

information was incorporated. We could also observed that the rolling flexible-k 

returned higher or as good as profit compared with the rolling static and the rolling 

flexible.  

     

Table 5.13: Economic comparison between the base case and the optimization strategies with 

and without future information, considering 4 time steps. 

Rolling 

policy 

 

 Strategy without 

future information 

ENPV  

(US$ x 106) 

Gain in 

ENPV  

(US$ x 106)  

compared with 

base case 

Strategy with 

future information 

ENPV  

(US$ x 106) 

Gain in 

ENPV  

(US$ x 106)  

compared with 

base case 

Static  3791.52 19.50 3804.08 32.06 

Flexible-k  3791.80 19.78 3805.79 33.77 

Flexible  3797.48 25.46 3805.98 33.96 

 

 

5.3.4. 
Test 7 - Increasing the number of time steps 

 

To check if increasing the number of time steps also increase the expected 

NPV we performed a test applying our optimization strategy to the 48 uncertainty 

models. As we also described previously the reservoir models are simulated over 

3700 days, so if the valves are adjusted every possible time, we have 74 time 

intervals to optimize the valve settings. According the promising results obtained 
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on the previous test, we use the rolling flexible-k policy on the optimization strategy 

varying the number of time steps. We limited our analyze in 4, 8 or 74 time steps 

due to the computational cost involved, so all others expected NPV should be less 

than the expect NPV found by the maximum number of time steps, 74 in our case. 

In this test, we also evaluate the possible economic gains by the optimization 

strategy proposed by us. Therefore, again we compare the expected NPV obtained 

by our optimization strategy that includes future information with the base case and 

optimization without future information. 

The Table 5.14 shows the expected NPV obtained by the optimizations 

without future information and compare it with the optimization strategy proposed 

in this thesis that incorporate future information using 4, 8 or 74 time steps. We can 

observe that the incorporation of future information still allows us to have increased 

revenue and the gain obtained are higher when we use more optimization time steps, 

as expected.  Comparing the ENPV obtained by the base case and by the 

optimization with and without future information, we can note that incorporate 

future information allows higher gains. For all cases performed with future 

information the profits obtained exceeds US$ 33 x106 and the use of 74 time steps 

returns higher expected NPV. Despite the use of 74 time steps the expected value 

is higher, it also requires a huge number of evaluations compared with the use of 4 

and 8 time steps, as shown Table 5.15.  

 

Table 5.14: Economic comparison between the base case and the optimization strategies 

with and without future information, considering 4, 8 or 74 time steps. 

Number of 

time steps 

 Strategy without 

future information 

ENPV  

(US$ x 106) 

Gain in 

ENPV  

(US$ x 106)  

compared with 

base case 

Strategy with 

future information 

ENPV  

(US$ x 106) 

Gain in 

ENPV  

(US$ x 106)  

compared with 

base case 

4  3791.80 19.78 3805.79 33.77 

8  3792.67 20.65 3809.41 37.39 

74  3791.94 19.92 3812.33 40.31 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1212906/CA



126 
Chapter 5. Case studies 

Table 5.15: Number of evaluations required by each rolling policy, considering 4, 8 or 74 

time steps. 

Number of time steps  Strategy with future 

information 

ENPV (US$ x 109) 

Number of Simulations 

Required 

4  3805,79 4979 

8  3809,41 5792 

74  3812,33 14613 

 

 

5.3.5. 
Test 8 – Evaluating the measurements influence     

 

In the previous tests the measurements used as future information were: the 

BHP of each smart wells and the oil and water production rate from the field. 

Knowing that many others measurements are available during the field 

development, and that this measurements guide the cluster partitioning, in this test 

we investigate the influence of measurements on the expected NPV obtained. 

The measurements consider in this test are: BHP (bottom hole pressure) from 

the smart wells, OPR (oil production rate) and WPR (water production rate), both 

from the smart wells or the field. We preliminarily evaluate some sets of these 

measurements from the field and from the smart well, according first column of 

Table 5.16. On the optimization strategy, we used the rolling-flexible-k policy and 

the time horizon was divided in 8 steps. These parameters were chosen based on 

the results found by the last two tests. The Table 5.18 shows the expected NPV 

obtained by the optimizations varying the set of measurements. Analyzing the 

results obtained using the different sets of measurements, we can note that well`s 

measurements have great influence on the expected NPV. The expected NPVs 

obtained was compared with the optimization strategy without future information 

and the profits obtained exceed US$ 16x109.  

