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1 Introduction 

Software architecture plays a central role in software development projects as it 

influences the satisfaction of the key quality attributes, such as modularity and 

maintainability. Well-designed software architectures usually lead to high-quality 

software systems (Bass et al., 2003). Software architecture is a high-level design 

involving the description of basic elements – such as components and interfaces – as 

well as their interactions (Perry and Wolf, 1992). Software architecture is often seen 

by software industry developers as essential in the software development process 

(Baltes and Diehl, 2014). In fact, empirical studies (Clements et al., 2002)(Baltes and 

Diehl, 2014) have revealed architectural design decisions usually are, at least, 

documented as informal models. The architecture models might be incomplete, but 

the key architecture decisions are part of these models, which are archived and used 

along software evolution (Baltes and Diehl, 2014). These documented decisions are 

used to guide the software implementation, the developers’ communication, and the 

software evolution (Clements et al., 2002).   

The prescriptive architecture captures the key design decisions made prior to 

the system’s construction (Taylor et al., 2009). In other words, the prescriptive 

architecture will influence the architecture implementation. However, the actual 

architecture implementation often does not match the prescriptive architecture. The 

descriptive architecture describes the actual software architecture as observed in the 

implementation. When software evolves, its prescriptive architecture should ideally 

be modified first. However, in practice, the descriptive architecture is often directly 

modified in the implementation without any proper reasoning about the prescriptive 

architecture.  The reasons for this problem range from lack of programmers’ 

awareness about the need of updating the prescriptive architecture to other priorities 

given the short deadlines in software projects (Taylor et al., 2009).  These unplanned 

changes in the implementation reduce the modularity and maintainability of the 

descriptive architecture realized in the program (Taylor et al., 2009).  
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In this context, the source code changes without considering the prescriptive 

architecture might hinder the satisfaction of key quality attributes, such as modularity 

and maintainability. In other words, these changes will introduce structural problems 

in the implementation of the software system, which are associated with architecture 

degradation problems. When software developers perform bad architecture decisions 

in the actual implementation of the system, those decisions can be reflected in the 

descriptive architecture. Then, architecture degradation symptoms are likely to 

manifest during the system evolution.  Architecture degradation (Hochstein and 

Lindvall, 2005) is a general term often used to refer to the decay of the architectural 

design properties of a software system. Therefore, when software architecture 

degradation symptoms are not properly addressed, the evolution of a software system 

can be irreversibly compromised. In extreme cases, symptoms of architectural 

degradation may also cause the reengineering of software systems (Eick et al., 

2001)(MacCormack et al., 2006). 

 

1.1. 
Motivation 

A key concern of software architects is to ensure the modularity and 

maintainability of the actual architecture, observed in the implementation (descriptive 

architecture). The reason is that this architecture is the one influencing developers’ 

work when they perform changes in the implementation. The main factor often related 

with emergence of architecture degradation symptoms is the progressive and 

unavoidable insertion of code anomalies in a program (Hochstein and Lindvall, 2005).  

Code anomalies – also popularly referred to as code smells (Fowler et al., 1999) 

– are structural symptoms in the source code, which might also indicate problems in 

the software architectural design. Examples of code anomalies are God Classes, Long 

Methods, and Feature Envies (Hochstein and Lindvall, 2005). For example, instances 

of these code anomalies are used for revealing degradation symptoms in the 

descriptive architecture (Macia et al. 2012a)(Macia et al. 2012b). In fact, empirical 

studies (Macia et al., 2012a)(Macia et al., 2012b) revealed that around 80% of 

architectural design problems (Garcia et al., 2009b) are related with the presence of 

well-known types of code anomalies, such as God Classes and Long Methods. When 
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a code anomaly is related with one or more architectural problem, we state this code 

anomaly is critical1 to the software architecture design.  

