
3

The Role of Modularity in Program Stability

“I think I am getting crazy because according to my findings, modularity metrics
do not indicate program stability, said Francisco to Alessandro.

“Great! said Alessandro smiling.
”

”

Conversation between Francisco and Alessandro
In their first meeting of 2010 at PUC-Rio

Software stability stands out as one of the most critical attributes of high-

quality software design (KELLY, 2006, MOHAGHEGHI et al., 2004). As a

consequence, a key goal of advanced programming techniques, such as AOP

(KICZALES et al., 1997) and FOP (MEZINI and OSTERMANN, 2002), is to

promote program stability. They aim to support developers in achieving easy-

to-change programs. The resulting programs ought to better accommodate

requirements’ changes than their OO program counterparts.

However, the use of composition mechanisms implies that the program com-

plexity is at some extent transferred from the module structure to the com-

position specification. It is often the case that properties of multiple mod-

ules are involved in the composition implementation. This means that, to a

large extent, much more of the time spent on programming is now devoted to

implement, comprehend and potentially revisit the composition specification.

When changing a program, for instance, it is also not trivial to understand the

change effects on the composition specification. Even worse, when the target of

a change is the module, all the related compositions might need to be revisited

and modified in certain circumstances (GARCIA et al., 2005).

It is well recognized nowadays that composition mechanisms help to improve

modularity (GARCIA et al., 2005). However, given the new complexity flavors

of composition code, it is questionable if modularity metrics are the most

effective indicators of quality attributes such stability. Existing module-driven

metrics have suffered criticism and they are failing to be used with confidence

in empirical studies (BURROWS et al., 2010). For instance, such metrics are

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 49

criticized for not taking into account some properties of the multiples modules

of composition implementation such as the scope of composition code in

the source code (Section 1.1.2). This means that composition specifications

increasingly require the reasoning about modules not explicitly declared in the

composition code.

This chapter presents an exploratory study about the impact of advanced pro-

gramming techniques and their composition mechanisms on program stability.

This study aims at answering the first and second research questions of this the-

sis (RQ1 and RQ2 in Section 1.3), which state, respectively: How to objectively

analyze the impact of using composition mechanisms on program stability? and

Are modularity conventional metrics good indicators of composition-enriched

program stability? First, we need to identify if there are specific programming

techniques, such as, AOP and FOP (see Chapter 2), that play a central role in

promoting program stability when compared to OO programming techniques.

Second, we also need to obtain insights about how better quantify the impact

of composition code on program stability. The study was carried out on the

top of AspectJ and CaesarJ implementations of three evolving systems (Ap-

pendix A). The comparison between AspectJ and CaesarJ was motivated by

many reasons, such as: (i) they entail the most popular programming models

that support existing composition mechanisms, such as pointcuts, advice, and

intertype declarations, and (ii) most of the previous evaluations were limited

to evaluate AspectJ programs and this language mechanisms only.

Finally, our analysis was based on previously-defined modularity

(SANTANNA et al., 2004) and stability (KELLY, 2006) metrics, so that

we could verify if existing modularity metrics indicate well-accepted symp-

toms of program stability (Section 3.1). Differently from what we expected, we

have observed that modularity attributes were not the main factor that con-

tributed to superior stability of the analyzed software systems. This happens

mainly because the impact of composition properties seems to exert a great

influence on program stability. The explanations for this conclusion are given

in the analysis discussion (Section 3.2). The analysis was carried out taking

into consideration the methodology presented in Section 3.1. Our study was

compared to previous studies in Section 3.3. Threats to validity and our final

considerations are presented in Sections 3.4 and 3.5, respectively.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 50

3.1

Evaluation Methodology

This section presents the methodology used in our exploratory study (Section

3.1.3). The exploratory investigation comes in handy as we aim at first

acquiring new insights into the impact of using composition mechanisms on

program stability. In addition, the use of composition mechanisms is in a

preliminary stage and, thus, the data regarding its usage is difficult to collect.

In Section 3.1.1 the target systems used to support our investigation are

presented. Our research aims and study procedures are presented in Sections

3.1.2 and 3.1.3, respectively. Finally, the metrics used to quantify the degree

of software modularity and stability are introduced in Section 3.1.4.

