

55

3 On the Relation of Blueprints and Code Anomalies: A Study
of Evolving Software Systems

Before answering several of the research questions posed in Section 1.5, we

needed to better understand the relationship of architecture blueprints and code

anomalies. Then, we initially conducted an empirical study based on structural

blueprints representing the software descriptive architecture. The empirical evaluation

relies on assessing to what extent architecture blueprints might help to reveal

architectural problems related with the presence of critical code anomalies. In this

sense, we preliminarily investigated how the prescriptive architecture, represented by

architecture blueprints, might be impacted during the evolution of two software

systems. In addition, this investigation will foster discussions on how to properly

address our first research question RQ1. This research question aims at evaluating

whether the use of architectural information would help developers on revealing

problems in the descriptive architecture observable in the source code. Furthermore,

we discuss how the evolution of the actual implementation of a software system might

be associated with inconsistencies in the descriptive architecture (see Section 3.1.3.2).

For doing so, we analyzed different evolution “scenarios” involving the

blueprints and the source code. In these scenarios, we observed the documented

changes required in the descriptive architecture in order to properly evolve the system

implementation. These analyses are important to understand the direct or indirect role

of architecture blueprints in the emergence of architectural problems in evolving

systems. These also served us to check whether it is possible to explore architecture

problems to improve the detection of critical code anomalies, i.e. those related to

architectural problems. The focus of our study was the analysis of blueprints where

the software modularity was a key priority since the design outset. In fact, Allen et al.

(2001) claim that conventional modularity properties, such as cohesion and coupling,

consistently play an important role in software modeling tasks. When the architectural

design is well modularized, the software descriptive architecture is easier to be

evolved. Thus, a fewer number of inconsistencies is likely to be observed between the

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

56

descriptive architecture and the actual implementation of a software system. In

addition, software developers and architects can use different modeling techniques to

produce well modularized software systems.

Our first pilot study, reported elsewhere (Guimarães et al., 2010), showed that

architecture blueprints using the aspect-oriented software development paradigm

(Section 3.1) tend to lead to fewer inconsistencies between the blueprints and the

produced source code if compared to the descriptive architecture using the object-

oriented paradigm. Moreover, aspect-orientation is an extension of object-orientation

and, as a result, the aspect-oriented design is decomposed in terms of aspects and

classes. Anomalies in both types of modules can be manifested, making the study of

aspect-oriented software systems more interesting as a preliminary study. Software

systems with a superior modularity are less prone to manifest inconsistencies in the

descriptive architecture with respect to the produced source code. The reason is that

well-designed software architecture can be more easily evolved, and hence, it requires

less effort from developers in the software maintenance and evolution. However, the

presence of code anomalies on the system’s actual implementation might be related

with problems in the architecture design.

Given these arguments, we decided to focus on the analysis of architecture

blueprints following an aspect-oriented decomposition in this first study. Aspect-

oriented modeling (AOM) can be used by software developers, for instance, as means

to achieve a superior separation of concerns and, therefore, it is expected to achieve

better modularity. The main reason why AOM (Section 3.2) contribute to a better

separation of concerns is because this paradigm holds two specific properties, namely

obliviousness and quantification (see Section 3.1.2). The results of this chapter were

published at: (i) 13th International Workshop on Aspect-Oriented Modeling (AOM)

held in conjunction with MODELS; and (ii) 29th Symposium on Applied Computing

(SAC).

3.1.
Aspect-Oriented Software Development

This section motivates and describes aspect-orientation (Kickzales et al., 1997)

as it was the approach used to architect the systems analyzed in the study of this

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

57

chapter. Aspect-oriented software development (AOSD) is a viable alternative for the

modularization and composition of crosscutting concern (Kickzales et al., 1997)

during the development process. AOSD is an extension of object-oriented software

development by offering new abstractions – e.g. aspects – and composition

mechanisms – e.g. pointcuts – in addition to classes and objects. These extensions

yielded by AOSD demonstrate the constant evolution and emergence of new

paradigms, which has a direct impact on how software engineers architect their

systems.

Object-oriented software development (Rentsch, 1982) emerged with the goal

of encapsulating data and behavior under the abstraction of objects. Thus, interactions

between objects occur by means of operations available on their interfaces. With the

advent of the object-oriented programming (OOP), many researchers and developers

claimed the development of software systems became more reusable and flexible

(Meyer, 1997). They argue object-orientation (OO) facilitated the maintenance and

development of modules as it allowed to explicitly encapsulate related data and

behavior in modules of a software system.

