

16

1 Introduction

Software architecture plays a central role in software development projects as it

influences the satisfaction of the key quality attributes, such as modularity and

maintainability. Well-designed software architectures usually lead to high-quality

software systems (Bass et al., 2003). Software architecture is a high-level design

involving the description of basic elements – such as components and interfaces – as

well as their interactions (Perry and Wolf, 1992). Software architecture is often seen

by software industry developers as essential in the software development process

(Baltes and Diehl, 2014). In fact, empirical studies (Clements et al., 2002)(Baltes and

Diehl, 2014) have revealed architectural design decisions usually are, at least,

documented as informal models. The architecture models might be incomplete, but

the key architecture decisions are part of these models, which are archived and used

along software evolution (Baltes and Diehl, 2014). These documented decisions are

used to guide the software implementation, the developers’ communication, and the

software evolution (Clements et al., 2002).

The prescriptive architecture captures the key design decisions made prior to

the system’s construction (Taylor et al., 2009). In other words, the prescriptive

architecture will influence the architecture implementation. However, the actual

architecture implementation often does not match the prescriptive architecture. The

descriptive architecture describes the actual software architecture as observed in the

implementation. When software evolves, its prescriptive architecture should ideally

be modified first. However, in practice, the descriptive architecture is often directly

modified in the implementation without any proper reasoning about the prescriptive

architecture. The reasons for this problem range from lack of programmers’

awareness about the need of updating the prescriptive architecture to other priorities

given the short deadlines in software projects (Taylor et al., 2009). These unplanned

changes in the implementation reduce the modularity and maintainability of the

descriptive architecture realized in the program (Taylor et al., 2009).

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

17

In this context, the source code changes without considering the prescriptive

architecture might hinder the satisfaction of key quality attributes, such as modularity

and maintainability. In other words, these changes will introduce structural problems

in the implementation of the software system, which are associated with architecture

degradation problems. When software developers perform bad architecture decisions

in the actual implementation of the system, those decisions can be reflected in the

descriptive architecture. Then, architecture degradation symptoms are likely to

manifest during the system evolution. Architecture degradation (Hochstein and

Lindvall, 2005) is a general term often used to refer to the decay of the architectural

design properties of a software system. Therefore, when software architecture

degradation symptoms are not properly addressed, the evolution of a software system

can be irreversibly compromised. In extreme cases, symptoms of architectural

degradation may also cause the reengineering of software systems (Eick et al.,

2001)(MacCormack et al., 2006).

1.1.
Motivation

A key concern of software architects is to ensure the modularity and

maintainability of the actual architecture, observed in the implementation (descriptive

architecture). The reason is that this architecture is the one influencing developers’

work when they perform changes in the implementation. The main factor often related

with emergence of architecture degradation symptoms is the progressive and

unavoidable insertion of code anomalies in a program (Hochstein and Lindvall, 2005).

Code anomalies – also popularly referred to as code smells (Fowler et al., 1999)

– are structural symptoms in the source code, which might also indicate problems in

the software architectural design. Examples of code anomalies are God Classes, Long

Methods, and Feature Envies (Hochstein and Lindvall, 2005). For example, instances

of these code anomalies are used for revealing degradation symptoms in the

descriptive architecture (Macia et al. 2012a)(Macia et al. 2012b). In fact, empirical

studies (Macia et al., 2012a)(Macia et al., 2012b) revealed that around 80% of

architectural design problems (Garcia et al., 2009b) are related with the presence of

well-known types of code anomalies, such as God Classes and Long Methods. When

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

18

a code anomaly is related with one or more architectural problem, we state this code

anomaly is critical1 to the software architecture design.

Figure 1 depicts an example where we can observe architecture decisions

present in the prescriptive architecture specification (left side) and the descriptive

architecture (right side). This example will be used to illustrate the elements of our

research. For instance, the architectural components SearchUI, SearchController and

SubscriberController serve to illustrate cases of architectural degradation symptoms.

They manifest symptoms of architectural drift problems related with Scattered

Parasitic Functionality and Ambiguous Interface (Garcia et al., 2009b). Architectural

drift characterizes the introduction of key design decisions into a system’s descriptive

architecture: (i) that are not included in the prescriptive architecture, but (ii) they do

not violate any of the prescriptive architecture’s design decisions (Martin, 2003). In

other words, architecture drift problems do not represent a violation of a decision

made in the prescriptive architecture specification. Typical examples are interfaces of

components, which exist in both prescriptive and descriptive architectures, but

became too complex due to unplanned changes. An architecture erosion problem is

the opposite: there is a mismatch between the architecture prescriptive and descriptive

design decisions.

