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4
Compactifying

This chapter provide a way to compactify the mimp-graphs, proposed in
the previous chapter, while keeping a similar structure in the compacted form.
Thus, we intend to minimize the number of F-nodes and R-nodes, thereby
F-labeled nodes refer to pairwise distinct formulas and sets of R-labeled nodes

refer to pairwise distinct subproofs.

4.1
Compactification Process

Parts of a derivation that have a similar structure can be shared, as shown
in Figure 4.1, the boxed formula p - ¢ is similar to the boxed formula p » r and
we can see that they have also similar derivations. (da Costa 2007) sketches
as unifying sub-proofs where the similarity is determined by the existence of
an unifier, thus given two formulas x and y, there is an object z that fits both
formulas (see Algorithm 1).

In mimp-graphs we say that formulas are formula graphs and their
similarity is determined by the existence of an isomorphism between these
formula graphs (see »3 and -»; in Figure 4.1). So too, the R-node sequences
>y, »E3, »E4 and -»lg, »E;, »Eg have a similar structure because premises
and conclusion of one sequence are isomorphic to premises and conclusion of
the other sequence, hence they are isomorphic as in the Definition 15. In our
proof-graphs, the number of formula nodes (F-nodes) was minimized with the
sharing operation @ (see Definition 7). Now we want to minimize the number
of inferences or R-nodes in the graph for this purpose we extend the mimp-
graphs (defined in Chapter 3) and define a representation in graphs, which we
call smimp.

To make it more transparent we use different types of lines. In this way
F-nodes and edges between them use solid lines, whereas inference nodes and
edges between them and adjacent premises or conclusions use dashed lines
and additionally delimiter nodes have been shaded. So nodes of types » and
p (propositions) together with adjacent edges (I,r) have solid line, whereas

nodes labeled »I and »E together with adjacent edges (m, M, p,c, disc) have


DBD
PUC-Rio - Certificação Digital Nº 1012697/CA


PUC-RIo - Certificacdo Digital N° 1012697/CA

Some Results in a Proof-theory Based on Graphs 39

L ps(p>
! [p]" p > XD SEq
P P29,k [p]' p>(>1)
q 7 1 ->Ey
2l [p] P37
(>0 bt

-)E1

Figure 4.1: The transition from a natural deduction proof to a mimp-graph

dashed lines.

Smimp somehow reflects the sharing of sub-proofs (or derivations with
similar conclusion and premises) by means of a graph definition, where the
reuse of a sub-result (or sequence of R-nodes) is depicted by a box that contains
it. This sharing will be done by comparing of conclusion formula graph with
the conclusion of the box that we want to reuse, if they are isomorphic then
we proceed to share the box by means of the addition of edges. In the above
illustration of Figure 4.2, the F-node -3 is the formula that attempts to reuse a
derivation with a conclusion isomorphic to it and a premise isomorphic to -4,
in the below illustration we see how it looks after sharing. Thus, the sequences
of rules: »I,, »E3, »E; and »lg, >E7, 5Eg, in Figure 4.1, are represented only
once as shown in the box, and new ingoing/outgoing edges (type m, M,p,c)
of the R-nodes in the box are added with an new index and related with their
isomorphic sub-graphs of premises and conclusion that the R-node sequence is
sharing.

The graph isomorphism for mimp-graph is a restricted version of the
general graph isomorphism that involves deciding the existence of a type of
node that preserves the isomorphism between a pair of graphs. For convenience,
we add the function type(v) to the definition of mimp-graphs that returns one
of the types of nodes described in the Lemma 1.
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Figure 4.2: The transition before and after of sharing.

Definition 15 (Graph isomorphism) The isomorphism between a pair of
graphs G = (V,E,L) and G' = (V',E',L’') is a mapping ¢ : V - V' satisfying

the following conditions:
1. ¢ is a bijection such that type(v) = type(¢d(v)) for allveV.

2. vll—wz e F - ¢(v1)l—,>¢(v2) € E' for all vi,vy € V' such thatl =1

unless the index.

Definition 16 (Subgraph isomorphism) Given two graphs G1 and Gs, we
say that there is subgraph isomorphism from G; to Gy iff there exists a

subgraph S c Gy such that Gy and S are isomorphic.

