

127

6 Final Remarks

In this chapter, we discuss the main threats to validity that permeates the

empirical studies performed in this thesis (Section 6.1). After that, we discuss the

conclusions about the results achieved in this thesis (Section 6.2), as well as we

summarize the main contributions and points out the activities to be performed as

future works (Section 6.3).

6.1.
General Threats to Validity

This section discusses the main threats to validity according to the guidelines

defined in (Wohlin et al., 2000). These threats are categorized in three categories,

addressing internal, external and construct validity.

Internal Validity. Our first internal validity threat is related to the quality of the

architecture blueprints used in the thesis. Three properties have been presented

(Section 2.4) in order to make it clear how we selected architecture blueprints that

reach a minimum quality, so that it can be used as artifact on the prioritization

process. However, as the system evolves it is hard to synchronize changes in the

system architecture, and the code elements in the system implementation. Thus,

changes in the architecture blueprints and in the source code might lead to different

results when prioritizing and ranking critical code anomalies. Our second internal

threat is related to the mapping between architecture blueprints and source code

elements. The mapping process is out of scope of our research. However, in order to

mitigate this threat, we have validated the mappings with the system architects and

developers. Even though there might be some imperfections on the mapping, they

provide the information required to execute the heuristics proposed in our study.

External Validity. Our first external threat is related to possible errors on the

detection of anomalies. As the architecture sensitive heuristics consist of prioritizing

previously detected code anomalies, the method for detecting those code anomalies

must be trustworthy. To avoid the risk of imprecision on the detection process: (i) the

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

128

original developers and architects have been involved in this process; and (ii) well-

known metrics and thresholds were used by the detection strategies. The second

external threat is related to the use of the ground truth. Although each system experts

have used their own strategies to identify the most critical code anomalies, around

75% of code anomalies could be equally identified. Therefore, the ground truth of

code anomalies had to be produced as a joint decision between all the system experts

involved in the study.

Construct Validity. Our construct validity threat is related to the choice of the

target applications. The problem is that the results found in our study are limited to 3

target applications. In order to minimize this threat, we selected systems developed by

different programmers, with different domains, programming languages and

architectural styles. However, in order to make the results more generalizable further

empirical investigation is required. For instance, other researchers could replicate our

study using systems from different domains. We have tried to make our best to

describe carefully our solution so that others can replicate it using, for example, other

systems.

6.2.
Revisiting the Thesis Contributions

In this thesis we discussed how architecture blueprints, representing some

common types of architectural information, could be used as means to support the

prioritization and ranking of critical code anomalies. In this direction, we performed

empirical studies in order to reveal how inconsistencies in the system’s descriptive

architecture would be associated with the presence of critical code anomalies in the

system actual implementation. In addition, we documented scenarios where critical

code anomalies can be associated with architecture degradation symptoms, which in

turn, can be visualized through the analysis of architecture information represented in

blueprints. We proposed and evaluated heuristics aiming at providing semi-automated

support for prioritizing and ranking critical code anomalies as early as possible in the

system development. When critical code anomalies associated with drift problems are

correctly addressed earlier in the system development, architecture degradation

symptoms can be avoided.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

129

Therefore, we now revisit the main contributions of this thesis and lessons

learned observed from each empirical study. The goal of this retrospective analysis is

to reflect upon the research questions initially defined in this thesis. In this sense, we

summarize the contributions for each empirical study and discuss how how their

findings contribute to our final conclusions. These conclusions regard the different

aspects on the use of architecture blueprints for prioritizing and ranking critical code

anomalies. It also important to mention that all the results presented in Chapters 3, 4

and 5 has been either published or submitted to international conferences in the field

of software engineering.

On the Relation of Architecture Blueprints and Code Anomalies: A Study

of Evolving Software Systems. We have initially studied how AO blueprints,

representing the system’s descriptive architecture, would help to reveal

inconsistencies in architecture design decisions in relation to the actual

implementation. In this sense, our analysis relied on evaluating how inconsistencies in

the system’s descriptive architecture would be related to the presence of anomalies

when observing the actual implementation of two target applications. Thus, we

investigated how certain modularity properties, represented in the architecture

blueprints, could help to void inconsistencies in the architecture decomposition. We

also investigated the correlation between the presence of anomalies in the source code

and inconsistencies observed in the descriptive architecture. From this empirical

investigation we observed that, since the AO architecture blueprints have an improved

modularization, we could better localize inconsistencies in the descriptive architecture

in relation to the system’s actual implementation.