Figure 1 depicts an example where we can observe architecture decisions 

present in the prescriptive architecture specification (left side) and the descriptive 

architecture (right side). This example will be used to illustrate the elements of our 

research. For instance, the architectural components SearchUI, SearchController and 

SubscriberController serve to illustrate cases of architectural degradation symptoms. 

They manifest symptoms of architectural drift problems related with Scattered 

Parasitic Functionality and Ambiguous Interface (Garcia et al., 2009b). Architectural 

drift characterizes the introduction of key design decisions into a system’s descriptive 

architecture: (i) that are not included in the prescriptive architecture, but (ii) they do 

not violate any of the prescriptive architecture’s design decisions (Martin, 2003). In 

other words, architecture drift problems do not represent a violation of a decision 

made in the prescriptive architecture specification. Typical examples are interfaces of 

components, which exist in both prescriptive and descriptive architectures, but 

became too complex due to unplanned changes. An architecture erosion problem is 

the opposite: there is a mismatch between the architecture prescriptive and descriptive 

design decisions. 

In this thesis, we decided to focus on architectural drift problems for three main 

reasons. First, the manifestation of architectural drift problems in the software project 

history usually precedes architectural erosion problems (Hochstein and Lindvall, 

2005)(Gurgel et al., 2014). Second, they are more difficult to be revealed by 

developers than erosion problems because there is no explicit violation of single 

architecture design rules. Third, architectural drift often manifests in the descriptive 

architecture, which can be inferred from the source code. If some design decisions are 

not properly modified in the source code (descriptive architecture), they will be not 

properly performed in the evolution of the prescriptive architecture. 

The key challenge to software engineers is that certain architectural problems in 

the implementation cannot be merely detected based only on the source code analysis 

(Macia et al., 2012b). Each architectural problem is often realized by multiple code 

anomaly occurrences scattered in the implementation (e.g., see Figure 1). Then, the 

                                                
1 Also referred to as architecturally-relevant code anomaly 
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detection of the architectural problem requires the developer to spend effort to 

understand whether and which code anomalies contribute to an architectural problem. 

Therefore, the effect of occurrences of code anomalies affecting many code elements 

when detecting problems in the descriptive architecture need to be manually 

investigated by developers. In addition, it is important to mention that several 

occurrences of code anomalies are not necessarily related with architectural problems.  
Prescriptive Descriptive 

  
Code Fragment A (Person) Code Fragment B (SearchPerson) 

 
… 

 

 

 

 

Figure 1 - Code Fragments with Non-Critical and Critical Code Anomalies 

Empirical studies (Macia et al., 2012a)(Macia et al., 2012b) revealed that only 

40% of code anomalies detected using conventional strategies could be associated 

with problems in the system architecture. Therefore, software developers are expected 

to be able to: (i) distinguish the code anomalies associated with problems in the 
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descriptive architecture, from those that are not; and (ii) rank the critical code 

anomalies according to their criticality regarding the impact on the architecture 

degradation. These are time-consuming and error-prone activities as the developers 

would need to reason about all the code anomalies, understand their relationships. 

They would need also to reason about the relation of each code anomaly and the 

architecture problem counterparts in order to identify the relative relevance of each of 

them.  

Motivation Scenario. As just mentioned, occurrences of critical code 

anomalies must be separated from those not harmful to the architectural design. In 

addition, software developers must also be able to rank those code anomalies 

according to the criticality of the architectural problems they might be associated.  

Figure 1 depicts a code element Person (Code fragment A), which is infected by code 

anomaly called God Class. A God Class can be understood as a large class 

implementing many responsibilities in the software system (Fowler et al., 1999). This 

particular instance of God Class might be related to the architectural problem 

affecting the component SubscriberController. This architectural component, among 

others represented in the specification of the descriptive architecture, suffers from the 

architectural problem Scattered Parasitic Functionality (Garcia et al., 2009b). The 

architectural problem Scattered Parasitic Functionality manifests when multiple 

components are responsible for realizing the same high-level architectural concern. 