We present now the known graph transformation: the unfolding. This
transformation is to unfold a graph from all its vertices. When a graph contains
cycles, this process never stops, theoretically leading to infinite unfoldings.
Since formula graphs are acyclic, the unfolding of our graphs is a tree (see

right graph of the example in Figure 4.3).
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Figure 4.3: Formula (p » p) » (p » p) depicted as a formula graph (left side)
and as an unfolding graph (right side).

Definition 17 (Unfolding graph) The unfolding graph of a formula graph
is a formula tree that contains the same information, but has no shared nodes.
It is obtained by duplicating every node that is the shared target of multiple
edges, such that each edge gets its own target node.

Definition 18 (Substitution for graphs) A substitution for graphs o is
called a unifier for the set of graphs {Gh,...,Gy}, if and only if Gio = Gyo =
... =Gyo. The set {Gy,...,Gy} is said unifiable if there is one unifier for it.

Definition 19 (Pair in Disagreement) The pair in disagreement of a non-
empty set of formula graphs S is obtained by locating the nodes (in a pre-order
traversal) in the unfolding graph where not all formula graphs in S have exactly
the same label in nodes, and then extracting from each formula graph in S the
sub-graph with the node occupying this position in disagreement. The set of

these respective sub-graphs is the set in disagreement of S.

Algorithm 1 Unification algorithm adapted by matching

1: k=0,Sy=S, Dy ={e}, 0 ={e}

2: If Sy is a unitary set then substitute the original variables (any remaining)
of S by new variables applying ay/(vg,vx) for each remaining original
variable v, and add oy /(vg,vk) to ox; oy is the unifier of S. Otherwise,
if Sk is not a unitary set, then find the pair in disagreement Dy of Sk.

3: If there are elements v; and ¢, in D; such that v, is a variable that does
not occur in t, go to step 4. Otherwise, stop, S is not unifiable.

4: If Dy ¢ Sk, build Sk1 by substituting of occurrences of Dy, in Sk by ay,
where oy, is a variable that is neither in S nor in Sj. Otherwise, build Sj,;
by substituting of occurrences of Dy in Sy by oy previously associated. Do
Sk+1 = Sk ) Dk.

5: Do k =k +1 and go to step 2.

The building of smimp for a normal proof, unlike of mimp-graph, is in the
upwards direction, from conclusion to premises. If during the building of the
proof we find a similar formula to a conclusion already derived, similar in the

sense shown in the Algorithm 1. Instead of building two new branches for each
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of the similar formulas, we proceed as in the construction of the Definition 20 by
induction. In the smimp the R-nodes (I, »Iv, »E) inside boxes may be shared
any number of times, they represent rules with different inference orders. In
the definition we add the item named “share” that describes how sharing
is performed. The item “box” allows to add boxes and therefore distinguish
between shared and unshared R-nodes.

Definition 20 (Smimp) A smimp G is a directed graph (V, E, L, (Box;);er)
where: V is a set of nodes, L is a set of labels, E is a set of labeled
edges (v €V, t eE-Labels, v' €V) of source v, target v' and label t and is
identified with the arrow -0, (Box;)ier s a collection of set of nodes of
G, called the boxes. Moreover, the boxes (Box;);s should be non-overlapping,
two bozes are disjoint or one is contained in the other: Vi,j € I (Box;nBox; =
@ v Box; cBox; v Box; cBox;).

A smimp is defined recursively as follows:

Basis If G; is a formula graph with root node ., then the graph Go that is
defined as G1 with the D-nodes H,, and C' and the edges am—25C and

H hyp
n—>Qpy, 1S @& SMIMP.

»>I If Gy is a smimp and contains the F-node »; linked to the nodes oy, B,
and Hy, by the edges -)tl—>am, >—>0, and Hkl—>-)t respectively, then
the graph G that is defined as G with

1. the remowal of the edge Hkﬂ»-)t;
2. an R-node >1; at the top position;
3. a D-node H,; linked to the F-node (,;

di
4. the edges: Hk—>am, Bn—>-)I >I; _")t; >l ﬂHk,

is a smimp (see figure below; the a,,-node is discharged).

"'We will use the terms o, 8, and 7, to represent the principal connective of the formula
a, [ and ~y respectively.
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»Iv 2 If Gy is a smimp and contains the F-node »; linked to the nodes ., By
and Hy by the edges -)tiwm, >—f,, and Hkhﬂ»)t respectively, then
the graph G that is defined as G with

hyp
1. the remowval of the edge Hy,——-,;
2. an R-node »lv; at the top position;

3. a D-node Hy linked to the F-node [3,;

4. the edges: Hk%ﬁm ﬁnL-)Ivj and -)Ivji>-)t;

is a smimp (see figure below).