In this thesis, we decided to focus on architectural drift problems for three main

reasons. First, the manifestation of architectural drift problems in the software project

history usually precedes architectural erosion problems (Hochstein and Lindvall,

2005)(Gurgel et al., 2014). Second, they are more difficult to be revealed by

developers than erosion problems because there is no explicit violation of single

architecture design rules. Third, architectural drift often manifests in the descriptive

architecture, which can be inferred from the source code. If some design decisions are

not properly modified in the source code (descriptive architecture), they will be not

properly performed in the evolution of the prescriptive architecture.

The key challenge to software engineers is that certain architectural problems in

the implementation cannot be merely detected based only on the source code analysis

(Macia et al., 2012b). Each architectural problem is often realized by multiple code

anomaly occurrences scattered in the implementation (e.g., see Figure 1). Then, the

1 Also referred to as architecturally-relevant code anomaly

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

19

detection of the architectural problem requires the developer to spend effort to

understand whether and which code anomalies contribute to an architectural problem.

Therefore, the effect of occurrences of code anomalies affecting many code elements

when detecting problems in the descriptive architecture need to be manually

investigated by developers. In addition, it is important to mention that several

occurrences of code anomalies are not necessarily related with architectural problems.
Prescriptive Descriptive

Code Fragment A (Person) Code Fragment B (SearchPerson)

…

Figure 1 - Code Fragments with Non-Critical and Critical Code Anomalies

Empirical studies (Macia et al., 2012a)(Macia et al., 2012b) revealed that only

40% of code anomalies detected using conventional strategies could be associated

with problems in the system architecture. Therefore, software developers are expected

to be able to: (i) distinguish the code anomalies associated with problems in the

God Class

Long Method

Feature Envy

Feature Envy

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

20

descriptive architecture, from those that are not; and (ii) rank the critical code

anomalies according to their criticality regarding the impact on the architecture

degradation. These are time-consuming and error-prone activities as the developers

would need to reason about all the code anomalies, understand their relationships.

They would need also to reason about the relation of each code anomaly and the

architecture problem counterparts in order to identify the relative relevance of each of

them.

Motivation Scenario. As just mentioned, occurrences of critical code

anomalies must be separated from those not harmful to the architectural design. In

addition, software developers must also be able to rank those code anomalies

according to the criticality of the architectural problems they might be associated.

Figure 1 depicts a code element Person (Code fragment A), which is infected by code

anomaly called God Class. A God Class can be understood as a large class

implementing many responsibilities in the software system (Fowler et al., 1999). This

particular instance of God Class might be related to the architectural problem

affecting the component SubscriberController. This architectural component, among

others represented in the specification of the descriptive architecture, suffers from the

architectural problem Scattered Parasitic Functionality (Garcia et al., 2009b). The

architectural problem Scattered Parasitic Functionality manifests when multiple

components are responsible for realizing the same high-level architectural concern.

As depicted in Figure 1, the SubscriberController components are responsible for

implementing 4 different concerns - Manage Subscribers (MS), Manage Donations

(MD), Manage Events (ME) and Manage Labels for Subscribers (ML). Thus,

different concerns are implemented in the code element Person, which is responsible

for realizing the SubscriberController component. Even though, specifically in this

case, a single instance of the God Class anomaly is associated with the architectural

problem, certain instances of God Classes in the same system are not be associated.

However, other architectural problems are only possible to detect when multiple

anomalies in the source code affect several architectural elements. For instance,

Figure 1 (code fragment B) shows the code element SearchPerson, which is affected

by 3 different code anomalies, namely Long Method, Feature Envy and God Class

(Fowler et al., 1999). The SearchPerson is one of the classes responsible for realizing

the SearchController component. This architecture component suffers from an

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

21

architectural problem called Ambiguous Interface (Garcia et al., 2009b), which

occurs when interfaces offer only a single and general entry-point into a component,

reducing the system analyzability and understandability. In this case, the key interface

SearchCriterion is defined as the only entry-point into the SearchController

component, which is realized by several classes. Therefore, all the classes realizing

this component are forced to implement this interface. In addition, when code

anomalies co-exist in classes implementing a given architectural component,

undesired dependencies – which are not specified in the prescriptive architecture -

might also be observed between the architectural components. All the examples

discussed here show that prioritizing and ranking critical code anomalies are

important, albeit challenging and time-consuming tasks.