As depicted in Figure 1, the SubscriberController components are responsible for 

implementing 4 different concerns - Manage Subscribers (MS), Manage Donations 

(MD), Manage Events (ME) and Manage Labels for Subscribers (ML). Thus, 

different concerns are implemented in the code element Person, which is responsible 

for realizing the SubscriberController component. Even though, specifically in this 

case, a single instance of the God Class anomaly is associated with the architectural 

problem, certain instances of God Classes in the same system are not be associated. 

However, other architectural problems are only possible to detect when multiple 

anomalies in the source code affect several architectural elements. For instance, 

Figure 1 (code fragment B) shows the code element SearchPerson, which is affected 

by 3 different code anomalies, namely Long Method, Feature Envy and God Class 

(Fowler et al., 1999). The SearchPerson is one of the classes responsible for realizing 

the SearchController component. This architecture component suffers from an 
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architectural problem called Ambiguous Interface  (Garcia et al., 2009b), which 

occurs when interfaces offer only a single and general entry-point into a component, 

reducing the system analyzability and understandability. In this case, the key interface 

SearchCriterion is defined as the only entry-point into the SearchController 

component, which is realized by several classes. Therefore, all the classes realizing 

this component are forced to implement this interface. In addition, when code 

anomalies co-exist in classes implementing a given architectural component, 

undesired dependencies – which are not specified in the prescriptive architecture - 

might also be observed between the architectural components. All the examples 

discussed here show that prioritizing and ranking critical code anomalies are 

important, albeit challenging and time-consuming tasks. 

 

1.2. 
Problem Statement 

Critical code anomalies can lead to the architecture degradation during the 

system evolution (Macia et al., 2012a)(Macia et al., 2012b). In order to prevent 

architecture degradation symptoms (Hochstein and Lindvall, 2005), critical code 

anomalies must be refactored and removed as early as possible during the software 

development. Moreover, software developers are usually expected to choose which 

code anomalies should be refactored first, mainly due to: (i) time constraints, and (ii) 

attempts to find the correct solution when restructuring a large system. The 

prioritization of code anomalies is often required for increasing the effectiveness of 

such refactoring activities. Thus, software developers are expected to distinguish the 

critical code anomalies, as well as rank those code anomalies according to their 

impact on problems in the descriptive architecture. When it is not possible 

distinguishing and ranking critical code anomalies developers will spend more time 

addressing problems that are not harmful to the system architecture design (Macia et 

al., 2012b). 

Despite the existence of several strategies for detecting code anomalies 

(Marinescu et al., 2004)(Moha et al., 2006)(Ratzinger et al., 2005)(Salehie et al., 

2006)(Tsantalis, 2008), they fail to assist developers on revealing critical instances of 

code anomalies associated with problems in the descriptive architecture. The problem 
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is that existing detection strategies are strictly based on source code static analysis. 

However, analyzing only the source code, which is responsible for realizing the 

descriptive architecture, is not an effective way to reveal architecture degradation 

symptoms. In addition, those detection strategies detect a high number of occurrences 

of non-critical code anomalies even in small systems. Therefore, those strategies do 

not assist developers when distinguishing and ranking the code anomalies considered 

as candidates to be associated with architectural degradation symptoms. In this sense, 

despite the existence of several studies on the impact of code anomalies on the quality 

of software systems (Godfrey and Lee, 2000)(Eick et al., 2001)(MacCormack et al., 

2006)(Knodel et al., 2008), developers are still lacking support to characterize which 

code anomalies are gradually related with architectural problems. Consequently, they 

have no clue regarding which code anomalies they should refactor earlier in the 

system development, and hence, those critical code anomalies remain in the source 

code. 