Table 5.17 shows the expected NPV obtained by the base case and by the 

optimization with future information, where the base case represents the alternative 

with conventional wells. Using only the well`s measurements we could found better 

results than using fields measurements as well, obtaining profits that exceed US$ 
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37x109. Although we are increasing the number of measurements when 

incorporating the field measurements, the measurements only from the wells are 

more relevant to reduce the uncertainty than the combination of field and wells 

measurements. 

 

Table 5.16: Economic comparison between optimization strategies varying the 

measurements used. 

Measurements 

Strategy without 

future information 

ENPV (US$ x 109) 

Strategy with 

future information 

ENPV (US$ x 109) 

Profit 

ENPV (US$ x 109) 

Field Smart Well    

WPR + OPR 
BHP + WPR 

+ OPR 
3792,67 3809,41 16,74 

--- 
BHP + WPR 

+ OPR 
3792,67 3813,38 20,71 

 

 

Table 5.17: Economic comparison between the base case and the optimization strategy 

varying the measurements used. 

Measurements  Base Case 

ENPV (US$ x 109) 

Strategy with 

future information 

ENPV (US$ x 109) 

Profit 

ENPV (US$ x 109) 

Field Smart Well     

WPR + OPR BHP + WPR 

+ OPR 

3772,02 3809,41 37,39 

--- BHP + WPR 

+ OPR 

3772,02 3813,38 41,36 

 

 

 

5.3.6. 
Test 9 - Increasing the number of time steps with influential 
measurements 

 

On the previous tests, we checked the influence of number of time steps and 

the measurements influence. We could observe that increasing the number of time 
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steps we can also increase the expected NPV and the last test show us that is better 

to consider just oil and water production by the smart wells instead to use field and 

smart measurements. Therefore, in this test we again investigate the influence of 

number of time steps, but now we just consider the smart wells’ measurements as 

future information. 

We investigate the impact of the frequency with which measurement 

information is obtained and decisions are made.  With the uncertainty model now 

predicting higher well productivities, we find that intelligent completions bring 

value even without future information.  As shown in Figure 5.24, even at early times 

before measurement information is available, the expected final NPV shows a gain 

of over 20 million USD compared to the base case with conventional completions. 

Figure 5.24 also shows that a similar gain is also achieved due to the reactive 

adjustment of the valve controls over time in response to future measurement 

information.  As shown, this gain in value depends on the number of time steps at 

which the measurement information is taken and that the potential for adjusting the 

valve settings exists.  With only 4 steps, our ENPV is 5 million USD lower than the 

ENPV that can be obtained when the maximum 74 steps are considered.  With 8 

steps we obtain a final value that is close to that which we obtain with 74 steps, and 

the gain in ENPV as new information becomes available occurs during a similar 

time period. 

 

 

Figure 5.24: Total gain in the final expected NPV as a function of the information 

available over time.  Shows the results obtained with a rolling-flexible-2 approaches with 4, 8 

and 74 steps, compared to a base case with conventional completions. 
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The final expected NPV obtained, and the number of reservoir simulations 

that were required for applying the methodology with each different number of time 

steps is shown in Table 5.18.  Although the number of reservoir simulations 

required increases with the number of time steps considered, the increase is 

sublinear, with large increases in the number of time steps to be considered leading 

to modest increases in the number of reservoir simulations.  This is because we are 

not required to reoptimize the controls at every time step unless the clustering of 

the models changes.  As the number of time steps becomes large, the number of 

reservoir simulations required depends on the decision resolution and the number 

of representative models used to capture the reservoir uncertainty, rather than the 

number of time steps selected.  It is therefore feasible to consider altering the valve 

settings as often as report steps are generated from the reservoir simulation (every 

50 days for our case). With fewer time steps, it may be possible as shown in Table 

5.18 to obtain a strategy that yields a similar expected NPV with somewhat fewer 

reservoir simulations. 