1.2.
Problem Statement

Critical code anomalies can lead to the architecture degradation during the

system evolution (Macia et al., 2012a)(Macia et al., 2012b). In order to prevent

architecture degradation symptoms (Hochstein and Lindvall, 2005), critical code

anomalies must be refactored and removed as early as possible during the software

development. Moreover, software developers are usually expected to choose which

code anomalies should be refactored first, mainly due to: (i) time constraints, and (ii)

attempts to find the correct solution when restructuring a large system. The

prioritization of code anomalies is often required for increasing the effectiveness of

such refactoring activities. Thus, software developers are expected to distinguish the

critical code anomalies, as well as rank those code anomalies according to their

impact on problems in the descriptive architecture. When it is not possible

distinguishing and ranking critical code anomalies developers will spend more time

addressing problems that are not harmful to the system architecture design (Macia et

al., 2012b).

Despite the existence of several strategies for detecting code anomalies

(Marinescu et al., 2004)(Moha et al., 2006)(Ratzinger et al., 2005)(Salehie et al.,

2006)(Tsantalis, 2008), they fail to assist developers on revealing critical instances of

code anomalies associated with problems in the descriptive architecture. The problem

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

22

is that existing detection strategies are strictly based on source code static analysis.

However, analyzing only the source code, which is responsible for realizing the

descriptive architecture, is not an effective way to reveal architecture degradation

symptoms. In addition, those detection strategies detect a high number of occurrences

of non-critical code anomalies even in small systems. Therefore, those strategies do

not assist developers when distinguishing and ranking the code anomalies considered

as candidates to be associated with architectural degradation symptoms. In this sense,

despite the existence of several studies on the impact of code anomalies on the quality

of software systems (Godfrey and Lee, 2000)(Eick et al., 2001)(MacCormack et al.,

2006)(Knodel et al., 2008), developers are still lacking support to characterize which

code anomalies are gradually related with architectural problems. Consequently, they

have no clue regarding which code anomalies they should refactor earlier in the

system development, and hence, those critical code anomalies remain in the source

code.

Unfortunately, there is limited to none knowledge about how to prioritize and

rank code anomalies critical to the software architecture. Furthermore, there is a lack

of empirical investigation on how architecture information, often available on

software projects, could be used as means to help developers when revealing concrete

problems in the descriptive architecture. This lack of knowledge is omnipresent to all

existing techniques for architecting and maintaining software systems, from object-

oriented and aspect-oriented techniques to model-driven techniques. On the other

hand, the identification of architectural problems, by only looking the architectural

specification, is not a trivial task. The reason is that the specification of the

descriptive architecture does not contain all information related with the architecture

decomposition. In addition, architectural design decisions usually are not entirely

specified in real software projects, but they are only partially represented as informal

models2. Thus, in order to prevent architecture degradation, software developers

should be provided with means for prioritizing and ranking the most critical

anomalies as early as possible.

2 Referred to as architecture blueprints in this thesis

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

23

1.3.
Limitations of Related Work

Several works have investigated the impact of code anomalies on software

quality (Arcoverde et al., 2011)(Macia et al., 2012a)(Macia et al., 2012b), as well as

the support to specification and detection of code anomalies in general (Fowler et al.,

1999)(Marinescu et al., 2004)(Moha et al., 2006)(Ratzinger et al., 2005)(Salehie et

al., 2006)(Tsantalis, 2008). However, existing strategies are mostly focused on

defining and applying rules for detection of code anomalies in a program, without

considering their relevance according to the software descriptive architecture. As

those strategies are more focused on the detection of code anomalies, they were not

conceived to perform activities towards the refactoring of the most critical code

anomalies. In this sense, they do not provide means for helping developers when

improving or maintaining the modularity of the system’s descriptive architecture – i.e.

helping developers to decide which code anomalies should be refactored first, based

on the impact on the actual architectural design.