However, the use of the OO paradigm usually leads to crosscutting concerns

(Kickzales et al., 1997), which are related with the source code of a concern scattered

and tangled in many places of the core system. The scattering and tangling of

crosscutting concerns might hinder the comprehensibility and maintenance of a

software system (Kickzales et al., 1997). Through the separation of otherwise

crosscutting concerns into aspects, it is possible to achieve better modularization and

avoid inconsistencies in the prescriptive architecture in relation to the actual system

implementation. Typical examples of crosscutting concerns are error handling,

persistence, distribution, security, logging, monitoring, and profiling (Kiczales et al.,

1997). In order to support a better modularization of the crosscutting concerns, a new

modularization abstraction called aspect and new composition mechanisms (e.g. joint

points, pointcut, advice and intertype declarations) have been proposed. Each of these

concepts are described in the following:

Aspects can be defined as modular units, designated to encapsulate crosscutting

concerns, which are responsible for defining where, when and how they affect the

core system (Filman et al., 2005). Thus, the aspect helps to improve the system

modularity and to reduce the scattering and tangling of crosscutting concerns in the

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

58

system implementation, which might positively impact on the maintenance of the

descriptive architecture.

Join Points can be defined as places in the program structure or execution flow,

where additional behavior can be inserted (Filman et al., 2005).

Pointcuts gather a set of join points defining the concept of quantification,

where unitary and separate statements can affect many non-local places in the

modules of the descriptive architecture (Filman et al., 2005). In other words, pointcuts

indicate a set of join points that will be affect for one or more crosscutting concerns

encapsulated by a given aspect.

Advice represents a set of operations in a program that are executed when

specific join points in a pointcut are reached in the system implementation. Usually,

each advice has on or more pointcuts associated with it. Such pointcut determines the

set of joint points over which the advice will be executed. In addition, advice

operations can be organized in three types: (i) before – the advice is executed when

the joint point is reached; (ii) after – the advice is executed after the control flow is

returned in to the join point; and (iii) around – the advice is executed when the

pointcut is reached and the control flow is explicitly delegated to the aspect.

Intertype Declaration is a mechanism used by the aspect to introduce new

elements (e.g. attributes, methods, interfaces, inheritance) to the core system,

providing reflection and modularization. That is, it allows new elements to be

introduced in the actual implementation without the need of directly modifying the

program specification (Filman and Friedman, 2001).

All the concepts of AOSD, mentioned above, can be used since early software

design, i.e. when architects are determining how to organize the prescriptive

architecture (Navasa et al., 2002)(France et al., 2004). For instance, they can, since

the design outset, decide which components play the role of aspects (realize

crosscutting concerns), and which components realize non-crosscutting concerns.

Then, architecture blueprints can be used to represent these architectural decisions.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

59

3.2.
Aspect-Oriented Modeling

In this chapter, we analyze systems based on aspect-oriented modeling to

represent the descriptive architecture blueprints for each version of the target

application under assessment. We decided to use the aspect-oriented (AO) paradigm

since the descriptive architecture, represented in the architecture blueprint, is though

to be better modularized. Then, it is likely to be more challenging to detect critical

code anomalies, even when exploring blueprints in addition to the source code.

 Figure 4 depicts an example of the Aspect-Oriented Modeling (AOM) notation

used to provide the architecture blueprint of a software system. Currently there are

several AOM languages for modeling the system in many levels of abstractions,

ranging from use cases to detailed software design (Stein et al., 2002)(France et al.,

2004)(Clarke and Baniassad, 2005)(Elrad et al., 2005). We have chosen the AOM

language illustrated in Figure 4 due to two main reasons: (i) we selected architecture

blueprints as our focus to the availability of existing descriptive architecture

specifications and the history of the evolution in both target applications – the AOM

language was the one used to represent the architecture in those systems; and (ii) this

language has been widely adopted for representing AO architectures in other contexts,

as well as it provides a number of modeling features related with the AO properties

(e.g. obliviousness and quantification). Moreover, the language is an extension of

UML’s component diagram, and supports the visual symmetric representation of AO

architectures (e.g. aspectual and base components are both represented in the same

way). Furthermore, the language provides a notation for expressing different forms of

collaborations between aspects and architectural components.

Figure 4 – AOM notation for architecture blueprints

crosscutting roles

<<component>>

<<aspectual connector>>

base roles

around crosscutting
relationship

<<component>>

before after

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

60

Aspectual connectors represent collaborations between aspectual and base

components. An aspectual connector is represented by rectangles (see Figure 4) and

it defines components’ interfaces, components and operations, which are affected by

the aspect. Moreover, aspectual connectors are associated with the crosscutting

relationships represented by dashed arrows. The notation also provides means to

represent advices of aspects introducing a diamond on the interfaces (before and after

advices), or even a dashed circle, in the case of around advice. The language also

supports the visual modeling of specific pointcut designators (e.g. advising all the

provided interfaces) and sequencing operators (after, before, and around). For the

sake of simplicity, our studies have only considered the representation of aspectual

connectors and crosscutting relationships in the architecture blueprints. In this way, it

makes easier to understand how the notation works; all the other visual details have

been omitted. As previously mentioned, we analysed also other factors might impact

in the number inconsistencies observed in the descriptive architecture in relation to

the actual system implementation. Therefore, we also evaluated the impact of two AO

properties, obliviousness and quantification, when considering the number of

inconsistencies in the descriptive architecture represented in the blueprint. Those

properties have been proposed, in particular, as the core characteristics of the AOSD

paradigm, and they are often used to define whether a language is aspect-oriented or

not (Filman and Friedman, 2001).