 

Table 5.18  ENPV gain and total number of reservoir simulations required for each of the 

approaches shown in Figure 5.24 

 

Number of time 

steps 

Gain in ENPV ($US 

x 106) 

Number of 

reservoir simulations 

4 36.8 7128 

8 41.2 12935 

74 41.8 20041 

 

To aid in understanding the impact that the number of time steps has on the 

methodology, it is useful to visualize the full decision tree that the methodology 

yields as a by-product of valuation.  In Figures 5.25-27 we show visualizations of 

the decision tree created for each of the cases shown in Table 5.20. The horizontal 

axis represents the passage of time as measurements are obtained and decisions are 

taken.  Each line represents a different cluster of models, with the thickness of the 

line showing the number of models that the cluster represents (and therefore the 

likelihood that this cluster represents the true reservoir properties).  The connections 

between the lines show the topology of the decision tree.  The color of each cluster 
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represents the percentage gain in the final NPV (based on only the present 

information), compared to the base case with conventional completions.  The 

numbers at the end (leaf) of each branch of the decision tree represents the 

representative model number used within the methodology.  This case is based on 

a rolling-flexible-2 approach, with a total of 4 time steps for reactive control.  These 

visualizations depict the topology of the tree and show at what times decisions are 

taken, in addition to showing the percentage gain in NPV that each cluster provides.  

For both 4 and 8 time steps the initial behavior of the trees are very similar, with 

similar controls and the same initial clustering after 700 days (the end of the first 

and second steps in the 4 and 8 step schemes respectively).  After this time the 

results begin to diverge and the topology of the decision tree differs. 

In all of the decisions trees it is noticeable that we almost completely resolve 

the uncertainty by the end of the 10 year period under study.  Indeed, there is only 

one situation where this is not the case - with only 4 steps we are unable to 

distinguish between models ‘2’ and’38’. 

 

 

 

Figure 5.25.  An illustration of the decision tree created as part of the rolling 

optimization procedure.   

 

DBD
PUC-Rio - Certificação Digital Nº 1212906/CA



131 
Chapter 5. Case studies 

 

Figure 5.26:  Identical plot to Figure 5.25, but with a total of 8 time steps for reactive 

control. 

 

 

Figure 5.27.  Identical plot to Figure 5.25, but with a total of 74 time steps for reactive 

control. 
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5.4. 
Case 4 – Validating the results of the methodology 

Since we are proposing an approach that incorporate approximations and 

clustering, we want to know how reliable are the numbers that represent the value 

of flexibility and for that reason we need to validate the approach. For that we can 

split the set of uncertainty scenarios in two groups (drawn from the same 

distribution), that we call optimization models group and test models group. The 

optimization models group is a collection of geological models, representing the 

real reservoir uncertain, used to estimate the value of flexibility and create the 

playbook (with the flow control settings and reservoir clusters) that maximize the 

net present value over the time horizon, allowing to value the flexibility. The test 

models group is another collection of geological models (that was not present on 

the optimization process), also representing the real reservoir uncertain and that 

came from the same distribution of the optimization models group, that will be used 

to apply the playbook (from the optimization process) following the control setting 

previous optimized according the changes of the reservoir behavior over the time. 

We call this process, using the test models group, as validation test. Such a 

procedure forms the basis for validation as we present. 

A thorough study of the valuation and validation methodology requires a 

large number of optimizations and reservoir simulations, with the entire workflow 

repeated for multiple different numbers of training models and values for the 

decision resolution. While it is possible to achieve this using simple reservoir 

simulation studies, the computational cost of numerical simulations will be 

significant, and in practice it may not be possible to completely remove random 

noise as the number of uncertainty scenarios required must be limited by constraints 

imposed by availability of computational facilities. We therefore first consider a 

thorough study of valuation and validation using a simple toy problem. As we need 

to generate a big set of uncertainty scenarios without expensive optimization to 

determine the control, we choose to use a modified version of the canonical tank 

model that is easily optimized and provides opportunity for consider complex 

uncertainty scenarios. 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1212906/CA