3.1.1

Target Systems

In order to conduct a systematic evaluation on the stability of composition-

enriched programs, the selected cases were three evolving systems: (i) a

large open-source software framework, called iBatis (110 KLOC), (ii) an

embedded mobile software for media management, called MobileMedia (5

KLOC), and (iii) a family of board games, called GameUP (3 KLOC).

Both MobileMedia and GameUp are considered software product lines (SPLs)

(ALVES et al., 2006). The SPL approach aims to decompose software func-

tionalities into features (CLEMENTS and NORTHROP, 2001). These systems

were chosen as they have been evolved and underwent various forms of changes

(Section 3.2.2) over a long period of time.

There are many others reasons that justified the choice of these systems.

They are also interesting to our study because they contain different cate-

gories of: (i) functionalities implemented using composition mechanisms, (ii)

domain-specific functionalities and (iii) there were good practice guidelines on

how to modularize these chosen features with the composition mechanisms

(MEZINI and OSTERMANN, 2004, CAESARJ, 2012). These diverse charac-

teristics would enable us to expose AspectJ and CaesarJ, representative AOP

and FOP programming languages, implementations to varied requirements for

modularizing systems functionalities. In addition, the systems changes would

enable us to assess to what extent certain mechanisms, such as pointcut-advice

and collaboration interfaces, could help to reduce modifications of existing

modules through systems changes. Moreover, the three software systems are

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 51

from significantly-different domains, and well-designed implementations with

Java and AspectJ are already available, facilitating the analysis of the compo-

sition mechanisms in this study. These existing implementations have priori-

tized stability of systems functionalities. In particular, the GameUP provides

us new functionalities combinations make possible to generate several addi-

tional systems versions, whereas the MobileMedia is considered a benchmark

for evaluating advanced programming techniques. Additional information re-

garding these three applications is available in Appendix A. Distinguishing

characteristics of the target systems are presented in the following.

iBatis. It is a Java-based open source framework for data mapping. It is

composed by more than 60 versions incrementally implemented. Four versions

were chosen and implemented using the AspectJ and CaesarJ programming

languages. The following functionalities were chosen to be refactored with

modularity mechanisms of AspectJ and CaesarJ: type mapping, error context,

and design patterns.

MobileMedia. It is a program family (FIGUEIREDO et al., 2008a) that pro-

vides support to manage (create, delete, visualize, play, send) different types of

media (photo, music and video) on mobile devices. During its development and

evolution, the initial core architecture was systematically enriched with manda-

tory, optional and alternative features. Seven versions of the MobileMedia were

analyzed and implemented on both AspectJ and CaesarJ programming lan-

guage. All the variabilities were implemented using composition mechanisms.

GameUP. GameUp is a SPL developed following the reactive approach

(ALVES et al., 2006). It encompasses three open-source board games

where each of them is an SPL: Shogi (SHOGI GAME, 2013), JHess

(JHESS GAME, 2013) and Checkers (CHECKER GAME, 2013). Check-

ers is an American checker whereas Shogi and JHess are chess games. All of

them provide features to manage various functionalities for customizing the

board (e.g. indicating moveable pieces) and the matches between players (e.g.

indicating player turns). Four versions of the GameUP were analyzed and

implemented on both AspectJ and CaesarJ programming language

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 52

3.1.2

Research Aims

In this exploratory study, we evaluate whether the use of AOP and FOP

techniques contributes to better evolve software systems in terms of software

stability (Section 2.2.1). In order to achieve this goal we took into consideration

the AspectJ and CaesarJ versions of the target systems (Section 3.1.1). Our

analysis was performed following the procedures described in Section 3.1.3.

Before performing this analysis, we checked whether these techniques, in fact,

provide a positive and significant impact on our conventional notion of modu-

larity. In particular, our research aims were threefold. First, we aim at analyzing

the role of modularity in terms of stability in composition-enriched programs;

in other words, programs developed and evolved with advanced programming

techniques and their composition mechanisms. Second, we analyzed if modules

implemented with different composition mechanisms are equally modified. In

this case, we analyzed whether the use of different programming mechanisms

promotes software evolution with equivalent stability. This step was important

to check whether the enriched composition code yielded by these techniques

play, to a larger or lesser extent, a role on program stability. This analysis

helped us to check if modularity metrics are effective to detect the varying in-

fluence of composition code characteristics. Finally, we also aimed at discussing

some implementation factors that are detrimental to stability of evolving sys-

tems. These factors were mostly related to the complexity of the composition

code.