On the one hand, obliviousness states that the design places where these

quantifications were applied did not have to be specifically prepared to receive these

enhancements (Filman and Friedman, 2001). For this study, we are measuring

obliviousness by considering the number of change operations performed on the base

components in order to accommodate the interaction between the aspects and base

components. This measure helps us to indicate the obliviousness degree, as well as it

makes possible to assess how the model elements are unaware regarding the existence

of aspects. On the other hand, quantification can be defined as the idea one can write

unitary and separate statements that have effect in many non-local places in design

modules (Filman and Friedman, 2001). When the quantification property holds, it

follows that aspects may crosscut an arbitrary number of component interfaces

simultaneously.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

61

Our explicit study of these two properties of AOM – obliviousness and

quantification – was made, as they are key properties of aspect-oriented software

architecture. They are explicitly represented in a blueprint of an aspect-oriented

architecture design, independently from the level of details available in a blueprint. It

might be certain high-level blueprints do not bring specific information about the

specific type of advice used (before, after or around), but it will always: (i) determine

which components are affected by an aspect component (quantification) – it can be

inferred from the directed relationships from aspectual components to components,

and (ii) determine some or all the elements exposed from a component to an aspect

component (obliviousness).

3.3.
Study Settings

There is a lack of empirical investigation on how architecture blueprints,

representing the system`s descriptive architecture, might help to reveal the critical

code anomalies. In this sense, there is a need for investigating whether and how the

code anomalies might influence in inconsistencies on the architecture decomposition

for evolving software systems. Our goal was to check whether modularity properties

might be associated with inconsistencies in the descriptive architecture, represented

by means of blueprints. In this sense, we derived two auxiliary questions in order to

address RQ1 defined as:

ARQ1 - Can modularity properties represented in the architecture blueprints

help to void inconsistencies in the architecture decomposition?

ARQ2 - Is there a correlation between the presence of anomalies in the source

code and inconsistencies observed in the descriptive architecture?

 The ARQ1 aims at investigating to what extent the modularity properties –

observable in an architecture blueprint - may impact on the quality of the descriptive

architecture during the system evolution. The hypotheses H1 and H2 derived from the

ARQ1 are intended to evaluate the impact of modularity properties on the quality of

the AO descriptive architecture represented through architecture blueprints. Our

assumption is that aspects with higher quantification might lead to a higher number of

inconsistencies observed in the descriptive architecture represented in the blueprint

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

62

(H1.1). In other words, the more the number of aspects affecting the base components,

higher is the number of relationships with the base components - and more

information are likely to be exposed in the descriptive architecture. On the other hand,

the obliviousness might also impact on the number of inconsistencies, and as

consequence, in the overall quality of the descriptive architecture. Therefore, our

expectation is that higher obliviousness might lead to a lower number of

inconsistencies between the descriptive architecture and the actual system

implementation (H2.1). A high obliviousness means that the architectural base

elements are more unaware regarding the presence of aspectual components in the

architecture blueprint. Finally, the ARQ2 aims at evaluate the correlation between the

presence of anomalies in the source code and inconsistencies in the descriptive

architecture investigated through the mapping of artifacts in both abstraction levels.

Our assumption is that the presence of anomalies in the source code, mainly those

related with AO properties, obliviousness and quantification might be related with the

misuse of mechanisms provided by the AO (design and programming) languages. In

this sense, the hypothesis H3.0 states that there is no correlation between the presence

of anomalies in the source code, and the number of inconsistencies observed in the

architecture blueprints.

3.3.1.
Target Systems

Systems with different characteristics were selected in order to evaluate our

study hypotheses. The first target application is the Mobile Media system, which is a

software product line which purpose is to provide support for manipulation of photos,

music and videos on mobile devices (Figueiredo et al., 2008). Our second target

application is the Health Watcher system (Soares et al., 2002), which is a framework

that supports the registration and management of complaints to the public health

system. The common reasons for selecting those target applications in this study are:

(i) the architecture blueprints are the artifacts used to reason about change requests

and derive new products; and (ii) the original developers produced the architecture

blueprints without any architecture recovery tool (Garcia et al., 2012)(Maqbool and

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

63

Babri, 2007) or a model composition techniques (Fleurey et al., 2008)(Reedy and

France, 2004).