Moreover, the exclusive use of code anomaly detection strategies has not been

succeeded on the prioritizing and ranking critical code anomalies for several reasons

(Macia et al., 2012a)(Macia et al., 2012b). Firstly, recent studies (Macia et al.,

2012a)(Macia et al., 2012b) revealed that even when strategies are calibrated, they

fail to support software developers when distinguishing what occurrences of code

anomalies are critical to the architectural design. The problem associated with

automatically collected measures is the fact they purely represent properties of the

source code structure, and therefore, they are often agnostic to the architectural

design. Once the architecture decomposition is not explicit in the source code,

developers might consider all measures and respective modules have the same

relevance in the architecture design. Secondly, existing strategies are context

dependent as the choices of metrics and thresholds need to be calibrated depending on

the characteristics and complexity of the software project under assessment (Macia et

al., 2012a)

Although it is highly recommended to detect and prioritize critical code

anomalies as early as possible, developers tend to invest more effort on finding new

mechanisms that may help on the detection process. Furthermore, software developers

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

24

usually spend more time reviewing code anomalies that do not represent any threat to

the software architecture design. Recent research has explored the use of other types

of available project factors (Wong et al., 2010)(Wong et al., 2011)(Arcoverde et al.,

2013), in conjunction or not with program structural metrics, for detecting code

anomalies. For instance, extra information ranges from density of (co-) changes in

modules (Wong et al., 2010)(Raemaekers et al., 2012), density of bugs in a module

(Arcoverde et al., 2013) and similarity measures (Biegel et al., 2011). Nevertheless,

these strategies do not focus on prioritizing code anomalies according to their

architecture relevance. They only perform retrospective analysis of software history

data. Moreover, those strategies do not focus on ranking critical code anomalies. The

other challenge is that bug reports and change rationale reports in real software

projects often do not offer concrete information to enable the understanding about the

relevance of anomalous code elements to the architecture design.

On the other hand, architecture blueprints are often available in software

projects from the design outset as they are used to communicate key architectural

decisions (Clements et al., 2002)(Baltes and Diehl, 2014). The use of blueprints has

been exploited and assessed in many different software engineering activities,

including process evaluation (Alegría et al., 2010), model transformation optimization

(Jeanneret et al., 2011) and test coverage analysis (Araya, 2011). Architecture

blueprints can be understood as informal models or sketches about high-level design

usually created for communicating developers about the key design decisions in the

architecture decomposition of a software system (Baltes and Diehl, 2014).

1.4.
Proposed Solution

The solution, proposed in this thesis, is rooted at the assumption that the use of

architectural information, available in blueprints, might help developers when

deciding what code anomalies are critical to the software architecture. Then,

developers can better decide which refactorings should be performed first in order to

improve the descriptive architecture in the source code. Therefore, the architecture

blueprints are used as additional artifact in the process of prioritizing and ranking

critical code anomalies. The blueprints will be used in addition to conventional source

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

25

code analysis, typically the solution explored to detect critical code anomalies

(Section 1.3). Blueprints often represent key design decisions of the prescriptive

architecture (Clements et al., 2002)(Baltes and Diehl, 2014). Then, our assumption is

that they will serve to infer, at least, which architectural elements are more relevant to

the software system.

The prioritization and ranking of critical code anomalies aims at avoiding the

degradation of the prescriptive architecture by indicating the need for removing such

anomalies at an early stage of software development. As blueprints are often produced

before the system is implemented (Clements et al., 2002)(Baltes and Diehl, 2014),

they might help to prioritize and rank code anomalies already in the first version of a

system. Furthermore, exploring architecture blueprints in the prioritization process

introduces other challenges. Even in well-documented software systems, there are

some difficulties inherent to the use of architecture blueprints on revealing critical

code anomalies. The difficulties are discussed as follows.

Architecture blueprints might represent many different characteristics, with

different levels of granularity, depending on what type of information the architect are

intended to communicate or report to the software developers. For instance, the

architecture blueprint in our study of the Mobile Media system represent in more

details the descriptive architecture decomposition and the communication between the

architectural components. Additionally, as the Mobile Media is a software product

line (SPL), all the features implemented in the system are also represented in each

component responsible for realizing them. On the other hand, for the Health Watcher

system – another system considered in our research, the architecture blueprints

represent a more high level view of the system components and interfaces. In

summary, architecture blueprints can be produced aiming to attend different interests,

which also depend on the nature of the system to be specified and implemented.