3.1.3

Procedures

To begin with, it is important to highlight that all target systems were already

implemented using Java and AspectJ languages. For this evaluation, CaesarJ

implementations were generated for all the target systems as well. During the

implementation process, the versions were analyzed according to a number of

programming alignment rules in order to assure equal compliance to coding

styles and included functionalities. Moreover, the implementations followed the

same design decisions in all implementations to ensure a high degree of module

stability.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 53

The designs and implementations with CaesarJ were also reviewed by other two

independent developers and researchers. One of them is a co-author of CaesarJ

language, who is also experienced on the use of all sorts of aspect-oriented

and feature-oriented programming mechanisms. All these initial procedures

were carried out to ensure that the comparison between the implementations

was equitable and fair. Inevitably, during the CaesarJ implementation, some

refactorings in the AspectJ versions had to be performed when misalignments

were observed at the implementation or even at the design level. When

these misalignments were discovered, the particular versions were modified

accordingly. There were also cases where the code structure needed to be

improved equally in all the versions.

As a second step, the degrees of modularity and stability of the target

systems (Section 3.1.1) were measured and compared. Software modularity

was quantified by existent modularity metrics (FIGUEIREDO et al., 2008a),

namely coupling metrics, through the versions of all target systems. The

intention was to verify if modularity metrics are good indicators of program

stability when composition mechanisms are used as with in OO programming

mechanisms. Later, we analyzed the degree of stability of the modules as the

target systems evolved. The idea was to verify if the composition mechanisms

that have promoted higher modularity degree would be the same that produced

more stable systems. Finally, our third step consisted on the comparison

of the degree of stability of the system modules using different composition

mechanisms.

3.1.4

Modularity and Stability Metrics

In order to achieve our research aims (Section 3.1.2), some previously-validated

metrics for modularity and stability were used. Therefore, two groups of metrics

were used: (i) modularity metrics and (ii) stability metrics. These metrics were

applied to multiple evolving systems versions with the intention of respectively

computing: (i) the constancy of pivotal modularity properties through software

systems versions and (ii) the unintended software systems modifications; i.e.,

ripple effects (YAU and COLLOFELLO, 1985).

Modularity Metrics. The modularity metrics (GARCIA et al., 2005) were

used to enable us to analyze to what extent a certain modularity principle re-

mained constant through out the software system evolution. It was also useful

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 54

to compare the degree of modularity achieved by each advanced programming

technique (Section 3.2.1). The modularity metrics were used to quantify the

coupling. Coupling metrics received increased recognition by OO software

systems developers when they were found to be indicators of important qual-

ity attributes, such as stability (BRIAND et al.,1999, BRIAND et al.,1997).

However, there is no consensus on which coupling metrics are effective quality

indicators ffor stability of composition-enriched programs (Section 3.2.1). The

attribute coupling was measured with the following metrics: Coupling between

Modules (CBC) and Depth of Inheritance Tree (DIT). CBC counts the number

of components (e.g.,modules) from which a given component invokes a pro-

gram element, whereas DIT defines the maximum length from the node to the

root of the composition tree. CBC and DIT metrics are two out of six metrics

proposed by (CHIDAMBER and KEMERER, 1994) widely used for mea-

sure coupling in OO programs (BRIAND et al.,1999)(BRIAND et al., 1999)

(SHEO et al.,2008). In addition, such metrics were chosen because

(i) they are used consistently as those representing modularity

(TAUBE-SCHOCK et al.,2011, CACHO et al.,2007, FILHO et al.,2006,

GARCIA et al., 2005, GREENWOOD et al., 2007), even in the con-

text of advanced programming techniques (FIGUEIREDO et al., 2008a,

GARCIA et al., 2005, GREENWOOD et al., 2007) and (ii) coupling is also a

classical indicator of program faults (BURROWS et al., 2010) and program

changes (FIGUEIREDO et al., 2008a); fixing bugs and realizing changes are

the two basic sources of program instabilities (KELLY, 2006).

Stability Metrics. Stability metrics were used with the purpose of quanti-

fying the degree of modifications on program implementation (Section 3.2.2).