Moreover, the Mobile Media system was selected as target applications for two

specific reasons: (i) we had available a total of seven fully documented evolution

scenarios; (ii) different types of change were performed in each release, including

refinements of the architecture style employed; and (iii) the evolution scenarios of

Mobile Media range from changes in heterogeneous mobile platforms and additions

of many alternatives and optional features. On the other hand, during the evolution of

the Health Watcher system many maintenance tasks have been performed. Most of

those tasks are from adaptive and perfective nature (Greenwood, 2007). The use of

aspect-oriented paradigm to express the architectural design allows us to investigate

its impact on software modularity, and hence, in the perfective and adaptive changes

performed during the system evolution. In addition, Health Watcher was selected as

target application for two specific reasons: (i) all the evolutions scenarios and

architecture descriptions are available; and (ii) many changes were performed during

the system evolution (e.g. insertion of design patterns to improve the system

modularity).

3.3.2.
Quantifying Modularity Properties and Inconsistencies

To measure the number of inconsistencies (see Section 2.4.3) observed in the

architecture blueprints representing the prescriptive architecture, we calculate the

inconsistency rate (IR). The inconsistency rate is measure by the ratio of the number

of inconsistencies in the descriptive architecture in relation to the actual

implementation of a software system, and the total number of architectural elements

represented in the architecture blueprints. In order to measure some those

inconsistencies, we have to perform the mapping between the descriptive architecture

represented in the blueprint and the source code.

We also quantified the modularity properties in the AO descriptive architecture

represented in the blueprints. First, we evaluated the quantification in the AO

architecture blueprints by using the metric set of join points (SJP). The SJP metric

considers the set of join points in the base elements captured by the aspectual

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

64

components in the descriptive architecture represented by the blueprint. For each

aspectual component, we considered the number of join points presented in each

pointcut expression specified in the architecture blueprints. Besides considering the

explicit join points declared in the pointcut expressions, we are also considering all

the join point references. Thus, when aspects make use of the wildcard mechanism

(see Section 3.1), we are also counting all the references to join points in the base

elements that are affected by the aspectual element.

Second, we evaluate the degree of obliviousness of the base elements regarding

the presence of aspectual components. We considered the number of operations

required to accommodate the aspectual components being added in the architectural

design considering different changes required to evolve the systems’ descriptive

architecture. The idea is that obliviousness should be quantified as the amount of

preparatory actions performed on the base classes (or other aspects) to enable their

interaction with aspects. The set of preparatory modifications performed in the base

components indicates how they are (un) aware of the presence of aspects, as well as

the changes required to implement them. The higher the number of preparatory

modifications being implemented, the lower is the degree of obliviousness. It is also

important to mention we are considering changes in terms of class inheritance,

interfaces, methods and modifications in the methods parameters list. The collected

measures allow us to compare whether models with a higher (or lower) obliviousness

tended to present lower inconsistencies in the descriptive architecture in relation to

the actual implementation of the software system.

3.3.3.
Study Phases and Assessment Procedures

In the section, we describe each of the main activities performed in order to

conduct our empirical investigation. Those different activities are related with the

procedures for assessing the modularity properties, as well as the inconsistencies

observed in the architecture blueprints. As previously mentioned, the architecture

blueprints in this study represents the structural view of the descriptive architecture

for each target application.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

65

Architecture Blueprints and Evolution Scenarios. Different evolution

scenarios were considered for both target applications. The evolution scenarios define

what changes are required from one version to another in order to evolve the system’s

descriptive architecture. Thus, we considered 5 evolution scenarios of Mobile Media

using the AO paradigm for representing the descriptive architecture. Similarly, for

Health Watcher system we considered 8 evolution scenarios.

Deriving AO Architecture Blueprints. We initially specified the evolution

scenarios of each target application using the AO notation, before applying the

composition techniques in order to evolve the system architecture. Thus, to evolve the

architecture blueprints representing the descriptive architecture we have used model

composition techniques to semi-automate the process. The main reason for using

model composition techniques is due to the fact both industry and academy recognize

its importance in evolving the architecture design models. In addition, composition

techniques have already been employed in different domains (e.g. software product

lines, UML models). Moreover, several studies have investigated the use of model

composition techniques for evolving architecture design models (Guimaraes et al.,

2010)(Farias et al., 2011)(Farias et al., 2012). Additionally, changes performed

during the system evolution are visible in the descriptive architecture represented in

the blueprints. After AO architecture blueprints have been derived and the evolution

scenarios specified, we assessed the inconsistencies in the descriptive architecture in

relation to the actual implementation of a software system

Model Refactoring. It is an essential activity to refine the information about the

system’s descriptive architecture, represented in the blueprints, in order to express the

changes required for evolution scenarios. The evolution scenarios represent all the

key design decisions required to evolve the software system. In this sense, the

architecture blueprint of both target applications were refactored as means to specify

the delta model itself, which comprises all the changes for each evolution scenario. To

derive the evolution scenarios, we considered the evolution description provided by

original developers in previous studies (Figueiredo et al., 2008)(Soares et al., 2002).