133 
Chapter 5. Case studies 

5.4.1. 
Multiple tank model 

A schematic of the proposed continuous version of the tank model is shown 

in Figure 5.28. As in the “toy” model described on Section 5.1.1, in this one the 

water is introduced into the bottom of the tank, with the tank initially containing a 

certain volume of oil in the top of the tank. Rather than producing from a limited 

number of taps that each produce either water or oil, we instead produce from one 

side of the tank with the production rate of each fluid proportional to the exposed 

area of the fluid. The area of the fluid that is exposed on this side of the tank may 

be adjusted by a single, continuously-variable control that prevents flow from the 

lower region of the tank.  

One significant difference between this simple tank model and the real 

problem in the reservoir is the number of uncertain parameters. The single tank 

model has only one uncertain parameter - the initial level of the oil-water contact. 

The number of measurements is equal to the number of uncertainties, and so 

measurements allow us to directly resolve the uncertainty. This behavior is 

completely unlike most of the uncertainties that we encounter in the reservoir 

problem. One method of increasing the number of uncertain parameters is to 

consider multiple tanks simultaneously. The tanks can be coupled by combining 

their productions into a single manifold, with it only being possible to measure the 

comingled production from the manifold, and not the production from individual 

tanks. This seeks to represent the reservoir behavior in which it may not be easy to 

continuously monitor the production from individual flow control valves and we 

may instead only be aware of the total production per well or across the field. 

It is also possible to consider some statistical correlation between the water 

levels in the multiple tanks. This seeks to represent the similar statistical 

correlations of the uncertain reservoir properties. As the production from each of 

the tanks is independent, the optimal control can be determined using the method 

of the previous section once a probability distribution for the initial level of water 

in the tank has been determined. As measurements lead to clustering, the probability 

distribution for the current level of water in the tank is modified. We can then 

recalculate the optimal controls for each tank. 
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Figure 5.28: Schematic of continuous tank model 

We consider one particular case with eight tanks as shown in Figure 5.29. The 

production from the first four and last four tanks is commingled and we are able to 

measure the commingled accumulated productions, i.e. Equation 5.3 and 5.4, with 

similar expressions for the accumulated productions of water. Using accumulated 

production as our measured quantity has several advantages. Firstly, it may be more 

representative of the real behavior in production scenarios, where it may take some 

time to be able to accurately measure the production rates; secondly, it somewhat 

relieves the situation where this continuous tank model immediately yields 

information about the water levels within the tanks which would not happen for a 

real reservoir model.  

 

 

Figure 5.29: Schematic of continuous tank model 

 

We need to develop a model for the uncertain initial water levels within the 

tanks. We assume that the water level within each tank is uniformly distributed, but 

we also allow for the possibility that the water levels within the tanks are correlated. 
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More specifically we use a Gaussian copula (Li et al, 2012) to model the correlation 

between the water levels in the tanks. The correlation matrix used within the 

Gaussian copula assumes that the correlation between neighboring tanks is ρ (and 

e.g. the correlation between tanks 1 and 3 is ρ 2, etc.). By varying the correlation 

parameter ρ between 0 and 1, we can change between non-correlated and fully 

correlated water levels. 

 

(5.3) 

 

(5.4) 

 

We intend to apply the developed rolling flexible methodologies to this 

problem. We therefore need to consider clustering of models based on measurement 

data. As measurements we use the accumulated commingled oil productions, Qo
A, 

Qo
B.  Since given that the controls are known the total volume of produced liquid 

is known, the water productions do not give any extra information. Using the 

accumulated production rather than the production rates ensures that it takes time 

to learn about the uncertainty state, which is a feature that is often present in the 

real reservoir problem, but which would not otherwise be present in this simple tank 

model.  