For instance, they enable us to check if a change, originally targeted at adding

a new functionality, also affected the other functionalities and/or modules of a

system. The used metrics were defined to quantify two complementary forms

of modification that are directly related to the occurrence of ripple effects,

which are harmful to software stability: (i) refactorings - when the change is

aimed at improving the system structure while preserving the existing code

semantics, and (ii) alterations - when functionalities are added, removed, or

modified through the system modules. For the first case, we used a metric,

called Refactoring of Modules (RoM). This metric is used to quantify struc-

tural changes in classes, aspects and/or in their respective inner elements. For

the second case, a metric, named Alterations in Program Elements (APE),

was used to compute the number of increments, deletions, and actual modifi-

cations in program elements (Section 3.2.2). Examples of these elements can

be a class, a method, an aspect, an advice and a pointcut (see Table 3.1).

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 55

Table 3.1: Program Elements per Programming Language

Language Program Element

AspectJ classes, aspects, operations, pointcut and advices
CaesarJ classes (java class and cclass), operations
Java classes, interfaces and operations

3.2

Programming Techniques: Analysing Evolving Systems

Program evolution is driven by regular updates of modules in order to ac-

complish new requirements. The evolution process is improved if software

designs and their implementations are modular (FIGUEIREDO et al., 2008a,

FAYAD,2002). In fact, the long life of a software project is only possible if

changes can modularly be incorporated into the program. Otherwise, the in-

stabilities are likely to be observed, thereby hindering the system’s longevity.

Therefore, as previously presented, the evolution of the target systems (Section

3.1.1) was analyzed under the perspective of two quality attributes: modular-

ity (Section 3.2.1) and stability (Section 3.2.2). In particular, we discuss if ad-

vanced programming techniques achieve a better stability; and, to fully achieve

our research aims, we also checked the relation of modularity metrics and the

stability in the analyzed composition-enriched programs (Section 3.2.2).

3.2.1

Modularity Analysis

This section presents the results for the first step (Section 3.1.3) where we

analyst the modularity of the target systems (Appendix A) throughout their

evolution. We used the modularity metrics presented in Section 3.1.4.

New Composition Mechanisms: Is Modularity Improved? As far as

modularity is concerned, the use of advanced programming techniques was

evaluated based on the results of a metrics suite (Section 3.1.4). The metrics

were used to quantify a fundamental attribute of modularity, namely coupling

(Section 3.1.4). In order to obtain the data sample, we have considered the

coupling of modules present in all the versions associated with all the target

systems (Appendix A). Lower values for coupling (CBC) represent better

modularity as modules with lesser dependencies are likely to confine and not

propagate changes with higher frequency. As someone would expect, we have

observed that the composition mechanisms supported by CaesarJ and AspectJ

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 56

led to more modular code when compared to Java (See Figures 3.1, 3.2 and 3.3).

This result confirms the expectation that advanced programming techniques

play a role in improving the conventional notion of modularity in software

systems. As illustrated in Figures 3.1, 3.2 and 3.3, advanced programming

techniques promote gains regarding code modularity for all the applications

that were analyzed. A careful analysis of measures confirms the superiority

of CaesarJ when compared to AspectJ and Java in terms of CBC and DIT.

According to the CBC values in Figures 3.1, 3.2 and 3.3, we could state that the

program modularity is to advanced programming techniques in the following

order: FOP, AOP and OO, for both CBC and DIT.

Figure 3.1: Modularity for iBatis

Figure 3.2: Modularity for MobileMedia

Revisiting the Figures 3.1, 3.2 and 3.3, it is possible to observe the gains

varies in different proportions when OO implementations (worst technique)

are compared to FOP ones (best technique), which are: from 12% to 195%

(MobileMedia), from 40% to 58% (iBatis) and from 26% to 85% (GameUP).