Unfortunately, there is limited to none knowledge about how to prioritize and 

rank code anomalies critical to the software architecture. Furthermore, there is a lack 

of empirical investigation on how architecture information, often available on 

software projects, could be used as means to help developers when revealing concrete 

problems in the descriptive architecture. This lack of knowledge is omnipresent to all 

existing techniques for architecting and maintaining software systems, from object-

oriented and aspect-oriented techniques to model-driven techniques. On the other 

hand, the identification of architectural problems, by only looking the architectural 

specification, is not a trivial task. The reason is that the specification of the 

descriptive architecture does not contain all information related with the architecture 

decomposition. In addition, architectural design decisions usually are not entirely 

specified in real software projects, but they are only partially represented as informal 

models2. Thus, in order to prevent architecture degradation, software developers 

should be provided with means for prioritizing and ranking the most critical 

anomalies as early as possible. 

                                                
2 Referred to as architecture blueprints in this thesis 
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1.3. 
Limitations of Related Work 

Several works have investigated the impact of code anomalies on software 

quality (Arcoverde et al., 2011)(Macia et al., 2012a)(Macia et al., 2012b), as well as 

the support to specification and detection of code anomalies in general (Fowler et al., 

1999)(Marinescu et al., 2004)(Moha et al., 2006)(Ratzinger et al., 2005)(Salehie et 

al., 2006)(Tsantalis, 2008). However, existing strategies are mostly focused on 

defining and applying rules for detection of code anomalies in a program, without 

considering their relevance according to the software descriptive architecture. As 

those strategies are more focused on the detection of code anomalies, they were not 

conceived to perform activities towards the refactoring of the most critical code 

anomalies. In this sense, they do not provide means for helping developers when 

improving or maintaining the modularity of the system’s descriptive architecture – i.e. 

helping developers to decide which code anomalies should be refactored first, based 

on the impact on the actual architectural design.  

Moreover, the exclusive use of code anomaly detection strategies has not been 

succeeded on the prioritizing and ranking critical code anomalies for several reasons 

(Macia et al., 2012a)(Macia et al., 2012b). Firstly, recent studies (Macia et al., 

2012a)(Macia et al., 2012b) revealed that even when strategies are calibrated, they 

fail to support software developers when distinguishing what occurrences of code 

anomalies are critical to the architectural design. The problem associated with 

automatically collected measures is the fact they purely represent properties of the 

source code structure, and therefore, they are often agnostic to the architectural 

design. Once the architecture decomposition is not explicit in the source code, 

developers might consider all measures and respective modules have the same 

relevance in the architecture design. Secondly, existing strategies are context 

dependent as the choices of metrics and thresholds need to be calibrated depending on 

the characteristics and complexity of the software project under assessment (Macia et 

al., 2012a) 

Although it is highly recommended to detect and prioritize critical code 

anomalies as early as possible, developers tend to invest more effort on finding new 

mechanisms that may help on the detection process. Furthermore, software developers 
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usually spend more time reviewing code anomalies that do not represent any threat to 

the software architecture design. Recent research has explored the use of other types 

of available project factors (Wong et al., 2010)(Wong et al., 2011)(Arcoverde et al., 

2013), in conjunction or not with program structural metrics, for detecting code 

anomalies. For instance, extra information ranges from density of (co-) changes in 

modules (Wong et al., 2010)(Raemaekers et al., 2012), density of bugs in a module 

(Arcoverde et al., 2013) and similarity measures (Biegel et al., 2011). Nevertheless, 

these strategies do not focus on prioritizing code anomalies according to their 

architecture relevance. They only perform retrospective analysis of software history 

data. Moreover, those strategies do not focus on ranking critical code anomalies. The 

other challenge is that bug reports and change rationale reports in real software 

projects often do not offer concrete information to enable the understanding about the 

relevance of anomalous code elements to the architecture design.  

On the other hand, architecture blueprints are often available in software 

projects from the design outset as they are used to communicate key architectural 

decisions (Clements et al., 2002)(Baltes and Diehl, 2014). The use of blueprints has 

been exploited and assessed in many different software engineering activities, 

including process evaluation (Alegría et al., 2010), model transformation optimization 

(Jeanneret et al., 2011) and test coverage analysis (Araya, 2011). Architecture 

blueprints can be understood as informal models or sketches about high-level design 

usually created for communicating developers about the key design decisions in the 

architecture decomposition of a software system (Baltes and Diehl, 2014). 