 

 

5.4.2. 
Test 10 – Maintaining uncertainty to increase robustness 

 

As mentioned in the description of the methodology, the proposed approach 

uses the measurements assimilation to reduce uncertainty over the time, where each 

measurement considered will have an associated “decision resolution”. The 

decision resolution, in this work, represents both the accuracy of the measurement 

and also our policy in how much variation or change is needed in a particular 

measurement in order to motivate the engineer to make a decision. Since the 

measurement accuracy limits our ability to use measurement information to resolve 
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model uncertainty, in this test we are particularly interested in the impact of the 

measurement decision resolution on the resulting expected NPV, since this 

corresponds to the value of having more accurate measurement data. 

We therefore apply the rolling flexible methodology for various values of the 

decision resolution, also varying the correlation parameter ρ and the number of 

samples used as uncertainty scenarios within the methodology. We have fixed the 

cost of producing water, α = 0.5 and the discount rate, r = 0.09. The results are 

shown in Figure 5.30 as the ‘in-sample’ curves. For all correlation parameters and 

numbers of samples, decreasing the decision resolution increases the expected NPV 

as calculated by the rolling flexible methodology, and for a decision resolution 

greater than around 2m3 no information is gained and so there is no further change 

in the expected NPV as the decision resolution increases. When all of the initial 

water levels are equal we appear to be approaching a maximum value as the 

decision resolution approaches zero; however, in the other cases it appears that we 

would need to reduce the decision resolution still further to show such behavior. 

The impact of the number of samples used is fairly limited, particularly when there 

is correlation between the initial water levels. 

We can observe that as we increase the decision resolution, the expected value 

decreases. This behavior can be explained by the proportionality between decision 

resolution and the decision making under uncertainty, i.e., if we are using a large 

decision resolution the uncertainty there is a large delay for resolving uncertainty 

and consequently we continue to optimize over a large set of uncertainty scenarios.  

 In the previous test we note that as we increase the decision resolution, we 

decrease the expected value obtained because the uncertainty carried out over the 

time horizon. In this test we want to investigate how reliable are the optimization 

values that we have been obtained so far, i.e., we want to validate the flow control 

strategy and the expected value obtained by our proposed approach. 

The resulting expected NPV from the rolling flexible methodology is 

calculated using the same samples that have been used to optimize the controls. 

Such an approach could be over-estimating the expected value if the number of 

samples used is not sufficient for the methodology. We therefore apply the 

validation methodology with new `out-of-sample' validation models, drawn from 

the same distribution (with the same Gaussian copula) as that used to provide the 
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training models. We continue to generate new out-of-sample validation models 

until our estimate of the validated expected NPV has converged. 

These out-of-sample estimates are shown in Figure 5.30 as the `out-of-

sample' curves. Where there is perfect correlation between the initial water levels, 

the in-sample and out-of-sample curves are essentially identical. In this case, the 

measurements allow us to perfectly capture the uncertainty and it is easy for the 

uncertainty scenario to capture all of the uncertainties. As we decrease the 

correlation between the initial water levels we find that at small values of the 

decision resolution the in-sample and out-of-sample estimates no longer agree. This 

difference becomes more pronounced as the correlation becomes weaker. 

Note that we also notice a small difference between some of the in-sample 

and out-of-sample estimates for large decision resolutions when only 1000 

uncertainty scenarios are used for training. This difference represents the error in 

the Monte-Carlo estimate of the expected NPV when only 1000 uncertainty 

scenarios are used - the out-of-sample estimate shows the true value as for this 

calculation keep generating samples until the Monte-Carlo estimate converges. 

 

 

Figure 5.30: Plots of ‘in-sample’ and ‘out-of-sample’ estimates of the expected NPV as 

determined by the rolling flexible method, with variation in: the decision resolution; the number of 

uncertainty scenarios used within the rolling flexible method (NS); and ρ, the correlation between 

the initial water levels in the tanks. 
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There is also an impact of the number of uncertainty scenarios used to build 

the decision tree. As more uncertainty scenarios are used, the validity of the `in-

sample' result continues for lower values of the decision resolution. For a fixed 

number of uncertainty scenarios, it appears that there is an optimal choice for the 

decision resolution that maximizes the out-of-sample estimate of the ENPV. This 

value serves as a compromise in which we wish to choose a value that is small 

enough so that we recover information from the measurements, but large enough 

so that we do not produce excessive clustering as a result of an incomplete model 

of the uncertainty. In principle, it seems likely that with enough uncertainty 

scenarios used to train the decision tree, that the value obtained from training would 

be equal to that obtained by validation; however, the improvement in the accuracy 

of the valuation is fairly minor given the large increase in the number of uncertainty 

scenarios. In practice, there is therefore a minimum value for the decision 

resolution, below which the number of uncertainty scenarios required for an 

accurate and optimal answer becomes very large.   