The gains variation is associated with the scope of the code used to implement

a given maintenance scenario. When the scope is low, the coupling measures

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 57

Figure 3.3: Modularity for Games

(metric CBC) tend to have a little variation, regardless of the programming

technique that was used. However, the results are always favorable to advanced

programming techniques. On the other hand, a high scope clearly shows the

superiority of the advanced techniques. The exceptional handling implemented

in MobileMedia (version 1), for example, has a high scope, which tends to

make the Java code more coupled. The exception handling for the feature

IncludePhoto, for instance, requires the implementation of three different

exception types. In AspectJ, the three exceptions are implemented in just one

aspect and they are used by three different classes: C1, C2 and C3, creating a

coupling equal to 3 (CBC=3). For the same scenario, the Java implementation

requires the creation of a new class to implement each one of the exceptions -

C4, C5 and C6 - so that they can be treated differently. This way, C1 is coupled

with C4, C5 and C6, generating a CBC = 3, as well as C2 (CBC = 3) and C3

(CBC = 3), generating a coupling amount equal to 9.

Comparing the modularity measures of AspectJ and CaesarJ, the differences

were almost insignificant (around 5% on average). An in-depth analysis of

both measures and implementations revealed that the superiority of CaesarJ

is thanks to the fact they address some expressiveness shortcomings of the

composition mechanisms supported by AspectJ. For instance, composition

mechanisms of CaesarJ (Section 2.1.2) enable further modular decomposition

of the code beyond the use of AOP-specific composition mechanisms supported

in both languages. There are more modules that can be advised and composed

with aspects. As a consequence, the opportunity for advising join points is

significantly increased in CaesarJ code. The FOP mechanisms of CaesarJ

enable more granular definition of modules. Modules in CaesarJ are not only

restricted to aspects that modularize crosscutting concerns. Modules are also

cclasses (Section 2.1.2) that modularize fine-grained features or functionalities

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 58

that are decomposed hierarchically and have no crosscutting effect on the

program. Finally, a small variation in the coupling of MobileMedia (version 6)

is unfavorable to CaesarJ. This happens because, for this particular version,

the depth of inheritance relationships (DIT values) is considered high and

generates a high coupling.

We also observed that some of the AspectJ shortcomings were caused often

by the stronger coupling between crosscutting feature implementations (within

aspects) and the base program. An example is the definition of a non-functional

aspect (i.e., an aspect realizing a non-functional requirement) by enumerating

the join points by name or according to certain naming conventions in AspectJ.

In CaesarJ a new functionality is often a result of a polymorphic composition

by means of virtual class and mixin composition (Section 2.1). This means

that there were fewer opportunities for pointcut fragility scenarios in CaesarJ.

Do Composition Mechanisms Affect Stability Similarly? In fact, some-

one can notice that there was no visible difference between the AspectJ and

CaesarJ curves in the graphics for all the three systems. This result is a clear

indicator that coupling metrics are not able to reveal the nuances of the compo-

sition code in AspectJ and CaesarJ, and their different influences on program

stability. This result is quite surprising as different AOP and FOP mecha-

nisms were employed in the implementations. We are going to observe later

that, in fact, the differences of stability measures of AspectJ and CaesarJ ver-

sions varied through the systems’ evolution (Section 3.2.2). However, there is

no perceptible variation in the coupling measures through those systems as we

can observe in the Figures 3.1, 3.2 and 3.3. The role of composition mechanisms

on program stability is discussed throughout the Sections 3.2.2 and 3.2.3.

3.2.2

Stability Analysis

This section presents the results for the second step (Section 3.1.3) regarding

program stability. We analyse the stability of the target systems (Appendix A)

throughout their evolution. This analysis was carried out based on the stability

metrics presented in Section 3.1.4.

The more changes are required to realize a new software evolution scenario,

the more unstable the system design is likely to become. In this manner,

we calculated the number of changes that occurred in AspectJ and CaesarJ

implementations. Table 3.2 summarizes the change classification observed in

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 59

MobileMedia, iBatis and GameUP in terms of the stability metrics (Section

3.1). Table 3.2 relies on the following notation pattern: AspectJ results are

labeled as “AJ” and CaesarJ results are labeled as “CJ”.

Table 3.2: Changes in SPL

Virtual classes succeed in promoting program stability. Taking Table

3.2 into consideration, we can observe that the number of changes was signif-

icantly lower in the CaesarJ implementations when compared with AspectJ

ones. For instance, when refactoring names of classes, all the implementations

suffer with these changes. However, some composition mechanisms of AspectJ,

such as intertype declarations require more changes than the counterpart vir-

tual classes of CaesarJ. These changes are associated with some properties of

the composition implementation, such as the scope, which is associated with

the set of modules taking part in such a composition. We should recall that the

coupling measures (Section 3.1.4) were similar and do not follow the differences

of stability measures for AspectJ and CaesarJ observed in Table 3.2.