 

1.4. 
Proposed Solution 

The solution, proposed in this thesis, is rooted at the assumption that the use of 

architectural information, available in blueprints, might help developers when 

deciding what code anomalies are critical to the software architecture. Then, 

developers can better decide which refactorings should be performed first in order to 

improve the descriptive architecture in the source code. Therefore, the architecture 

blueprints are used as additional artifact in the process of prioritizing and ranking 

critical code anomalies. The blueprints will be used in addition to conventional source 
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code analysis, typically the solution explored to detect critical code anomalies 

(Section 1.3). Blueprints often represent key design decisions of the prescriptive 

architecture (Clements et al., 2002)(Baltes and Diehl, 2014). Then, our assumption is 

that they will serve to infer, at least, which architectural elements are more relevant to 

the software system.  

The prioritization and ranking of critical code anomalies aims at avoiding the 

degradation of the prescriptive architecture by indicating the need for removing such 

anomalies at an early stage of software development. As blueprints are often produced 

before the system is implemented (Clements et al., 2002)(Baltes and Diehl, 2014), 

they might help to prioritize and rank code anomalies already in the first version of a 

system. Furthermore, exploring architecture blueprints in the prioritization process 

introduces other challenges. Even in well-documented software systems, there are 

some difficulties inherent to the use of architecture blueprints on revealing critical 

code anomalies. The difficulties are discussed as follows. 

Architecture blueprints might represent many different characteristics, with 

different levels of granularity, depending on what type of information the architect are 

intended to communicate or report to the software developers. For instance, the 

architecture blueprint in our study of the Mobile Media system represent in more 

details the descriptive architecture decomposition and the communication between the 

architectural components. Additionally, as the Mobile Media is a software product 

line (SPL), all the features implemented in the system are also represented in each 

component responsible for realizing them. On the other hand, for the Health Watcher 

system – another system considered in our research, the architecture blueprints 

represent a more high level view of the system components and interfaces. In 

summary, architecture blueprints can be produced aiming to attend different interests, 

which also depend on the nature of the system to be specified and implemented.  

Furthermore, architecture blueprints can be used for different purposes, such as: 

(i) informing developers about the full prescriptive architecture to be implemented in 

the early stage of development, (ii) merely conveying important architectural design 

decisions; or (ii) reasoning about the construction and evolution of a software system. 

There is no knowledge about the usefulness of any of these types of blueprints on the 

prioritization of critical code anomalies in any kind of context. For instance, we can 

mention the use of blueprints in the model composition context (France and Rumpe, 
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2007). This context is relevant for architects who use model-driven development for 

specification, design and implementation of software systems. Many studies have 

successfully used model composition techniques, either in the industry or academy, 

for evolving architecture design models. Thus, even considering those different 

scenarios, it is questionable to what extent the architecture blueprints can be explored 

as means to guide the prioritization and ranking of critical modules in the system 

architectures. As main research activities performed in this thesis we aim at:  

(i) studying how architecture blueprints (e.g. class diagrams, component 

diagrams) could add value to the usual process of prioritizing and ranking critical 

code anomalies;  

(ii) performing empirical studies aiming to investigate the impact of using 

architecture blueprints in the prioritization and ranking process; and  

(iii) proposing a blueprint-based approach for prioritizing and ranking critical 

code anomalies related with architecture degradation symptoms. 