Determining an appropriate value for the decision resolution for every case, 

reflecting the extent to which the measurements genuinely inform about resolution 

of model uncertainty and relevance to optimal controls, may be difficult. The 

difference between the value obtained for in-sample and out-of-sample valuations 

can be ascribed to `ensemble collapse' in which we are optimizing a small group of 

models, or possibly even a single model, that is not representative of uncertainty 

scenarios that yield similar measurement values. Rather than attempt to avoid this 

ensemble collapse by increasing the number of uncertainty scenarios for training, 

or by carefully tuning the decision resolution, we can instead proscribe such small 

groups of models as a step within the clustering algorithm.  

As shown in Figure 5.31, adjusting the minimum number of models used 

shows a similar impact on the calculated values to that of adjusting the decision 

resolution. By setting the minimum number of models allowed in a cluster to 10, 

we obtain a similar value for the expected net present value in both training and 

validation sets, and this value is close to the optimal value that can be obtained with 

this number of samples. However, unlike the decision resolution we do not need 

any specialized knowledge about the impact of the measurement on uncertainty 

resolution. We therefore expect that the restriction to a minimum number of models 
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will be appropriate for a wide range of studies. We also expect that restricting the 

minimum cluster size to 10, should ensure that we always have sufficient models 

to fully characterize the residual uncertainty within each cluster and avoid ensemble 

collapse. 

By enforcing a minimum size for the clusters we avoid ensemble collapse, 

and thereby yield a strategy that is truly robust to uncertainty with a reliable 

valuation. However, we should also maintain the original definition of the decision 

resolution, since it is still important that clusters can be clearly distinguished by 

available measurement data. The limited number of uncertainty scenarios used to 

train the decision tree may lead us to underestimate the true value, and produce a 

development strategy that is robust but sub-optimal, but this is preferable to an 

overestimation of the value and a non-robust development strategy. 

 

 

Figure 5.31: Plots of ‘in-sample’ and ‘out-of-sample’ estimates of the expected NPV as 

determined by the rolling flexible method as a function of the minimum number of models that are 

required for each cluster. For this example ρ = 0.5. 

 

 

5.5. 
Case 5 – Checking approach responses by the use of representative 
models 

The expected value obtained is sensitive to the number of uncertainty 

scenarios used. On the previous tests, using the multiple tank model, we could note 

that there was a small difference between some of the in-sample and out-of-sample 

estimates for large decision resolutions when we increase the number of uncertainty 

scenarios used for training (optimization). As the number of uncertainty scenarios 
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increases, the error on the expected optimization-validation value is reduced. This 

may indicate that considering a large set of uncertainty scenarios to create the flow 

control strategy can lead us to an impractical approach.  

This study case was done in order to check the performance of our approach 

when we drastically increase the number of uncertainty scenarios from 50 to 400 

geological realizations. As described on the previous chapter, we can also apply the 

proposed approach without to evaluate all uncertainty scenarios during the 

optimization, and the next test evaluates how much this approximation can 

influence the optimization and the validation expected values.    

 

5.5.1. 
Test 11 – Representative models for optimization 

To consider a large ensemble of uncertainty scenarios we again intend to 

use the UNISIM model, as we have available 500 geological models. All previous 

tests on the UNISIM case study used around 50 models, but on the previous tests 

to validate the flow control strategy we could note that increasing the number of 

uncertainty scenarios considered allow us to reduce the error between the valuation 

and the validation. 

First, we again evaluate the uncertainty behavior to select a set of 

uncertainty scenarios that can have better response by the use of smart wells. For 

that we compare the oil and water production by the smart wells, but considering 

the valves fully open, i.e., without any flexibility. We can compare by Figure 5.32-

32 the oil and water cumulative production by all geological models at initial and 

later time. The production information is presented by smart wells, in order to 

identify the cases where this king of technology could be more promising.  