Furthermore, architecture blueprints can be used for different purposes, such as:

(i) informing developers about the full prescriptive architecture to be implemented in

the early stage of development, (ii) merely conveying important architectural design

decisions; or (ii) reasoning about the construction and evolution of a software system.

There is no knowledge about the usefulness of any of these types of blueprints on the

prioritization of critical code anomalies in any kind of context. For instance, we can

mention the use of blueprints in the model composition context (France and Rumpe,

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

26

2007). This context is relevant for architects who use model-driven development for

specification, design and implementation of software systems. Many studies have

successfully used model composition techniques, either in the industry or academy,

for evolving architecture design models. Thus, even considering those different

scenarios, it is questionable to what extent the architecture blueprints can be explored

as means to guide the prioritization and ranking of critical modules in the system

architectures. As main research activities performed in this thesis we aim at:

(i) studying how architecture blueprints (e.g. class diagrams, component

diagrams) could add value to the usual process of prioritizing and ranking critical

code anomalies;

(ii) performing empirical studies aiming to investigate the impact of using

architecture blueprints in the prioritization and ranking process; and

(iii) proposing a blueprint-based approach for prioritizing and ranking critical

code anomalies related with architecture degradation symptoms.

Our first goal is associated with the empirical evaluation on the role of

architecture blueprints - and the architecture information it represents - in the process

of prioritizing and ranking critical code anomalies. For doing so, our empirical

evaluation is conducted considering the use of architecture blueprints provided by

developers or architects during the system evolution. To guarantee that the

architecture design model would, in fact, fit to the concept of architecture blueprints

used in this thesis, we have defined 3 properties; level of abstraction, completeness

and consistency (see Chapter 2). Those properties also guarantee the architecture

blueprints reach a minimum quality so that they can be used in the process of

prioritizing and ranking critical code anomalies (see Chapter 5).

Our second goal is to evaluate to what extent the use of architecture blueprint,

representing the system descriptive architecture, would improve the process of

prioritizing and ranking critical code anomalies. In this sense, we initially performed

controlled experiments with participants from different universities and with different

technical knowledge. We asked them to perform tasks related to the prioritization and

ranking of instances of three well-known code anomalies. After that, we evaluated the

results using different metrics (e.g. precision, recall and time) in order to assess how

good they performed experimental tasks when blueprints are provided as additional

artifact in the process of prioritizing and ranking critical code anomalies. In addition,

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

27

our study also investigates what are the main characteristics of instances of critical

code anomalies prioritized and ranked as False Positives and False Negatives, when

considering software systems with different architectural designs expressed in the

blueprints

Our third goal is related with the proposition and evaluation of a blueprint-based

approach, where a set of heuristics were created aiming to support developers on the

prioritization and ranking of code anomalies that threaten the architectural design. As

the set of heuristics relies on relevant information used to evaluate the quality of the

software systems’ prescriptive architecture, we call it as architecture sensitive

heuristics. As example of architecture information represented in the blueprints, we

can mention: (i) architectural components; (ii) required and provided interfaces; and

(iii) dependencies between architectural components. Usually, this information can be

either directly observed in the architecture blueprints or inferred from the combination

of the source code analysis and the respective blueprint representing the descriptive

architecture. These three types of architecture information could be commonly

observed in all the architecture blueprints for all the corresponding target applications.

Even though the richness of a blueprint varies from a project to another, we consider

these three types as the minimum information required to support reasoning about

architectural problems in the implementation. Even if there is no detailed information

about the architectures, architecture recovery techniques can be used to automatically

derive these details (Müller et al, 1993)(Lung, 1998)(Kazman an Carriere, 1998)

Maqbool and Babri, 2007).