Our first goal is associated with the empirical evaluation on the role of 

architecture blueprints - and the architecture information it represents - in the process 

of prioritizing and ranking critical code anomalies. For doing so, our empirical 

evaluation is conducted considering the use of architecture blueprints provided by 

developers or architects during the system evolution. To guarantee that the 

architecture design model would, in fact, fit to the concept of architecture blueprints 

used in this thesis, we have defined 3 properties; level of abstraction, completeness 

and consistency (see Chapter 2). Those properties also guarantee the architecture 

blueprints reach a minimum quality so that they can be used in the process of 

prioritizing and ranking critical code anomalies (see Chapter 5). 

Our second goal is to evaluate to what extent the use of architecture blueprint, 

representing the system descriptive architecture, would improve the process of 

prioritizing and ranking critical code anomalies. In this sense, we initially performed 

controlled experiments with participants from different universities and with different 

technical knowledge. We asked them to perform tasks related to the prioritization and 

ranking of instances of three well-known code anomalies. After that, we evaluated the 

results using different metrics (e.g. precision, recall and time) in order to assess how 

good they performed experimental tasks when blueprints are provided as additional 

artifact in the process of prioritizing and ranking critical code anomalies. In addition, 
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our study also investigates what are the main characteristics of instances of critical 

code anomalies prioritized and ranked as False Positives and False Negatives, when 

considering software systems with different architectural designs expressed in the 

blueprints 

Our third goal is related with the proposition and evaluation of a blueprint-based 

approach, where a set of heuristics were created aiming to support developers on the 

prioritization and ranking of code anomalies that threaten the architectural design. As 

the set of heuristics relies on relevant information used to evaluate the quality of the 

software systems’ prescriptive architecture, we call it as architecture sensitive 

heuristics. As example of architecture information represented in the blueprints, we 

can mention: (i) architectural components; (ii) required and provided interfaces; and 

(iii) dependencies between architectural components. Usually, this information can be 

either directly observed in the architecture blueprints or inferred from the combination 

of the source code analysis and the respective blueprint representing the descriptive 

architecture. These three types of architecture information could be commonly 

observed in all the architecture blueprints for all the corresponding target applications. 

Even though the richness of a blueprint varies from a project to another, we consider 

these three types as the minimum information required to support reasoning about 

architectural problems in the implementation. Even if there is no detailed information 

about the architectures, architecture recovery techniques can be used to automatically 

derive these details (Müller et al, 1993)(Lung, 1998)(Kazman an Carriere, 1998) 

Maqbool and Babri, 2007). 

Besides the source code and the information about the descriptive architecture, 

our proposed approach will also consider the mapping between elements in both 

levels of abstraction: architecture elements and the source code elements. The reason 

is that mapping between source code and architectural elements might help software 

developers to reveal situations where design principles are violated. In addition, there 

are several techniques to infer automatically these mappings, with very high accuracy 

(higher than 90%), only based on the names of architecture elements (Cirilo et al., 

2011)(Cafeo et al., 2012)(Nunes et al., 2012). Furthermore, when evaluating the 

heuristics we considered the combination of different criteria for prioritizing and 

ranking critical code anomalies. The combination of different criteria might help to 

improve the accuracy when prioritizing and ranking critical code anomalies.  
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Nevertheless, the proposed heuristics take into consideration information 

provided both from the architectural design and source code. It is important to 

mention that mapping information between the two levels of abstraction aims at 

improving the accuracy of existing strategies, which are based solely on analyzing 

source code information. In this sense, the goals of the architecture sensitive 

heuristics are: (i) to assist developers on the prioritization and ranking of code 

anomalies harmful to the architecture design during the system evolution; (ii) to allow 

software developers to prioritize critical code anomalies using different criteria (see 

Chapter 5) based on the intention of the software architects. For instance, the 

architecture sensitive heuristics might help developers on identifying problems related 

either with the communication between architecture components or with the 

implementation of the system concerns; and (iii) address deficiencies of the existing 

approaches assisting by improving factors that might lead to many false positives and 

false negatives.  