Assessing Inconsistencies and Modularity Properties. To support a detailed

data analysis, the assessment phase was further decomposed in two main stages

aiming to: (i) identify the inconsistency rate in the architecture blueprints after the

composition techniques have been applied for each evolution scenario; and (ii)

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

66

compute the data regarding the quantification and obliviousness in the AO

architecture blueprints to evaluate their impact on the inconsistencies observed for

each target application (see Section 3.3.2).

3.4.
Hypotheses Testing and Initial Research Findings

In this section we evaluate our study hypotheses based on the data collected

after the composition techniques have been applied to evolve the architecture

blueprints of both target applications. We followed the traditional steps of applying a

statistical model to data of a software engineering experiment (Wohlin et al., 2000).

For instance, we firstly tested if all the data follow a normal distribution by applying

the Shapiro’s test (Wohlin et al., 2000). The main trends were also calculated and the

Wilcoxon signed rank test (Wohlin et al., 2000) was used to validate our hypotheses.

In addition, the Pearson’s correlation test (Wohlin et al., 2000) was applied to analyze

to what extent the modularity properties are related with the emergence of

inconsistencies in the descriptive architecture represented in the blueprints.

Our first hypothesis (H1.0) evaluates whether the degree of obliviousness impact

on emergence of inconsistencies observed in the architecture blueprints generated by

using composition techniques. As previously discussed, our hypothesis assumes that

the higher the number of modifications required to solve inconsistencies in the

architecture blueprints, the lower is the obliviousness of the architectural elements.

The architectural elements considered are those providing join points to aspectual

components defined in the architecture design. In this sense, our analysis evaluated

whether there is a positive correlation between obliviousness degree and the

inconsistency rate observed in the architecture blueprints generated by using

composition techniques is positive. When testing the hypothesis, a Pearson’s

correlation test was performed to measure the strength of the linear relationship

between degree of obliviousness and inconsistencies in the architecture blueprints in

relation to the prescriptive architecture. Table 2 summarizes the results of applying

the Pearson’s correlation test. Assuming a sample size (SS) = 26 and p-value = 0.05,

the correlation test presented a calculated p-value = 0.009654 and a correlation

coefficient = 0.497829. The calculated correlation coefficient indicates that there is a

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

67

moderate relationship between the obliviousness degree and inconsistencies observed

in the architecture blueprints. In other words, our correlation analysis suggests that the

higher the number of modifications in the architecture elements to accommodate

changes related with aspectual components, the higher the inconsistencies in the

architecture blueprints generated by using the two composition techniques. A higher

number of modifications implies in a lower degree of obliviousness. In this sense, the

alternative hypothesis H1.1 is confirmed and we can say that, in general, AO

architecture blueprints with lower obliviousness degree tend significantly to present

higher inconsistencies in relation to the architecture initially intended by the system

architect.

Table 2 - Correlation between Inconsistencies and AO Modularity Properties

Variable Median Mean S.D. Correlation

Obliviousness 3 7.4 8.8 0.5
Quantification 9 15.2 16.7 0.4

Inconsistencies 0.105 0.49 0.375

Similarly to the first hypothesis, the results regarding the emergence of

inconsistencies in the architecture blueprints remain consistent in both target systems.

Considering all the evolution scenarios, we found the number of join points in the

Health Watcher is higher than in the Mobile Media. A higher number of join joints,

which implies in a higher quantification, might yield to higher inconsistencies in the

architecture blueprint. The quantification can also be affected by the level of details of

the information exposed in the architecture blueprints. For example, when analyzing

the architecture blueprints of Mobile Media, a low number of join points can be

observed if compared with the Health Watcher models. It is caused due to the high

abstraction of Mobile Media models, which implies in less information being exposed

to the software developers. The smaller the amount of information that can be

observed regarding the join points affected by the aspects, the lower are the

quantification measures collected; and (ii) the inconsistencies in the architecture

blueprints in Health Watcher is smaller than in Mobile Media, since in the latter most

part of the pointcuts specified in the aspects affect only 1 or 2 join points. In turn,

most part of the aspects in the Health Watcher has pointcuts affecting more than 3

joint points.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

68

Moreover, we also observed that although the architecture blueprints in Health

Watcher have a lower level of abstraction, the larger number of architectural elements

does not necessarily generate inconsistencies. Our correlation analysis is aimed at

examining whether the inconsistencies in the architecture blueprints are directly

related with the quantification degree. In order to examine the strength of relationship

between the inconsistencies and the quantification degree, we have applied the

Spearman’ correlation. Table 2 shows correlation test between quantification and

inconsistencies observed in the AO architecture blueprints in relation to the

prescriptive architecture. Assuming the sample size (SS) = 26 and p-value = 0.05, the