The use of virtual classes is illustrated in Figure 3.4. The method

getNumberOfViews() was added to the class MediaData in PhotoSorting (line

06 - box #2). This addition overrides the class MediaData in MediaManagement

cclass as MediaData is virtual. It is important to notice that no modification

was required. The same operation is illustrated in Figure 3.5 using intertype

declarations. In this case, the aspect SortingAspect was modified (Figure 3.5)

and, as this method cannot be overridden, it will be constantly changed along

the SPL evolution process.

The use of virtual classes (Section 2.1.2) promotes the evolution using feature

specializations with an inheritance mechanism. Thus, many methods and

cclasses are overriden instead of being intrusively and partially modified.

Figures 3.6 and 3.7 shows an example of this scenario before and after the

modification. Notice that the method showMediaList() was overriden by the

addition of cclass Favourite, which is in charge of allowing users to specify

and view their favourite photos. The same technique was used to add the

other features in the evolution of the other SPL applications. In a nutshell,

we can say that with the use of virtual classes the degree of stability was

ameliorated 65% - iBatis application - when compared with AspectJ, as classes

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 60

Figure 3.4: CaesarJ example of MobileMedia

Figure 3.5: AspectJ example

in CaesarJ can be partially overridden. This value was calculated based on

the number of changes presented in Table 3.2. Basically, we calculated the

percentage difference between AOP and FOP iBatis versions.

Figure 3.6: Modularization of features with virtual classes

AspectJ fails in promoting stability of crosscutting functionalities.

One of the maintenance scenario of GameUP involves Persistence, a cross-

cutting feature. This feature involves modules related to pieces, boards and

user interface. These modules and methods are refined in order to allow stor-

ing both each piece type and the co-ordinates of its position in the board. The

system also needs to provide the user with interface elements to save and load

the game. As a consequence, several modifications in AspectJ implementation

were needed due to the volatility of pointcuts and intertype declarations. More-

over, it was hard to specify a set of pointcuts and to refine the collaboration

among modules; it was necessary a considerable refactoring effort to expose

parts of original application code that would be advised by the aspects. In

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 61

Figure 3.7: Slice of code partially modified in CaesarJ

fact, the extent of modules modified during the integration was widely scoped.

As a result, such refactorings were responsible to make the use of AOP more

cumbersome.

Wrappers, pointcuts and intertype declarations can go hand-in-

hand. The use of wrappers can be evaluated in some of the GameUP

maintenance scenarios. One of them includes the customization of board tiles in

the JHess game. In this scenario, there was no difference in terms of stability for

CaesarJ and AspectJ. The AspectJ solution was based on the use of pointcuts

and intertype declarations whereas the CaesarJ code focuses on the use of

wrappers. We observed that the use of wrappers presented the same limitations

of the use of intertype declarations. In fact, wrappers proved to be very tied

to syntax, in particular, to the name of the types that are adapted by the

wrapper. In modules that use wrappers, the changes adapt the wrapper to

binding a proper class from context of the original application. In the evolution,

the modules that call the constructors of wrappers also require modifications

in the original code. In this sense, our evaluation suggests that the use of

wrappers leads to modules with the same degree of stability when compared

to those which are implemented using intertype declarations.

Figure 3.8 illustrates the use of wrappers in a piece of code. Note that there

are changes in the wrapper code (ColorSchemaBinding). These changes were

required to adapt a new kind of virtual class (Gui) and the module that

instantiates the wrapper (MainFrame).

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 62

public class wraps

public void

wrappee

public cclass

protected void

ColorSchemaBinding Gui {
...

initComponents () {
...

.getContentPane .add(comp);
}

}

MainFrame {
...

init () {
...
ColorSchemaBinding(this).initComponents();

}
}

JhessUserGui

getViewJMenu()

JhessUserGui

initComponents

Figure 3.8: Example of modifications using Wrappers

3.2.3

Discussion: Are Conventional Metrics Indicators of Program Stability?