 

1.5. 
Research Questions 

Aiming to address our research goals we have defined four research questions 

(RQs), which are described bellow. Those research questions are important for 

conducting the empirical studies, as well as for characterizing the evaluation of the 

architecture sensitive heuristics. Moreover, our empirical studies have been developed 

aiming to investigate how the existing strategies: (i) provide means to evaluate which 

code anomalies can be prioritized and ranked by using additional artifacts (i.e. source 

code, blueprints) provided in the early stages of the system development; and (ii) help 

developers to reveal how critical instances of code anomalies might be related to drift 

problems in the descriptive architecture. The expected output of the proposed 

heuristics is the ranked list of critical code anomalies related with architectural 

problems according to the different criteria defined by each heuristic (or by the 

combination of two or more criteria). 

RQ1 – Does the use of architectural information help developers on revealing 

architecture problems observable in the source code? 

RQ2 – What critical code anomalies are better automatically prioritized when 
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exploring architecture blueprints? 

RQ3 – How the prioritization and ranking of critical code anomalies, when 

guided by blueprints, might indicate actual symptoms of architecture degradation? 

The first research question (RQ1) aims at investigating what additional 

architecture information could be used to better explore the architecture blueprints, so 

that the process of prioritizing and ranking critical code anomalies could be 

facilitated. Depending on the granularity level on which the information is 

represented in the architecture blueprint, some characteristics or architectural 

decisions may not be explicitly represented (see Chapter 3). Thus, software 

developers and architects should be able to indicate which other information they 

judge to be useful when prioritizing critical code anomalies. Our empirical studies 

revealed that inconsistencies in the descriptive architecture could be observed when 

different paradigms are used.  

The second research question (RQ2) aims at assessing how the use of a 

blueprint, as an additional artifact beyond the source code availability, would help to 

improve the prioritization of critical code anomalies. In this sense, our first analysis 

relies on identifying what architectural information represented in the architecture 

blueprint would be important to improve the prioritization process. In other words, the 

research question RQ2 is mainly concerned with assessing characteristics of the 

architectural elements that should be indicators of architecture design problems (see 

Chapter 4). The architectural information is then used for identifying those critical 

instances of code anomalies that should be prioritized and removed as early as 

possible. Our initial empirical study demonstrated that architecture blueprints 

improved the prioritization and ranking process of three critical code anomalies. For 

instance, we observed that Precision and Recall measures regarding the prioritization 

process have been expressively improved with respect to a conventional approach, at 

least for all occurrences of 2 out of 3 types of code anomalies initially investigated. It 

means developers were able do correctly distinguish critical code anomalies when 

architecture information was provided. 

The third research question (RQ3) aims at evaluating whether the use of 

architecture blueprint could help developers on revealing how code anomalies are 

related to architectural problems drift problems in the descriptive architecture. Our 

study showed that, architecture blueprints should ideally represent information related 
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to the elements in the system’s descriptive architecture (e.g. components, interfaces 

and relationships between the components), as well as information related with the 

implementation of the concerns. Therefore, when producing the list of most critical 

code anomalies, the architecture sensitive heuristics evaluate situations that 

characterize architectural drift problems regarding: (i) relationships between 

architectural components; and (ii) problems with the implementation of 

architecturally-relevant concerns (see Chapter 5). Through the evaluation of the 

architectural information, software developers will be able to evaluate whether the 

architecture-sensitive heuristics achieved better accuracy when distinguishing those 

code anomalies that are really critical to the architecture design from those code 

anomalies that are not. In addition, the heuristics used this architectural information as 

means to ranking the most critical code anomalies according to the architectural drift 

problems they are related. Therefore, we evaluated the accuracy of the proposed 

architecture-sensitive heuristics when prioritizing and ranking critical code anomalies. 

In this sense, developers might be able to identify what code anomalies are critical to 

the architecture design, as well as which code anomalies should be prioritized 

depending on the criteria adopted by each heuristic. In this sense, the evaluation of the 

proposed heuristics aims at assisting developers when deciding what code anomalies 

are critical – and hence should be refactored first. Our results showed that, in average, 

the prioritization heuristics achieved accuracy higher than 60% when prioritizing and 

ranking critical code anomalies. 