Pearson’s correlation test presented A correlation coefficient = 0.470866 and

calculated p-value = 0.02. The correlation coefficient presented a positive value,

which indicates a moderate correlation. Therefore, the results suggest that when the

quantification in the AO architecture blueprints increases, the inconsistencies with the

prescriptive architecture increase as well. As the calculated p-value is lower than

0.05, the correlation result is statistically significant, and hence, the alternative

hypothesis H2.1 is confirmed.

3.5.
Code Anomalies and Inconsistencies in the Descriptive Architecture

So far, we have analyzed systems using AOM for architecture blueprints

representing the descriptive architecture. In particular, we have evaluated the impact

of modularity properties, obliviousness and quantification, in the inconsistencies

observed in the prescriptive architecture in relation to the actual implementation of

each target application. Our initial findings showed the AO modularity have a strong

relationship with the number of inconsistencies in the architecture blueprints. We also

observed the inconsistencies in architecture blueprints regarding the descriptive

architecture is likely to be reduced when: (i) classes are oblivious to the presence of

the aspects in each evolution scenario; and (ii) the quantification of aspects is low. As

a consequence, we started investigating which specific design practices in AOM

might either reduce or increase the inconsistencies in AO architecture blueprints. We

figured out that many inconsistencies observed in the descriptive architecture were

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

69

often associated with the misuse of the AO mechanisms - which tend to either

harmfully reduce obliviousness or increase quantification in an undesirable way.

In this sense, we can now focus on the main research question of our study,

which aims at evaluating, as a preliminary investigation, how code anomalies can be

associated with inconsistencies in the descriptive architecture. We have initially

observed the presence of anomalies is often caused by the misuse of AO mechanisms

(i.e. pointcuts, advices). Those anomalies seemed to be critical to the emergence of

inconsistencies in the architecture blueprints. We decided then to focus on the

anomalies related with the harmful obliviousness reduction and the misuse of

quantification mechanism. The reason for selecting a specific set of anomalies is due

to the fact that obliviousness and quantification might impact inconsistencies

observed in the architecture blueprints regarding the descriptive architecture.

Our goal was to check whether the presence of those anomalies in the

architecture blueprints would be correlated with inconsistencies with the descriptive

architecture. The anomalies were independently detected for each version of the

target applications and documented in previous studies (Macia et al., 2011). Aiming

to investigate the impact of anomalies with the presence of inconsistencies in the

architecture blueprints, eight types of anomalies are considered (see Table 3). All

those anomalies are related either to harmful obliviousness decrease or misuse of

quantification mechanisms, and have been documented in previous work and further

information can be found in (Svirisut and Muenchaisri, 2007)(Macia et al., 2011).

Most of the selected anomalies are directly related with the misuse of pointcuts.

For instance, aspects exhibiting the anomaly Anonymous Pointcut might have high

quantification and can possibly generate more inconsistencies in the architecture

blueprints. The problem is that Anonymous Pointcut has no signature and all the

information is exposed in a pointcut expression. Therefore, we decided to represent

the different join points in this manner, instead of using wildcards. Thus, for example,

when a pointcut affecting 3 join points is represented by an expression, each of these

join points are represented through a different relationship between aspectual

component and each base element. So, the higher the number of information exposed

in a pointcut expression, higher is probability of inconsistencies could be observed in

the architecture blueprints – it implies in inconsistencies on the relationships between

components’ interfaces and connectors.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

70

Table 3 – Anomalies in AO Target Applications

Anomaly Name Description

God Aspect
It occurs whenever an aspect is realizing more than one system concern. For
those cases, the aspect can be organized in many aspects as the number of
concerns realized (Macia et al, 2011.

Lazy Aspect It represents an aspect that has either none or only fragments responsibility
(Piveta et al., 2006).

Forced Join Point
It is associated with code elements (e.g. methods and attributes) in the base
code only exposed to be used by aspects. For example, some methods in the
source code in which the implementation details can be exposed so that the
aspects can access them (Macia et al, 2011)

Duplicated Pointcut It occurs whenever different pointcut definitions collect the same set of join
points in the base code. (Piveta et al., 2006)

Anonymous
Pointcut

It occurs wherever a pointcut is directly defined on the advice.