Besides the source code and the information about the descriptive architecture,

our proposed approach will also consider the mapping between elements in both

levels of abstraction: architecture elements and the source code elements. The reason

is that mapping between source code and architectural elements might help software

developers to reveal situations where design principles are violated. In addition, there

are several techniques to infer automatically these mappings, with very high accuracy

(higher than 90%), only based on the names of architecture elements (Cirilo et al.,

2011)(Cafeo et al., 2012)(Nunes et al., 2012). Furthermore, when evaluating the

heuristics we considered the combination of different criteria for prioritizing and

ranking critical code anomalies. The combination of different criteria might help to

improve the accuracy when prioritizing and ranking critical code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

28

Nevertheless, the proposed heuristics take into consideration information

provided both from the architectural design and source code. It is important to

mention that mapping information between the two levels of abstraction aims at

improving the accuracy of existing strategies, which are based solely on analyzing

source code information. In this sense, the goals of the architecture sensitive

heuristics are: (i) to assist developers on the prioritization and ranking of code

anomalies harmful to the architecture design during the system evolution; (ii) to allow

software developers to prioritize critical code anomalies using different criteria (see

Chapter 5) based on the intention of the software architects. For instance, the

architecture sensitive heuristics might help developers on identifying problems related

either with the communication between architecture components or with the

implementation of the system concerns; and (iii) address deficiencies of the existing

approaches assisting by improving factors that might lead to many false positives and

false negatives.

1.5.
Research Questions

Aiming to address our research goals we have defined four research questions

(RQs), which are described bellow. Those research questions are important for

conducting the empirical studies, as well as for characterizing the evaluation of the

architecture sensitive heuristics. Moreover, our empirical studies have been developed

aiming to investigate how the existing strategies: (i) provide means to evaluate which

code anomalies can be prioritized and ranked by using additional artifacts (i.e. source

code, blueprints) provided in the early stages of the system development; and (ii) help

developers to reveal how critical instances of code anomalies might be related to drift

problems in the descriptive architecture. The expected output of the proposed

heuristics is the ranked list of critical code anomalies related with architectural

problems according to the different criteria defined by each heuristic (or by the

combination of two or more criteria).

RQ1 – Does the use of architectural information help developers on revealing

architecture problems observable in the source code?

RQ2 – What critical code anomalies are better automatically prioritized when

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

29

exploring architecture blueprints?

RQ3 – How the prioritization and ranking of critical code anomalies, when

guided by blueprints, might indicate actual symptoms of architecture degradation?

The first research question (RQ1) aims at investigating what additional

architecture information could be used to better explore the architecture blueprints, so

that the process of prioritizing and ranking critical code anomalies could be

facilitated. Depending on the granularity level on which the information is

represented in the architecture blueprint, some characteristics or architectural

decisions may not be explicitly represented (see Chapter 3). Thus, software

developers and architects should be able to indicate which other information they

judge to be useful when prioritizing critical code anomalies. Our empirical studies

revealed that inconsistencies in the descriptive architecture could be observed when

different paradigms are used.

The second research question (RQ2) aims at assessing how the use of a

blueprint, as an additional artifact beyond the source code availability, would help to

improve the prioritization of critical code anomalies. In this sense, our first analysis

relies on identifying what architectural information represented in the architecture

blueprint would be important to improve the prioritization process. In other words, the

research question RQ2 is mainly concerned with assessing characteristics of the

architectural elements that should be indicators of architecture design problems (see

Chapter 4). The architectural information is then used for identifying those critical

instances of code anomalies that should be prioritized and removed as early as

possible. Our initial empirical study demonstrated that architecture blueprints

improved the prioritization and ranking process of three critical code anomalies. For

instance, we observed that Precision and Recall measures regarding the prioritization

process have been expressively improved with respect to a conventional approach, at

least for all occurrences of 2 out of 3 types of code anomalies initially investigated. It

means developers were able do correctly distinguish critical code anomalies when

architecture information was provided.

The third research question (RQ3) aims at evaluating whether the use of

architecture blueprint could help developers on revealing how code anomalies are

related to architectural problems drift problems in the descriptive architecture. Our

study showed that, architecture blueprints should ideally represent information related

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

30

to the elements in the system’s descriptive architecture (e.g. components, interfaces

and relationships between the components), as well as information related with the

implementation of the concerns. Therefore, when producing the list of most critical

code anomalies, the architecture sensitive heuristics evaluate situations that

characterize architectural drift problems regarding: (i) relationships between

architectural components; and (ii) problems with the implementation of

architecturally-relevant concerns (see Chapter 5). Through the evaluation of the

architectural information, software developers will be able to evaluate whether the

architecture-sensitive heuristics achieved better accuracy when distinguishing those

code anomalies that are really critical to the architecture design from those code

anomalies that are not. In addition, the heuristics used this architectural information as

means to ranking the most critical code anomalies according to the architectural drift

problems they are related. Therefore, we evaluated the accuracy of the proposed

architecture-sensitive heuristics when prioritizing and ranking critical code anomalies.