In addition, we performed the analysis of two modularity properties associated

to systems implement using the aspect-oriented software development paradigm,

obliviousness and quantification. Firstly, we found that components in the

architecture blueprints with higher obliviousness tended to present lower number o

inconsistencies. Secondly, we also observed that aspectual components with higher

quantification are often related to inconsistencies with the system’s actual

implementation. Thus, inconsistencies in the AO architecture blueprints are usually

also be related to the presence of anomalies in the source-code. Moreover, most part

of those anomalies is related to the misuse of AO mechanisms. In this sense, when

using aspect-oriented software development paradigm, developers should avoid cases

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

130

where aspectual components have a high quantification and obliviousness is low. In

addition, some inconsistencies might be observed in the AO architectural design,

mainly when architectural components are implemented by anomalous code elements.

Thus, developers must prevent the overuse of aspects with high quantification,

particularly those pointcuts that are associated with the pointcut-related code

anomalies.

Controlled Experiment for Prioritizing and Ranking Critical Code

Anomalies vs. Usefulness of Architecture Blueprints. Based on the finding that

architecture blueprints could be used as means to reveal how inconsistencies

associated to the presence of anomalies in the source-code, we decided to on a more

in-depth analysis. Thus, we investigated how the use of architecture information could

be properly use to prioritize and rank the critical code anomalies. Therefore, we

focused on figuring out what architectural information could be more effectively used

in the prioritization and ranking process. The prioritization and ranking of code

anomalies associated with problems in the system’s descriptive architecture, as early

as possible in the development of software systems, might assist architects and

developers on preventing architecture degradation symptoms. Thus, we performed

controlled experiments, with participants from different universities and with different

technical knowledge, in order to evaluate how the use of architecture blueprints would

improve the prioritization and ranking of code anomalies. For doing so, we used three

different measures, namely Precision, Recall and Time Spent. As lessons learned

from the controlled experiment, we observed that: (i) architecture blueprints could

somehow improve Precision measures on the prioritization and ranking process,

although the statistical tests indicated the results as being marginally statistical

significant; (ii) a positive impact in terms of Recall when architecture blueprints on

the process of prioritizing and ranking critical code anomalies; and (iii) besides

improving the Precision and Recall, the use of architecture blueprints did not bring

any additional effort in terms of time spent. Therefore, unlike we initially assumed,

when participants are provided with additional artifacts for prioritizing and ranking

code anomalies, it does not necessarily mean they will spent more time for analyzing

those additional artifacts. Besides the experimental tasks, participants should also

provide feedback about the usefulness of the architecture information provided in the

blueprints when performing the experimental tasks. Around 71.4% of participants

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

131

claimed the architecture blueprints as being useful when prioritization and ranking

process code anomalies, while 28.6% said they relied only in the use of source code

metrics when performing the experimental tasks. On the other hand, the latter

suggested other architecture information that would be helpful when prioritizing and

ranking critical code anomalies.

Semi-Automated Heuristics for Prioritizing Critical Code Anomalies. Based

on our previous research findings, we observed the need for automating the process of

prioritizing and ranking critical instances of code anomalies. According to the

feedback provided in our controlled experiments, we figured out that not always

developers would be able to optimize the prioritization and ranking of code

anomalies. The reason is that even though the use of architectural information can

improve the prioritization and ranking critical code anomalies, it is not possible to

know which specific architectural information should be used when performing those

activities. Secondly, we observed that manual prioritization and ranking of code

anomalies is far from being trivial, although the controlled experiment revealed that

no additional time was required to perform both activities. However, the Precision

and Recall measures were somehow compromised by the misinterpretation of existing

artifacts, including the architectural information represented in the blueprints. In this

sense, we provided a semi-automated way for prioritizing and ranking critical code

anomalies based on their architectural relevance. The architectural relevance is

assessed in the context of different architectural problems to which an anomalous

code element might be associated. Besides the existing drift problems documented in

the literature (Garcia et al., 2009b), we studied drift problems in terms of violation of

design principles. The drift problems documented can co-exist with other definitions.

For instance, External Addictor Component is often associated with Overused

Interface. These architectural problems are also related, for instance, to the violation

of two different design principles, namely Single Responsibility Principle and

Interface Segregation Principle (Martin, 2003). Finally, we observed that each

different architectural drift problems required different architectural information when

compared to the other architectural problems. In this sense, we defined different

information to be explored by the architecture sensitive heuristics. Moreover, we also

used architecture sensitive metrics in order to break ties and make the process of

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

132

prioritizing and ranking code anomalies more accurate when compared to the ground

truth provided by the system experts.