God Pointcut
It occurs when a pointcut has either a complex expression involving many
keywords or affect many scattered join points. This anomaly can also occur
when the respective advice of a given pointcut has a very complex
implementation (Macia et al, 2011).

Idle Pointcut

It is associated with pointcuts, which do not match any joint point. This code
anomaly might occur due to several reasons: (i) mistakes in the pointcut
expression, which may lead the wrong joint point to be affected; (ii) pointcuts
are not referred by any advice, therefore no action is performed in the join
point affected (Macia et al, 2011).

Redundant Pointcut
It occurs when pointcuts can be reused or combined by logical operations in
order to define new-composed pointcuts. This code anomaly is associated with
partial pointcut expressions equivalent to others already defined (Macia et al,
2011).

 Another example of anomaly is the Forced Join Point, which can negatively

influence the obliviousness of the base components regarding the presence of

aspectual components. Its definition states that the operations/services in the base

element are artificially created only for exposing extra information via their signature,

so that one or more aspects can have access to them. As a consequence, the presence

of this anomaly in an evolution scenario decreases the obliviousness of the base

components. The artificially created operations/services are also potentially sources of

propagation in inconsistencies observed in the architecture blueprints given their

strong coupling with the pointcuts using the exposed information.

Code Anomalies vs. Inconsistencies in Architectures Blueprints. We also

investigated how the presence of specific anomalies could impact on the

inconsistencies observed in the descriptive architecture represented in the blueprints.

The results showed the presence of anomalies is often caused by the misuse of AO

mechanisms, such as pointcuts and advice. Thus, our focus was on the anomalies

related with misuse of quantification mechanism and the harmful obliviousness

reduction. The architecture blueprints used for each evolution scenario were analyzed

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

71

in both target systems to check whether the presence of modularity anomalies would

impact on inconsistencies in the descriptive architecture. Therefore, we collected the

data regarding the instances of each anomaly and computed the inconsistencies

observed in the architecture blueprints for the evolution scenarios defined of each

application. Table 4 summarizes the data used for the correlation of anomalies

detected for each version, as well as the number of inconsistencies observed in he

descriptive architecture. The inconsistencies are computed for each version of the

target applications when one of the two composition techniques merge (IR-M) and

override (IR-O) is applied. When analyzing the Mobile Media, only in the evolution

scenario related with version V3 (N – represents the number of the system version

under analysis) the presence of anomalies are not associated with inconsistencies in

the architecture blueprints. Although 6 instances of anomalies were identified, they

have not produced any inconsistencies. In other evolution scenarios of the Mobile

Media system, we observed that the presence of anomalies is somehow associated

with inconsistencies in the architecture blueprints.

Table 4 – Code Anomalies in Health Watcher and Mobile Media

Mobile Media Health Watcher

Anomaly V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 V6 V7 V8
1 4 8 9 10 20 24 47 49 49 48 40 40

IR-M 38 21 0 66 0 50 10 1 0 2 3 0 11
IR-O 38 36 0 73 6 41 4 1 0 0 0 0 34

On the other hand, a more interesting effect of the presence of anomalies could

be observed in Health Watcher, because the number of anomalies is fairly high.

However, taking as example the evolution scenarios from V3 to V7, most of the

anomalies are not related with inconsistencies in relation to the descriptive

architecture. This can be explained by the fact that in those evolution scenarios none

of the elements involved are related with anomalies. The low number of

inconsistencies observed from release V3 to V7 in Health Watcher can be explained

due the fact those evolution scenarios consists basically on applying design patterns

for improving the system modularity. In version V8, the exception handling was

improved and new elements were introduced to implement those enhancements. Since

the system underwent a lot of refactoring operations, the number of inconsistencies in

the architecture blueprints regarding the descriptive architecture for this evolution

scenario is high – when compared to the previous versions.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

72

A more critical scenario occurs when instances of anomalies are propagated

from previous version. For instance, considering the evolution scenario from version

V1 to V2, there are some cases where Anonymous Pointcut and Duplicated Pointcut

are related with inconsistencies in the architecture blueprints. However, when those

anomalies are not properly solved, their relation with inconsistencies in the

architecture blueprints will. Thus, we conclude that the occurrence of the anomaly

was propagated from one version to another, as well as the inconsistencies in the

architecture blueprints regarding the prescriptive architecture. For these evolution

scenarios the number of anomalies is the same of the previous release. However,

before draw any conclusions the Pearson’s correlation test is performed in order to

confirm or refute the study hypothesis H3.0.

Table 5 shows data for the correlation analysis between anomalies and the

presence of inconsistencies in the descriptive architecture. As we can observe, the

correlation presented a positive value, which means that there is a true correlation.