According to our findings, the use of composition mechanisms of AOP and

FOP tends to produce systems with a high degree of modularity and stability

(Sections 3.2.1 and 3.2.2, respectively). Table 3.3 summarizes the analysis of

AspectJ and CaesarJ. The quality attributes are listed in the first column,

the worst and best percentage of superiority in relation to the second position

are given in the second column. These percentages in second column were

calculated taking into consideration the values presented in Table 3.2. The

name of the programming techniques that presented superiority is presented

in the third column. As we can see, CaesarJ is the lead in terms of stability

and modularity.

Table 3.3: Quality Attributes vs Advanced Programming Techniques

Quality Attribute Advantage (worst -
best)

Advanced Programming Tech-
nique

Modularity 3% - 8% CaesarJ
Stability 10% - 71% CaesarJ

Figure 3.9 presents a noticeable trend involving the two quality attributes:

modularity and stability . This trend is illustrated using MobileMedia applica-

tion as a representative case. However, it applies for all the target applications

(see Apendix A). Modularity is expressed through the measures of coupling as

it represents the behavior of the other modularity metrics as well (e.g., DIT

metric). It is clear that while the degree of stability varies along the versions,

the degree of modularity tends to decrease. This is a strong evidence that

modularity is not a good indicator of stability (Section 3.2.2). On the other

hand, Figure 3.10 illustrates the same measures for coupling considering the

Java versions of the MobileMedia application as a representative example. As

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 63

we can observe, different from what happens to the use of advanced compo-

sition techniques, coupling measures are good indicators of stability for OO

programs.

Figure 3.9: Modularity vs Stability for CaesarJ

Figure 3.10: Modularity vs Stability for OO

Combined modularity metrics fail in indicating program stability. An

additional analysis can be carried out taking into consideration the combina-

tion of coupling metrics that considers two coupling forms between composition

code and the original code: CBC and DIT. The Figure 3.11 illustrates the re-

lationship between DIT and stability. In Figure 3.9 the stability is associated

with CBC. Considering these two figures, we can observe that both DIT and

CBC increases together. However, the stability increase and decrease along

the evolution. As a consequence, it is not possible to establish a relationship of

these two combined metrics with the variation of stability. As a result, we can

conclude that DIT and CBC when combined do not indicate program stability

as well.

Composition code particularities are harmful to program stability.

It is important to highlight that most of the differences associated with the

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 64

Figure 3.11: DIT vs Stability for CaesarJ

use of AOP and FOP mechanisms, such as intertype declaration and virtual

classes, take place due to some particularities of the composition code. For

instance, the use of intertype declaration makes evident the volatility of the

composition code. This means that the use of this mechanism usually leads

to the break of composition dependencies between program elements. These

dependencies are established in order to prepare the existing program code to

work with composition mechanisms.

In addition, the scope of the composition code goes beyond the dependencies

explicitly declared in the program source code. We identified that there

are many other indirect and thus implicit dependencies that are harmful

to composition-enriched program stability. For instance, more than often a

composition realized by a single method call change a value of an attribute in

a given module. However, the original value of this attribute is used by another

module - an aspect. Then, the scope of the aforementioned composition is not

limited to module that is target of the method call, because there are other

modules, in this case the aspect, that implicitly joins the composition, but it

is not directly visible in the composition statement.

With these observations, we come to the conclusion that similar modularity

results are both achieved with AspectJ and CaesarJ. Comparing all the

measures, both techniques tend to exhibit almost the same level of modularity,

which was clearly better than the level achieved with Java. The difference

among all the AspectJ and CaesarJ measures does not exceed 5%. However,

the different performances in stability cannot be explained by modularity

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 65

metrics as those differences are explained by the particular properties of the

composition code produced.

3.3

Related Work

This section discusses prior works and constraints that somehow have in-

spired this study or have guided it. The mechanisms provided by the

CaesarJ language have been studied in the direction of SPL development

(MEZINI and OSTERMANN, 2003, MEZINI and OSTERMANN, 2004,

APEL et al., 2008). However, these studies do not evaluate different compo-

sition programming language, such as CaesarJ, in terms of software stability.

Yet in the domain of composition mechanisms, Roo et al. (ROO et al., 2008)

proposed the language AspectJ on the top of composition filters studies. How-

ever, none of them (AKSIT et al.,, 1991, AKSIT and BERGAMANS, 1998),

similar to CaesarJ studies, was focused on stability.