>E If Gy is a smimp and G2 is a formula graph with root node >, linked to
the nodes o, Bn by edges | and r, and the graph (intermediate step)
obtained by G ® Gy contains the node (3, linked to the D-node H;, then
the graph Gs that is defined as G1 ® Gy with
1. the remowval of the edge Hihﬂﬁn;
2. an R-node »E;, at the top position,
3. the edges: Hihﬂmm, Hjhﬂma, U —2 > >Ey,, -)a&—)Ek and

C
')Ek_k’ﬂn ;

is a smimp (see figure below).

Box If Gy is a smimp and contains a sequence of R-nodes R,,...,R; that

starts in the inference order i and ends in the inference order j, and this

2the “v” stands for “vacuous”
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sequence has zero or more premises i, ..., and one conclusion B,
then the graph G that is defined as G1 with a rule box Box={R;, ..., R;}
is a smimp (see figure below).

Share If G; is a smimp containing the F-node (3, linked to a D-node H and
there is a rule box Box = {Ry,..., R} and B, is unifiable® with some
conclusion graph of the bor* and each element in «a, ...,y (desirable
hypothesis) is unifiable with each premise® of the box, respectively. The
graph G that is defined as G1 ® a1 @ ... ® oy, with

1. the remowval of the edge H hﬂ»ﬂn and the D-node H;

2. the premises aj...ay that are not associated with a D-node H will

be associated with a new one;
3. for each R-node R; in Box
(a) a new inferential order conserving the list of original orders
given by: (R;/ [o | new]);
(b) for each premise F' of R;: apply o F® and add one edge (type p,
m or M with index new) from oF to R;;

(c) for the conclusion C of R;: apply oC' add one edge (type c with

index new) from R; to oC;

(d) if R; has any discharged formula F' then: apply o F and add one
D-node H and one disc-edge (with index new) to oF;

is a smimp (see figure below).

3in the sense shown in the Algorithm 1

4Tt is enough to compare at least one occurrence of them.

5Tt is enough to compare at least one occurrence of each premise.
6 was generated by the Algorithm 1
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Lemma 3 enables us to prove that a given graph G is a smimp without

explicitly supplying a construction. The Lemma basically says that we just

have to check that G has an inferential ordering on all R-nodes and that each
node of G is of one of the possible types ( P, K, E, I, B, H and C) that generate

the construction cases of Definition 20.

Lemma 3 G is a smimp if and only if the following hold

1.

There ezists a well-founded (hence acyclic) inferential order < on all R-

nodes of the smimp.

FEvery node N of G is of one of the following seven types:

P

K

N s labeled with one of the propositional letters: {p, ¢, r, ... }. N

has no outgoing edges | and r.

N has label »,, and has exactly two outgoing edges with label | and
r, respectively. N may has outgoing edges with labels p;, m; or My;

and ingoing edges with label c; and hyp,,.

N has label >Ey and has one (or n if the node is in a box) outgoing
edges >Ei—258,, where B, is a node type P or K. N has exactly
two (or 2n if the node is in a box) ingoing edges: ap——s-Ey and
-)q&-)Ek, where a,, s a node type P or K. there are also more

ezactly two outgoing edges from the node >, : -)aLam and »,—f,.

N has label 51; (or »lv;, if it discharges an hypothesis vacuously)
has one (or n if the node is in a bozx) outgoing edge >1; —>-)t ), and
one (or zero for the vacuous case »Iv, or n if the node is in a bozx)
outgoing edge (31;, discj, Hi). N has exactly one (or n if the node
is in a box) ingoing edge: BnLIj, where (3, is a node type P or
K. There are two outgoing edges from the node -;: -)tiwzm and
>——f, such that there is one (or zero for the case »Iv) ingoing

h
edge to the node a,,: Hkiam.
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B N is a rule box Box that contains R-nodes and each R-node can
store one or more inferential orders and satisfy the property of non-

overlap, two bozes are disjoint or one is contained in the other.
H N has label Hy, and has outgoing edges with label hypy.

C N has label C and has ezxactly one ingoing edge with label conc.