 

1.6. 
Outline of the Thesis Structure 

The remainder of this thesis is organized as follows. Chapter 2 provides an 

overview of the background needed to understand the thesis and evaluate its 

contributions. Firstly, we present definitions of code anomalies and introduce the 

detection strategies existing in the state of art (Section 2.1). Secondly, we describe 

how the relationship between critical code anomalies and architectural problems 

might lead to architecture degradation symptoms (Section 2.2). After that, we discuss 

how the co-occurrence of instances of code anomalies is particularly related with 

deviations in the architecture design (Section 2.3). Next, we introduce the concept of 
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architecture blueprint defined in the context of this thesis, as well as the properties we 

have defined to check whether a design model fits in this concept. Finally, we 

provided information on how the mapping between architectural and source code 

elements are performed so that the architecture sensitive heuristics can be properly 

executed (Section 2.4). 

In Chapter 3, we introduced the empirical studies performed to identify how 

architecture blueprints (and what architectural information) would be useful to assist 

developers when prioritizing and ranking critical code anomalies (Section 3.3). Our 

study evaluates the quality of architecture blueprints evolved by using semi-

automated model composition techniques (Section 3.4). In this sense, we investigated 

how we could exploit architecture blueprints, which represents the system’s 

descriptive architecture, as means to predict code anomalies in the actual 

implementation of different systems. In addition, we evaluated how code anomalies 

might be related to inconsistencies in AO architecture blueprints during the system 

evolution (Section 3.5). 

In Chapter 4, we describe controlled experiments performed to investigate how 

the architecture blueprints, which represent the system’s descriptive architecture, 

would help to assist developers when prioritizing and ranking critical code anomalies 

(Section 4.2). Therefore, we discuss how the use of architecture blueprints has impact 

in the overall process by evaluating different measures, such as Precision, Recall and 

Time (Section 4.3). As feedback of the experimental tasks performed in the 

experiment, we asked the participants to provide information about: (i) what was the 

rationale when using architecture blueprints in the prioritization and ranking process; 

(ii) what architecture information they judged as being relevant when performing the 

experimental tasks. We also asked them to report what information would be relevant 

to be added in the architecture blueprints in order to facilitate the prioritization and 

ranking of critical code anomalies (Section 4.4). 

In Chapter 5, we describe each of the architecture sensitive heuristics based on 

two main categories: inter-component and concern-based (Section 5.3). The first set 

of heuristics exploits information related with code anomaly affecting the 

communication between architectural components. The investigation of instances of 

critical code anomaly is related with effects on software maintenance, seeing that 

those code anomalies can be spread through many architectural elements. The second 
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set of heuristics investigates the anomalous implementation of architectural concerns, 

which in turn, can be defined as an architect interest that significantly influences the 

software architecture. After proposing the heuristics, we evaluated their accuracy 

when prioritizing and ranking critical code anomalies considering different target 

applications (Section 5.4). In addition, we describe the study hypothesis, the 

procedures for data collection and how we obtained the ground truth for the target 

applications evaluated in this thesis. Regarding the data collection, we describe all the 

code anomalies investigated in this thesis, as well as the thresholds we have used 

when collecting all instances of code anomalies for the target applications (Section 

5.4.1). Moreover, we describe the main research findings after the architecture 

sensitive heuristics have been applied for each target application, as well as the test of 

our study hypotheses (Section 5.4). Finally, we discuss the main contributions when 

the heuristics are applied solely or combining different criteria aiming to improve the 

ranked-list of critical code anomalies (Section 5.5).  

In Chapter 6, we discuss the main internal, external and construct to validity 

threats observed in our evaluation (Section 6.1). Finally, we introduce the conclusions 

and summarize the contributions archived in this thesis (Section 6.2) and points out 

the activities to be performed as future work (Section 6.3). 
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