Our analysis considered a set of 26 evolution scenarios, of which 8 scenarios from

Health Watcher and 5 scenarios for Mobile Media. The composition techniques were

applied for evolving the architecture blueprints according to each evolution scenario

defined for the target applications. Finally, the tests achieved a correlation coefficient

equals to 0.2, which indicates a positive correlation but with a low statistical

significance. Therefore, our study hypothesis H3.1 s is confirmed.

Table 5 – Correlation between Code Anomalies and Inconsistencies

Variable Median Mean S.D. Correlation
Code Anomalies 49 36.6 20.4 0.2 Inconsistencies 0.105 0.5 0.74

Frequent Code Anomalies. In the Mobile Media, the 3 most recurrent

anomalies were Duplicate Pointcut, God Aspect and Lazy Aspect, considering the

total of modularity anomalies of each release. They are responsible for around 95% of

the anomalies presented in Mobile Media versions. On the other hand, for the Health

Watcher system the 3 most recurrent anomalies were Redundant Pointcut, Anonymous

Pointcut and Idle Pointcut. Those anomalies are responsible for more than 85 % of

the total of anomalies in Health Watcher. Moreover, the 3 most recurrent anomalies of

Mobile Media were related with 64% of inconsistencies observed in the architecture

blueprints. From the total number of inconsistencies associated with the anomalies,

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

73

the percentage of inconsistencies specifically related with the anomalies Duplicated

Pointcut, God Aspect and Lazy Aspect are 71.88%, 15.63% and 12.5%, respectively.

On the other hand, the number of inconsistencies in the blueprints related with those

three anomalies is even higher Health Watcher system, reaching 92%. Considering

this high percentage of inconsistencies in the architecture blueprints, we found that

around: 64.02% of inconsistencies are related with Redundant Pointcut, 20.11% are

related with Anonymous Pointcut, and around 15.87% are related with Idle Pointcut.

An analysis of the results in both systems shows that pointcut-related anomalies are

the ones consistently associated with inconsistencies in the architecture blueprints

when comparing to the prescriptive architecture.

3.6.
Summary

In this chapter we presented a preliminary study to assess the impact of AO

architecture blueprints, representing the system’s descriptive architecture, when

evolving software systems. In order to mimic an automated process of evolving the

system’s architectural design, we have opted for using model composition techniques.

As previously mentioned, this study was performed aiming to investigate how the use

of architectural information would help to reveal architectural problems in the source

code. In this sense, we evaluated how inconsistencies observed in the systems

descriptive architecture would be related to the presence of anomalies when observing

the actual implementation of the target applications. In order to address our first

research question, we defined two auxiliary questions to investigate whether: (i)

modularity properties represented in the architecture blueprints could help to void

inconsistencies in the architecture decomposition; and (ii) there is a correlation

between the presence of anomalies in the source code and inconsistencies observed in

the descriptive architecture.

As expected, we also found that AO architecture blueprints have an improved

modularization and therefore helped to better localize inconsistencies in the

descriptive architecture in relation to the system’s actual implementation. Thus, when

analyzing the modularity properties obliviousness and quantification, we could also

observe that: (i) when components in the architecture blueprints have a higher

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

74

obliviousness we observed a lower number o inconsistencies; and (ii) aspectual

components with higher quantification are often related to inconsistencies with the

system’s actual implementation. The reason is that several elements in the source

code are related to code anomalies associated to pointcut problem, which directly

impacts on the quantification property.

In summary, we observed inconsistencies in the AO architecture blueprints

might also be related to the presence of anomalies in the source-code. Moreover, most

part of those anomalies are related to the misuse of AO mechanism, with are intended

to provide means for a better modularization of software systems. After analyzing the

architecture evolution of both target applications, we observed that developers should

be careful when using aspect-oriented paradigm for building software systems, mainly

in cases where: (i) the aspectual components have a high quantification and low

obliviousness; (ii) some inconsistencies might be observed in the AO architectural

design, mainly when an architectural components are implemented by anomalous

code elements. Thus, developers must avoid the overuse of aspects with high

quantification, particularly those pointcuts that are associated with the anomalies

investigated in our preliminary study.

Once we observed that architecture blueprints could help to reveal how

inconsistencies are associated with the presence of anomalies in the source-code,

henceforward we were able to focus on a more in-depth analysis (presented in the

next Chapters). For instance, we will investigate how the use of architecture

information could be properly used as means to prioritize and rank the most critical

code anomalies. In addition, we also will investigate what architectural information

can be more effectively used in the prioritization and ranking problems. The reason

for prioritizing and ranking code anomalies, as early as possible in the development of

software systems, is to prevent inconsistencies between the system descriptive

architecture and the system actual implementation. In this sense, we can help

developers when avoiding more severe design problems that might lead to

architecture degradation as the system evolves.

.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