Knowing that smart wells can have a good response when applied for reduce the 

water production, we choose to use the a set of geological models with higher 

cumulative water production in later time, and this represent all set of geological 

models with the higher relative permeability (the models named by 2000 and 2500). 

Although, there is not a way to optimally define the number of uncertainty scenarios 

to consider, we choose 500 models, thinking that this amount could be big enough 

for do not over-estimate the expected value, what can happen if the number of 

samples used is not sufficient for the methodology. 
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a) Cumulative oil production after the first time step 

 

b) Cumulative oil production after the last time step 

 

Figure 5.32 Comparing the cumulative oil production by the smart wells at the beginning 

and the end of the time horizon. 
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a) Cumulative water production after the first time step 

 

b) Cumulative water production after the last time step 

 

Figure 5.33 Comparing the cumulative water production by the smart wells at the 

beginning and the end of the time horizon. 

 

 

Once we choose the 500 geological scenarios we randomly divided them 

into two groups: the in-sample models (that will be used on the valuation, to provide 

the flow controls strategy) and the out-sample models (that will be used to validate 

the results, applying the flow control strategy, hypothetically, as in a real reservoir 
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situation).  The follow tests consider 400 geological scenarios as in-sample models 

and 100 geological scenarios as out-of-sample models. 

In order to reduce the expended computational time required by optimization 

to then create the flow control strategy, in this test we make use of representative 

models during the optimization, as proposed and described in the previous chapter. 

We remain that the representative models are choose at each time step by economics 

gain to be evaluated during the optimization step and once the flow control strategy 

is defined we incorporate all uncertainty scenario available, applying the best flow 

control strategy found and simulated to reduce the uncertainty by future 

measurements. The follow tests consider 9 representative models to optimize the 

controls. 

As we mentioned, in this test we will use 400 uncertainty scenarios in our in-

sample group, that will be used to generate the flow control strategy and we 

compare the optimization response varying the minimum number of uncertainty 

scenarios maintained in the clusters. We consider to use 10, 20 and 100 scenarios 

by the in-sample group as the minimum number of models per cluster, enforcing a 

minimum size for the clusters. We therefore apply the validation methodology with 

new 100 ‘out-of-sample’ validation models.  

As on the previous tests with the UNISIM models, this one uses the same 

reservoir development plan described on Section 5.3.1, with 18 vertical wells. 

Production is planned for 10 years, and the time horizon is divided in 8 time steps. 

The optimization strategy parameters was choose by the previous promising results. 

We use the rolling strategy with k=2, considering oil and water production by the 

smart wells as future measurements. Table 5.19 shows the results obtained by 

optimization and validation procedures varying the minimum size for the clusters. 

We can note that increase the minimum size for the clusters leads to decrease the 

expected value by optimization. 

Even we have more robust optimizations, considering big sets of uncertainty 

scenarios on the optimization, we can get similar answers using a smaller amount 

of representative models. This is because in our approach since we find the 

optimum control by a small set of uncertainty models, we always apply the 

optimum results at time for all uncertainty scenarios available to then reduce the 

uncertainty by future simulated measurements. This allows us to reduce the number 
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of evaluation required by optimization without loose big improvements on the 

expected optimization value. 

 

Table 5.19: Expected valued obtained by optimization (considering in-sample models) and 

validation (considering out-sample models) procedure, with variation of representative models 

used by optimization. 

Number of 

Representative models 

used by optimization 

Expected Value by Optimization 

(US$E+06) 

Expected Value by 

Validation 

(US$E+06) 

10 3410 3462 

20 3408 3463 

100 3405 3462 

 

On the other hand, Table 5.19 also shows the expected value obtained by the 

validation procedure, when we apply the complete flow control strategy found by 

optimization to new uncertainty scenarios, which was not included on the 

optimization process, and simulate them as a real reservoir situation following the 

control strategy proper to the scenario behavior. We can see that even considering 

different minimum size for the clusters we could find similar expected results by 

the validation. 
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