Architecture Sensitive Heuristics vs. Architectural Drift Symptoms. In

order to help developers on semi-automating the process of prioritizing and ranking

critical code anomalies according to their architectural relevance, we proposed 4

different prioritization heuristics. The heuristics are based on different architectural

problems related either with problems in the inter-component communication or with

the implementation of concerns in a software system. In addition, we evaluated the

proposed heuristics with 3 medium-size applications, as well as discussed how the

proposed heuristics would assist developers when correctly prioritizing and raking the

critical code anomalies in the target applications under analysis. When evaluating the

proposed heuristics we observed that several architecture drift problems involved

architecture components infected by multiple anomalies. Moreover, we also observed

that even in systems where the concerns are well modularized, the prioritization

heuristics were efficient to pinpoint problems with the implementation of those

concerns. Finally, when considering an overall analysis of the architecture sensitive

heuristics, we were able to effectively prioritize and rank critical code anomalies

according to different architectural drift problems.

6.3.
Future Works

In addition to the contributions of this thesis described in Section 6.2, we have

identified needs of future work. Basically, five main topics can be derived and they

are described as follows.

Further Evaluations: The proposed architecture-sensitive heuristics were

evaluated in the context of three representative Java systems (Chapters 5). The

performed studies provided evidence with respect to the benefits of exploiting

architecture information related to the system’s descriptive architecture. In addition,

we explored the mapping between the descriptive architecture and the code elements

in the actual implementation of different software systems. However, further

empirical investigations are still required. Firstly, our evaluation focused on more

stable versions of three different medium-size systems with different architectural

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

133

drift symptoms. Therefore, it could be interesting to perform further studies

considering the further evolution of those software systems. Moreover, we could also

consider larger systems were architecture problems can be more severe if critical code

anomalies are not properly addressed. The goal of this kind of study is to gather

findings about how early the critical code anomalies are formed, as well as

understanding to what extent developers can properly prioritize and rank those critical

code anomalies in more complex situations. We could also assess how software

developers can avoid more severe architectural degradation symptoms and save effort

in later maintenance tasks. Finally, when evaluating the proposed heuristics, we relied

on the study of object-oriented systems. Therefore, it is necessary to replicate the

studies in systems developed with other programming techniques (e.g. aspect-oriented

programming, procedural programming, and others).

Evaluate different combinations of the proposed heuristics. Although the

proposed heuristics provide semi-automated support for prioritizing and ranking

critical code anomalies, we did not evaluate the benefits of combining them on the

prioritization results. Therefore, we intend to investigate whether combining different

heuristics would improve the accuracy of the results when prioritizing and ranking

code anomalies. Moreover, it would be also interesting to analyze to what extent those

combinations would enable the prioritization and ranking of code anomalies in

different versions of software systems. In this sense, we could also consider

combining the proposed heuristics with those documented by Arcoverde et al.,

(2012), which explore the code evolution history of software projects.

Evaluate the heuristics efficacy. Our results show that the use of proposed

heuristics could assist developers when prioritizing and ranking potential refactoring

candidates, according to their architectural relevance. As future work, we intend to

realize controlled experiments with groups of developers, for analyzing whether those

heuristics are indeed helping them prioritize their refactorings. Our intention is to

observe whether there was an increase in the proportion of refactorings aimed at

removing critical code anomalies. It would also be interesting to analyze whether the

architecture sensitive heuristics would help increasing developers’ productivity when

prioritizing and ranking the most critical anomalous code elements.

Implementation of the heuristics. One of the main focus of this thesis was to

propose and evaluate heuristics for prioritizing and ranking critical code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

134

Although the actual solution provides semi-automated ways for executing the

prioritization heuristics, we consider providing developers with an Eclipse-based

integrated solution – i.e. enabling the use of the prioritization heuristics while

programmers progressively edit their code. In addition, we intend to provide more

flexibility in the definition of the mappings between the architecture and source code

elements, since in the current solution, we assume developers would perform the

mappings between architectural elements and concerns to code elements using the

ConcernMapper tool (Robillard and Warr, 2005). There are any concern mining

techniques in the literature, which can automate the mapping process, but we know

they are not perfectly accurate.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