In this sense, developers might be able to identify what code anomalies are critical to

the architecture design, as well as which code anomalies should be prioritized

depending on the criteria adopted by each heuristic. In this sense, the evaluation of the

proposed heuristics aims at assisting developers when deciding what code anomalies

are critical – and hence should be refactored first. Our results showed that, in average,

the prioritization heuristics achieved accuracy higher than 60% when prioritizing and

ranking critical code anomalies.

1.6.
Outline of the Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 provides an

overview of the background needed to understand the thesis and evaluate its

contributions. Firstly, we present definitions of code anomalies and introduce the

detection strategies existing in the state of art (Section 2.1). Secondly, we describe

how the relationship between critical code anomalies and architectural problems

might lead to architecture degradation symptoms (Section 2.2). After that, we discuss

how the co-occurrence of instances of code anomalies is particularly related with

deviations in the architecture design (Section 2.3). Next, we introduce the concept of

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

31

architecture blueprint defined in the context of this thesis, as well as the properties we

have defined to check whether a design model fits in this concept. Finally, we

provided information on how the mapping between architectural and source code

elements are performed so that the architecture sensitive heuristics can be properly

executed (Section 2.4).

In Chapter 3, we introduced the empirical studies performed to identify how

architecture blueprints (and what architectural information) would be useful to assist

developers when prioritizing and ranking critical code anomalies (Section 3.3). Our

study evaluates the quality of architecture blueprints evolved by using semi-

automated model composition techniques (Section 3.4). In this sense, we investigated

how we could exploit architecture blueprints, which represents the system’s

descriptive architecture, as means to predict code anomalies in the actual

implementation of different systems. In addition, we evaluated how code anomalies

might be related to inconsistencies in AO architecture blueprints during the system

evolution (Section 3.5).

In Chapter 4, we describe controlled experiments performed to investigate how

the architecture blueprints, which represent the system’s descriptive architecture,

would help to assist developers when prioritizing and ranking critical code anomalies

(Section 4.2). Therefore, we discuss how the use of architecture blueprints has impact

in the overall process by evaluating different measures, such as Precision, Recall and

Time (Section 4.3). As feedback of the experimental tasks performed in the

experiment, we asked the participants to provide information about: (i) what was the

rationale when using architecture blueprints in the prioritization and ranking process;

(ii) what architecture information they judged as being relevant when performing the

experimental tasks. We also asked them to report what information would be relevant

to be added in the architecture blueprints in order to facilitate the prioritization and

ranking of critical code anomalies (Section 4.4).

In Chapter 5, we describe each of the architecture sensitive heuristics based on

two main categories: inter-component and concern-based (Section 5.3). The first set

of heuristics exploits information related with code anomaly affecting the

communication between architectural components. The investigation of instances of

critical code anomaly is related with effects on software maintenance, seeing that

those code anomalies can be spread through many architectural elements. The second

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

32

set of heuristics investigates the anomalous implementation of architectural concerns,

which in turn, can be defined as an architect interest that significantly influences the

software architecture. After proposing the heuristics, we evaluated their accuracy

when prioritizing and ranking critical code anomalies considering different target

applications (Section 5.4). In addition, we describe the study hypothesis, the

procedures for data collection and how we obtained the ground truth for the target

applications evaluated in this thesis. Regarding the data collection, we describe all the

code anomalies investigated in this thesis, as well as the thresholds we have used

when collecting all instances of code anomalies for the target applications (Section

5.4.1). Moreover, we describe the main research findings after the architecture

sensitive heuristics have been applied for each target application, as well as the test of

our study hypotheses (Section 5.4). Finally, we discuss the main contributions when

the heuristics are applied solely or combining different criteria aiming to improve the

ranked-list of critical code anomalies (Section 5.5).

In Chapter 6, we discuss the main internal, external and construct to validity

threats observed in our evaluation (Section 6.1). Finally, we introduce the conclusions

and summarize the contributions archived in this thesis (Section 6.2) and points out

the activities to be performed as future work (Section 6.3).

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