Figueiredo et al. (2008) present a case study in which they assess quantitatively

and qualitatively the positive and negative impacts, in terms of modularity and

stability, of AOP on a number of changes applied to both the core architec-

ture and variable features of software product lines. However, in general, most

of the empirical investigations only concentrate on the qualitative analysis of

the modularization process (APEL and BATORY, 2006, ALVES et al., 2007).

Apel et al. (2008) (APEL et al., 2008) contributed with an evaluation where

they did not embrace multiple composition mechanisms regarding stabil-

ity. The problem is that all empirical studies developed so far tend to

carry out a narrow analysis, focusing solely on either modularity or stability

(FIGUEIREDO et al., 2008a). Finally, Gurgel et al. (GURGEL et al., 2010)

reported a qualitative evaluation of using the mechanisms supported by Cae-

sarJ and AspectJ language to compose different design patterns. However, they

did not conduct a quantitative analysis on program stability.

3.4

Threats to Validity

In our study, the conclusion validity threats are related to the implementation

treatments. The versions were implemented by one AOP developer, who has a

good knowledge on the programming languages involved in the study, namely

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 66

AspectJ and CaesarJ. Even though the developer has not developed the

AspectJ original versions of the SPLs, he had a partial knowledge of the

possible modifications in future versions. However, we tried to minimize this

threat by involving independent CaesarJ and AspectJ researchers in order to

check the quality of the design and code produced.

A threat to construct validity includes the suite of metrics used for quanti-

fying changes and modularity properties. We used the CBC and DIT met-

rics that allowed us to evaluate the modularity properties, such as depen-

dencies of the core/variable modules. We adopted these metrics because

they were all empirically found to have correlation with design stability

(GARCIA et al., 2005, FIGUEIREDO et al., 2008a).

Threats to internal validity reside on alignment rules used to implement the

CaesarJ and AspectJ versions. To reduce this threat, we performed a detailed

analysis of the AspectJ code of the SPLs in order to reduce the inconsistencies

in the pointcut interfaces and not propagating problems from the original AO

implementations. It was necessary to ensure the quality of design in all versions

and to do a fair and equitable comparison.

Threats to external validity are conditions that allow results generalization.

In order to minimize this threat, we chose a SPL that had already been

used in another empirical study (FIGUEIREDO et al., 2008a) and another

well-known case study in the development of Java-based applications. These

applications are representative and have a significant size. This way, they

enabled us to observe the differences among the results. However, it is still

necessary to conduct other evaluations with other evolving systems to be able

to provide more evidences regarding our conclusions.

3.5

Summary

Gathering knowledge to identify which composition mechanisms achieve a

better stability is particularly important due to many reasons. First, software

engineers need to be better informed about which modularity mechanisms

can maximize stability of a system. Second, it is important to know which

of these particular mechanisms tend to promote positive and negative effects

over stability of software and how to quantify these effects. In this context,

this chapter reported a comparative assessment of AspectJ and CaesarJ in the

context of evolving systems development. Our study confirms that the use of

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 3. The Role of Modularity in Program Stability 67

CaesarJ collaboration interfaces and virtual classes tend to increase the degree

of stability.

We have also observed a number of new interesting outcomes as discussed

through Section 3.2. For instance, we found that modularity properties, as

fostered by programming techniques, do not seem to be the key factor to

determine the degree of stability. According to our experience in the target

systems cases (Appendix A), the different composition mechanisms exerted

the main influence on stability superiority (or inferiority) of a technique. This

justifies why AspectJ presented the best modularity results, but CaesarJ was

superior in terms of stability. In addition, the same evaluation presented in

this chapter was carried out using a third advanced programming technique

namely Composition Filter (DANTAS and GARCIA, 2010) and the findings

were similar to those findings presented in Section 3.2.

As a consequence, there is a need for measurement frameworks (Chapter 4) able

to capture the composition properties and quantify their impact on software

stability. The idea behind this investigation is to identify if composition

properties are correlated with program stability or not. As these properties are

not explicit in the source code, there is also a demand for strategies to make

them explicit in order to minimize the maintenance effort since the early stages

of software development (Chapter 5). A viable alternative seems to be make

the composition properties specification available already in the composition

design.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