Proof: Similar to the proof of Lemma 1. [ ]

4.2
Discussion on R-minimal representation

There is a notion of ”minimal representation“ in the amount of F-nodes.
We would like to speak about "minimal representation“ in the amount of R-
nodes but this has not yet been established because in the definition of graph
has not been implemented a way to verify if all rule boxes occurring in Sy,

denote pairwise distinct boxes. So the Lemma proof below would be unfinished:

Lemma 4 FEvery mimp-like representation M has a uniquely determined (up
to graph-isomorphism) R-minimal smimp-like representation Sy, i.e. a repres-

entation satisfies the following four conditions.
1. Sy is a smimp whose size does not exceed the size of M.

2. M and Sy both have the same (set of) hypotheses and the same conclu-

ston.
3. There is a graph homomorphism h : M — Sy, that is injective on F-Labels.

4. All rule boxes occurring in Sy denote pairwise distinct bozes.

4.3
Example of application

Consider a generalization ¢ detailed below for what we have the

following fact from (Haeusler in press):

Proposition 2 Any normal proof of or in M~ has at least 2% occurrences of

the same assumptions, that are discharged by the last rule of the proof.

The ¢, family of formulas can be defined as follows:

Definition 21 Let x[X,Y]=(((X » Y) » X) » X)»Y. Using x[X,Y] we
recursively define a family of formulas. Consider the propositional letters C,

Dy, k>0, be the formula recursively defined as:
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&1 =x[D1,C] (4-1)

€k+1 = X[Dk+17§k] (4_2)

Using this family of formulas we define the formula o, n >0, such that,
for any k >0:

Pr+1 = €k+1')0

The following is a derivation of C from (((dg+1 = &) = dgs1) > dis1) 2

&, and hence, by an »-introduction we have a normal derivation of ¢, .

[(((dk+1 > fk) > dk+1) > dk+1) > gk]y

[dl]l . II*
(h293d)> 4 & [(((dir > &) > din) > dyar) > &7
d>c [(d1 2 c)> d1]® .
dr . I
((di=2ce)>d1)>ds &1

C
((((drs1 2 €k) 2 diy1) D dpya) 2 &) D c Y

Using smimp, we can build a proof with unified parts which is much
more economical than mimp-graph. Below we can find a table comparing both
versions of mimp-graph when used to prove the class of formulas ¢}, that have
this exponential growth. A comparative table is presented in Table 4.1 and

smimp representation in the Figure 4.4.

Linearized mimp-graph smimp

Mimp-Graph

1(G1) =69 I(GY)=7+7+Hyp(G)) =17, I(GS) =7+ 7+ Hyp(GS) =17,
Hyp(G1) =3 Hyp(G§) =3

I(Gs) = 327 I(Gh) =19+ 12+ Hyp(G}) = 44, I(GS) =13 + 12+ Hyp(GS) = 30,
Hyp(Gy) =7 Hyp(G5) =5

1(Gs3) = 1380 I(G%) = 43+ 17+ Hyp(G%) = 48, I(GS) = 19+ 17 + Hyp(GS) = 43,
Hyp(G3) =15 Hyp(Gg) =7

I(Gy) = I(G}) =91+22+ Hyp(G)) = 144, I(G9) =25+22+ Hyp(Gg) = 56,

. Hyp(GQ) =31 Hyp(Gg) =2+ Hyp(Gs)

I(Gy) = I(GY) = (2°6-5) + (2.4 5K) + Hyp(G}), I(GS) = (6k +1) + (2 + 5k) + Hyp(GS),
Hyp(Gy) =2" + Hyp(G}_;) Hyp(G) =2+ Hyp(G5_)

The length is given by [(G) =rn + fn+ Hyp(G),
l: length, rn: number of R-nodes, fn: number of F-nodes, Hyp: number of D-nodes H

Table 4.1: Comparative size of proofs
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Figure 4.4: Smimp of g1

4.4
Conclusion

The treatment for inference rules, in addition to formula sharing, is
performed during the construction process of the graph. This feature is of
fundamental importance, since we intend to use this graph in automatic
theorem provers. In the construction process when similar formulas are found,
we share a sub-proof and produce the unifier in linear time. We do not
implement a process of searching for similar formulas in our graph but we
estimate that the resources consumed in such searching would be compensated

by the reduction of necessary resources to build the proof-graph.
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